Problem set 4: Solutions

Math 207B, Winter2016

1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u_{0}, u_{1} :

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=u_{0}, \quad u(1, t)=u_{1} \\
& u(x, 0)=f(x)
\end{aligned}
$$

(a) Find the steady state temperature $U(x)$ that satisfies

$$
\begin{aligned}
& U_{x x}=0
\end{aligned} \quad 0<x<1, ~=u_{0}, \quad U(1)=u_{1}
$$

(b) Write $u(x, t)=U(x)+v(x, t)$ and find the corresponding IBVP for v. Use separation of variables to solve for v and hence u.
(c) How does $u(x, t)$ behave as $t \rightarrow \infty$?

Solution.

- (a) The solution is a linear function

$$
U(x)=u_{0}+\left(u_{1}-u_{0}\right) x .
$$

- (b) The perturbation $v(x, t)$ from the steady state satisfies the IBVP with homogeneous BCs

$$
\begin{aligned}
& v_{t}=v_{x x} \quad 0<x<1, \quad t>0 \\
& v(0, t)=0, \quad v(1, t)=0 \\
& v(x, 0)=g(x)
\end{aligned}
$$

where

$$
g(x)=f(x)-U(x)
$$

- The solution is

$$
v(x, t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x) e^{-n^{2} \pi^{2} t}
$$

where

$$
b_{n}=2 \int_{0}^{1} g(x) \sin (n \pi x) d x
$$

- (c) As $t \rightarrow \infty$, we have $v(x, t) \rightarrow 0$ and $u(x, t) \rightarrow U(x)$.

2. Define a first-order differential operator with complex coefficients acting in $L^{2}(0,2 \pi)$ by

$$
A=-i \frac{d}{d x}
$$

(a) Show that A is formally self-adjoint.
(b) Show that A with periodic boundary conditions $u(0)=u(2 \pi)$ is selfadjoint, and find the eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$
-i u^{\prime}=\lambda u, \quad u(0)=u(2 \pi) .
$$

(c) What are the adjoint boundary conditions to the Dirichlet condition $u(0)=0$ at $x=0$? Is A with this Dirichlet boundary condition self-adjoint? Find all eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$
-i u^{\prime}=\lambda u, \quad u(0)=0
$$

How does your result compare with the properties of finite-dimensional eigenvalue problems for matrices?

Solution.

- (a) If $u, v \in C^{1}([0,2 \pi])$, then an integration by parts gives

$$
\begin{aligned}
\langle u, A v\rangle & =\int_{0}^{2 \pi} \overline{u(x)}\left[-i v^{\prime}(x)\right] d x \\
& \left.=-i[\bar{u} v]_{0}^{2 \pi}+\int_{0}^{2 \pi} \overline{\left[-i u^{\prime}(x)\right.}\right] v(x) d x \\
& =-i[\bar{u} v]_{0}^{2 \pi}+\langle A u, v\rangle
\end{aligned}
$$

which shows that A is formally self-adjoint.

- We have

$$
\begin{aligned}
\langle u, A v\rangle & =-i[\bar{u}(2 \pi) v(2 \pi)-\bar{u}(0) v(0)]+\langle A u, v\rangle \\
& =-i[\bar{u}(2 \pi)-\bar{u}(0)] v(2 \pi)+i \bar{u}(0)[v(2 \pi)-v(0)]+\langle A u, v\rangle
\end{aligned}
$$

- If $u(2 \pi)=u(0)$, then the boundary terms vanish if and only if $v(2 \pi)=$ $v(0)$, and then $\langle u, A v\rangle=\langle A u, v\rangle$. It follows that A with periodic boundary conditions,

$$
\begin{aligned}
& A: D(A) \subset L^{2}(0,2 \pi) \rightarrow L^{2}(0,2 \pi) \\
& D(A)=\left\{u \in H^{1}(0,2 \pi): u(0)=u(2 \pi)\right\}
\end{aligned}
$$

is self-adjoint.

- The eigenfunctions u satisfy $-i u^{\prime}=\lambda u$, so $u(x)=c e^{i \lambda x}$, and for nonzero solutions the periodic boundary condition $u(2 \pi)=u(0)$ implies that $e^{2 \pi i \lambda}=1$, or $\lambda=n \in \mathbb{Z}$. Thus the eigenvalues and eigenfunctions are

$$
\lambda_{n}=n, \quad u_{n}(x)=e^{i n x}, \quad n \in \mathbb{Z}
$$

- The corresponding eigenfunction expansion of 2π-periodic functions is the Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x .
$$

- If $u(0)=0$, then

$$
\langle u, A v\rangle=-i \bar{u}(2 \pi) v(2 \pi)+\langle A u, v\rangle,
$$

so the adjoint boundary condition that ensures the boundary term vanishes is $v(2 \pi)=0$.

- Thus if

$$
\begin{aligned}
& A: D(A) \subset L^{2}(0,2 \pi) \rightarrow L^{2}(0,2 \pi), \quad A=-i \frac{d}{d x} \\
& D(A)=\left\{u \in H^{1}(0,2 \pi): u(0)=0\right\},
\end{aligned}
$$

then

$$
\begin{aligned}
& A^{*}: D\left(A^{*}\right) \subset L^{2}(0,2 \pi) \rightarrow L^{2}(0,2 \pi), \quad A^{*}=-i \frac{d}{d x} \\
& D\left(A^{*}\right)=\left\{u \in H^{1}(0,2 \pi): u(2 \pi)=0\right\},
\end{aligned}
$$

and A is not self-adjoint since its boundary condition is not self-adjoint.

- (c) The general solution of the ODE is $u(x)=c e^{i \lambda x}$. The boundary condition $u(0)=0$ implies that $c=0$, so $u=0$, and the operator A has no eigenvalues. (In fact, $A-\lambda I$ is invertible for every $\lambda \in \mathbb{C}$, so not only does A have no eigenvalues, but the spectrum of A is empty.)
- This behavior contrasts with that of linear maps on finite-dimensional vector spaces, which always have at least one eigenvalue and eigenfunction, even if they are not Hermitian.

3. Let A be a regular Sturm-Liouville operator, given by

$$
A u=-\left(p u^{\prime}\right)^{\prime}+q u
$$

acting in $L^{2}(a, b)$. Verify that A with the Robin boundary conditions

$$
\alpha u^{\prime}(a)+u(a)=0, \quad u^{\prime}(b)+\beta u(b)=0
$$

is self-adjoint.

Solution.

- Using a real inner-product and integrating by parts, we get that

$$
\begin{aligned}
\langle A u, v\rangle-\langle u, A v\rangle & =\int_{a}^{b}\left[-\left(p u^{\prime}\right)^{\prime}+q u\right] v-u\left[-\left(p v^{\prime}\right)^{\prime}+q v\right] d x \\
& =\int_{a}^{b}\left(p u v^{\prime}-p u^{\prime} v\right)^{\prime} d x \\
& =\left[p\left(u v^{\prime}-u^{\prime} v\right)\right]_{a}^{b}
\end{aligned}
$$

- If $\alpha u^{\prime}(a)+u(a)=0$, then

$$
\begin{aligned}
& p(a)\left[u(a) v^{\prime}(a)-u^{\prime}(a) v(a)\right] \\
& \quad=p(a)\left[\alpha u^{\prime}(a)+u(a)\right] v^{\prime}(a)-p(a) u^{\prime}(a)\left[\alpha v^{\prime}(a)+v(a)\right] \\
& \quad=-p(a) u(a)\left[\alpha v^{\prime}(a)+v(a)\right]
\end{aligned}
$$

so (provided that $p(a) \neq 0$, which is the case for a regular SturmLiouville operator) the boundary term at $x=a$ vanishes if and only if $\alpha v^{\prime}(a)+v(a)=0$, meaning that the BC is self-adjoint.

- Similarly, if $u^{\prime}(b)+\beta u(b)=0$, then

$$
\begin{aligned}
& p(b)\left[u(b) v^{\prime}(b)-u^{\prime}(b) v(b)\right] \\
& \quad=p(b)\left[u^{\prime}(b)+\beta u(b)\right] v^{\prime}(b)-p(b) u^{\prime}(b)\left[v^{\prime}(b)+\beta v(b)\right] \\
& \quad=-p(b) u(b)\left[v^{\prime}(b)+\beta v(b)\right]
\end{aligned}
$$

so the boundary term at $x=b$ vanishes if and only if $v^{\prime}(b)+\beta v(b)=0$.
4. Show that the eigenvalues of the Sturm-Liouville problem

$$
\begin{array}{lc}
-u^{\prime \prime}=\lambda u & 0<x<1 \\
u(0)=0, & u^{\prime}(1)+\beta u(1)=0
\end{array}
$$

are given by $\lambda=k^{2}$ where $k>0$ satisfies the equation

$$
\beta \tan k+k=0 .
$$

Show graphically that there is a infinite sequence of simple eigenvalues $\lambda_{1}<$ $\lambda_{2}<\cdots<\lambda_{n}<\ldots$ with $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. What is the asymptotic behavior of λ_{n} as $n \rightarrow \infty$?

Solution.

- From Problem 3, the eigenvalue problem is self-adjoint.
- If λ is an eigenvalue and u is a nonzero eigenfunction, then the selfadjointness implies that

$$
\lambda \int_{0}^{1} u^{2} d x=-\int u^{\prime \prime} u d x=\int_{0}^{1}\left(u^{\prime}\right)^{2} d x>0
$$

since $u^{\prime} \neq 0$ for any nonzero solution of the BVP, so $\lambda=k^{2}>0$. The solution of the ODE with $u(0)=0$ is then $u(x)=c \sin k x$, and the BC at $x=1$ implies that $k \cos k+\beta \sin k=0$, or $\beta \tan k+k=0$.

- The roots of $\beta \tan k+k=0$ are the k-coordinates of the intersections of the curve $y=-k / \beta$ with the curve $y=\tan k$, where we assume for definiteness that $\beta>0$ (see figure below for $\beta=1$). There are infinitely many such points and $k_{n} \sim(2 n-1) \pi / 2$, or

$$
\lambda_{n} \sim \frac{(2 n-1)^{2} \pi^{2}}{4} \quad \text { as } n \rightarrow \infty
$$

5. The following IBVP describes heat flow in a rod whose left end is held at temperature 0 and whose right end loses heat to the surroundings according to Newton's law of cooling (heat flux is proportional to the temperature difference):

$$
\begin{aligned}
& u_{t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u_{x}(1, t)=-\beta u(1, t) \\
& u(x, 0)=f(x)
\end{aligned}
$$

Solve this IBVP by the method of separation of variables.

Solution.

- The separated solutions of the PDE and the BCs are

$$
u(x, t)=e^{-\lambda_{n} t} \sin \left(k_{n} x\right)
$$

where $\lambda_{n}=k_{n}^{2}$ are the eigenvalues from Problem 4.

- Superposing the separated solutions, we get that

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\lambda_{n} t} \sin \left(k_{n} x\right)
$$

where the coefficients b_{n} are chosen so that

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(k_{n} x\right)
$$

- Since eigenvalue problem is self-adjoint, the eigenfunctions are orthogonal, and

$$
b_{n}=\frac{\int_{0}^{1} f(x) \sin \left(k_{n} x\right) d x}{\int_{0}^{1} \sin ^{2}\left(k_{n} x\right) d x}
$$

- To verify the orthogonality explicitly, we use the addition formula for
cosines, to get for $k_{m} \neq k_{n}$ that

$$
\begin{aligned}
\int_{0}^{1} \sin \left(k_{m} x\right) \sin \left(k_{n} x\right) d x & =\frac{1}{2}\left[\frac{\sin \left(k_{m}-k_{n}\right)}{k_{m}-k_{n}}-\frac{\sin \left(k_{m}+k_{n}\right)}{k_{m}+k_{n}}\right] \\
& =\frac{k_{n} \cos k_{n} \sin k_{m}-k_{m} \cos k_{m} \sin k_{n}}{k_{m}^{2}-k_{n}^{2}} \\
& =\frac{\sin k_{n} \sin k_{m}-\sin k_{m} \sin k_{n}}{k_{m}^{2}-k_{n}^{2}} \\
& =0,
\end{aligned}
$$

and, by a similar calculation,

$$
\int_{0}^{1} \sin ^{2}\left(k_{n} x\right) d x=\frac{\beta+\cos ^{2} k_{n}}{2 \beta} .
$$

