Problem Set 4

Math 207B, Winter 2016
Due: Fri, Feb. 12

1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u_{0}, u_{1} :

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=u_{0}, \quad u(1, t)=u_{1} \\
& u(x, 0)=f(x)
\end{aligned}
$$

(a) Find the steady state temperature $U(x)$ that satisfies

$$
\begin{aligned}
& U_{x x}=0 \quad 0<x<1 \\
& U(0)=u_{0}, \quad U(1)=u_{1}
\end{aligned}
$$

(b) Write $u(x, t)=U(x)+v(x, t)$ and find the corresponding IBVP for v. Use separation of variables to solve for v and hence u.
(c) How does $u(x, t)$ behave as $t \rightarrow \infty$?
2. Define a first-order differential operator with complex coefficients acting in $L^{2}(0,2 \pi)$ by

$$
A=-i \frac{d}{d x} .
$$

(a) Show that A is formally self-adjoint.
(b) Show that A with periodic boundary conditions $u(0)=u(2 \pi)$ is selfadjoint, and find the eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$
-i u^{\prime}=\lambda u, \quad u(0)=u(2 \pi)
$$

(c) What are the adjoint boundary conditions to the Dirichlet condition $u(0)=0$ at $x=0$? Is A with this Dirichlet boundary condition self-adjoint? Find all eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$
-i u^{\prime}=\lambda u, \quad u(0)=0 .
$$

How does your result compare with the properties of finite-dimensional eigenvalue problems for matrices?
3. Let A be a regular Sturm-Liouville operator, given by

$$
A u=-\left(p u^{\prime}\right)^{\prime}+q u,
$$

acting in $L^{2}(a, b)$. Verify that A with the Robin boundary conditions

$$
\alpha u^{\prime}(a)+u(a)=0, \quad u^{\prime}(b)+\beta u(b)=0
$$

is self-adjoint.
4. Show that the eigenvalues of the Sturm-Liouville problem

$$
\begin{array}{lc}
-u^{\prime \prime}=\lambda u & 0<x<1 \\
u(0)=0, & u^{\prime}(1)+\beta u(1)=0
\end{array}
$$

are given by $\lambda=k^{2}$ where $k>0$ satisfies the equation

$$
\beta \tan k+k=0 .
$$

Show graphically that there is a infinite sequence of simple eigenvalues $\lambda_{1}<$ $\lambda_{2}<\cdots<\lambda_{n}<\ldots$ with $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. What is the asymptotic behavior of λ_{n} as $n \rightarrow \infty$?
5. The following IBVP describes heat flow in a rod whose left end is held at temperature 0 and whose right end loses heat to the surroundings according to Newton's law of cooling (heat flux is proportional to the temperature difference):

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u_{x}(1, t)=-\beta u(1, t) \\
& u(x, 0)=f(x)
\end{aligned}
$$

Solve this IBVP by the method of separation of variables.

