
Problem set 4: Solutions
Math 207B, Winter2016

1. The following nonhomogeneous IBVP describes heat flow in a rod whose
ends are held at temperatures u0, u1:

ut = uxx 0 < x < 1, t > 0

u(0, t) = u0, u(1, t) = u1

u(x, 0) = f(x)

(a) Find the steady state temperature U(x) that satisfies

Uxx = 0 0 < x < 1

U(0) = u0, U(1) = u1

(b) Write u(x, t) = U(x) + v(x, t) and find the corresponding IBVP for v.
Use separation of variables to solve for v and hence u.

(c) How does u(x, t) behave as t→∞?

Solution.

• (a) The solution is a linear function

U(x) = u0 + (u1 − u0)x.

• (b) The perturbation v(x, t) from the steady state satisfies the IBVP
with homogeneous BCs

vt = vxx 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0

v(x, 0) = g(x)

where
g(x) = f(x)− U(x).

• The solution is

v(x, t) =
∞∑
n=1

bn sin(nπx)e−n
2π2t

where

bn = 2

∫ 1

0

g(x) sin(nπx) dx.

• (c) As t→∞, we have v(x, t)→ 0 and u(x, t)→ U(x).



2. Define a first-order differential operator with complex coefficients acting
in L2(0, 2π) by

A = −i d
dx
.

(a) Show that A is formally self-adjoint.

(b) Show that A with periodic boundary conditions u(0) = u(2π) is self-
adjoint, and find the eigenvalues and eigenfunctions of the corresponding
eigenvalue problem

−iu′ = λu, u(0) = u(2π).

(c) What are the adjoint boundary conditions to the Dirichlet condition
u(0) = 0 at x = 0? Is A with this Dirichlet boundary condition self-adjoint?
Find all eigenvalues and eigenfunctions of the corresponding eigenvalue prob-
lem

−iu′ = λu, u(0) = 0.

How does your result compare with the properties of finite-dimensional eigen-
value problems for matrices?

Solution.

• (a) If u, v ∈ C1([0, 2π]), then an integration by parts gives

〈u,Av〉 =

∫ 2π

0

u(x) [−iv′(x)] dx

= −i [ūv]2π0 +

∫ 2π

0

[−iu′(x)]v(x) dx

= −i [ūv]2π0 + 〈Au, v〉,

which shows that A is formally self-adjoint.

• We have

〈u,Av〉 = −i [ū(2π)v(2π)− ū(0)v(0)] + 〈Au, v〉
= −i [ū(2π)− ū(0)] v(2π) + iū(0) [v(2π)− v(0)] + 〈Au, v〉.



• If u(2π) = u(0), then the boundary terms vanish if and only if v(2π) =
v(0), and then 〈u,Av〉 = 〈Au, v〉. It follows that A with periodic
boundary conditions,

A : D(A) ⊂ L2(0, 2π)→ L2(0, 2π),

D(A) =
{
u ∈ H1(0, 2π) : u(0) = u(2π)

}
,

is self-adjoint.

• The eigenfunctions u satisfy−iu′ = λu, so u(x) = ceiλx, and for nonzero
solutions the periodic boundary condition u(2π) = u(0) implies that
e2πiλ = 1, or λ = n ∈ Z. Thus the eigenvalues and eigenfunctions are

λn = n, un(x) = einx, n ∈ Z.

• The corresponding eigenfunction expansion of 2π-periodic functions is
the Fourier series

f(x) =
∞∑

n=−∞

cne
inx, cn =

1

2π

∫ 2π

0

f(x)e−inx dx.

• If u(0) = 0, then

〈u,Av〉 = −iū(2π)v(2π) + 〈Au, v〉,

so the adjoint boundary condition that ensures the boundary term van-
ishes is v(2π) = 0.

• Thus if

A : D(A) ⊂ L2(0, 2π)→ L2(0, 2π), A = −i d
dx

D(A) =
{
u ∈ H1(0, 2π) : u(0) = 0

}
,

then

A∗ : D(A∗) ⊂ L2(0, 2π)→ L2(0, 2π), A∗ = −i d
dx

D(A∗) =
{
u ∈ H1(0, 2π) : u(2π) = 0

}
,

and A is not self-adjoint since its boundary condition is not self-adjoint.



• (c) The general solution of the ODE is u(x) = ceiλx. The boundary
condition u(0) = 0 implies that c = 0, so u = 0, and the operator A
has no eigenvalues. (In fact, A − λI is invertible for every λ ∈ C, so
not only does A have no eigenvalues, but the spectrum of A is empty.)

• This behavior contrasts with that of linear maps on finite-dimensional
vector spaces, which always have at least one eigenvalue and eigenfunc-
tion, even if they are not Hermitian.



3. Let A be a regular Sturm-Liouville operator, given by

Au = − (pu′)
′
+ qu,

acting in L2(a, b). Verify that A with the Robin boundary conditions

αu′(a) + u(a) = 0, u′(b) + βu(b) = 0

is self-adjoint.

Solution.

• Using a real inner-product and integrating by parts, we get that

〈Au, v〉 − 〈u,Av〉 =

∫ b

a

[
− (pu′)

′
+ qu

]
v − u

[
− (pv′)

′
+ qv

]
dx

=

∫ b

a

(puv′ − pu′v)
′
dx

= [p(uv′ − u′v)]
b
a .

• If αu′(a) + u(a) = 0, then

p(a) [u(a)v′(a)− u′(a)v(a)]

= p(a) [αu′(a) + u(a)] v′(a)− p(a)u′(a) [αv′(a) + v(a)]

= −p(a)u(a) [αv′(a) + v(a)] ,

so (provided that p(a) 6= 0, which is the case for a regular Sturm-
Liouville operator) the boundary term at x = a vanishes if and only if
αv′(a) + v(a) = 0, meaning that the BC is self-adjoint.

• Similarly, if u′(b) + βu(b) = 0, then

p(b) [u(b)v′(b)− u′(b)v(b)]

= p(b) [u′(b) + βu(b)] v′(b)− p(b)u′(b) [v′(b) + βv(b)]

= −p(b)u(b) [v′(b) + βv(b)] ,

so the boundary term at x = b vanishes if and only if v′(b) +βv(b) = 0.



4. Show that the eigenvalues of the Sturm-Liouville problem

− u′′ = λu 0 < x < 1

u(0) = 0, u′(1) + βu(1) = 0

are given by λ = k2 where k > 0 satisfies the equation

β tan k + k = 0.

Show graphically that there is a infinite sequence of simple eigenvalues λ1 <
λ2 < · · · < λn < . . . with λn → ∞ as n → ∞. What is the asymptotic
behavior of λn as n→∞?

Solution.

• From Problem 3, the eigenvalue problem is self-adjoint.

• If λ is an eigenvalue and u is a nonzero eigenfunction, then the self-
adjointness implies that

λ

∫ 1

0

u2 dx = −
∫
u′′u dx =

∫ 1

0

(u′)2 dx > 0,

since u′ 6= 0 for any nonzero solution of the BVP, so λ = k2 > 0. The
solution of the ODE with u(0) = 0 is then u(x) = c sin kx, and the BC
at x = 1 implies that k cos k + β sin k = 0, or β tan k + k = 0.

• The roots of β tan k + k = 0 are the k-coordinates of the intersections
of the curve y = −k/β with the curve y = tan k, where we assume
for definiteness that β > 0 (see figure below for β = 1). There are
infinitely many such points and kn ∼ (2n− 1)π/2, or

λn ∼
(2n− 1)2π2

4
as n→∞





5. The following IBVP describes heat flow in a rod whose left end is held at
temperature 0 and whose right end loses heat to the surroundings according
to Newton’s law of cooling (heat flux is proportional to the temperature
difference):

ut = uxx 0 < x < 1, t > 0

u(0, t) = 0, ux(1, t) = −βu(1, t)

u(x, 0) = f(x)

Solve this IBVP by the method of separation of variables.

Solution.

• The separated solutions of the PDE and the BCs are

u(x, t) = e−λnt sin(knx)

where λn = k2n are the eigenvalues from Problem 4.

• Superposing the separated solutions, we get that

u(x, t) =
∞∑
n=1

bne
−λnt sin(knx)

where the coefficients bn are chosen so that

f(x) =
∞∑
n=1

bn sin(knx)

• Since eigenvalue problem is self-adjoint, the eigenfunctions are orthog-
onal, and

bn =

∫ 1

0
f(x) sin(knx) dx∫ 1

0
sin2(knx) dx

.

• To verify the orthogonality explicitly, we use the addition formula for



cosines, to get for km 6= kn that∫ 1

0

sin(kmx) sin(knx) dx =
1

2

[
sin(km − kn)

km − kn
− sin(km + kn)

km + kn

]
=
kn cos kn sin km − km cos km sin kn

k2m − k2n
=

sin kn sin km − sin km sin kn
k2m − k2n

= 0,

and, by a similar calculation,∫ 1

0

sin2(knx) dx =
β + cos2 kn

2β
.


