Problem Set 5

Math 207B, Winter 2016
Due: Fri, Feb. 19

1. Suppose that $p:[a, b] \rightarrow \mathbb{R}$ is a continuously differentiable function such that $p>0$, and $q, r:[a, b] \rightarrow \mathbb{R}$ are continuous functions such that $r>0$, $q \geq 0$. Define a weighted inner product on $L^{2}(a, b)$ by

$$
\langle u, v\rangle_{r}=\int_{a}^{b} r(x) \overline{u(x)} v(x) d x
$$

Let $A: D(A) \subset L^{2}(a, b) \rightarrow L^{2}(a, b)$ be the operator

$$
A=\frac{1}{r(x)}\left[-\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right]
$$

with Dirichlet boundary conditions and domain

$$
D(A)=\left\{u \in H^{2}(a, b): u(a)=0, u(b)=0\right\} .
$$

(a) Show that

$$
\langle u, A v\rangle_{r}=\langle A u, v\rangle_{r} \quad \text { for all } u, v \in D(A),
$$

meaning that A is self-adjoint with respect to $\langle\cdot, \cdot\rangle_{r}$.
(b) Show that the eigenvalues λ of the weighted Sturm-Liouville eigenvalue problem

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u, \quad u(a)=0, \quad u(b)=0
$$

are real and positive and eigenfunctions associated with different eigenvalues are orthogonal with respect to $\langle\cdot, \cdot\rangle_{r}$.
2. A nonuniform string of length one with wave speed $c_{0}(x)=\sqrt{T / \rho_{0}(x)}>0$ is fixed at each end, with zero initial displacement and nonzero initial velocity. The transverse displacement $y=u(x, t)$ of the string satisfies the IBVP

$$
\begin{aligned}
& u_{t t}=c_{0}^{2}(x) u_{x x} \quad 0<x<1, \quad t>0, \\
& u(0, t)=0, \quad u(1, t)=0 \quad t>0, \\
& u(x, 0)=0 \quad 0<x<1, \\
& u_{t}(x, 0)=g(x) \quad 0<x<1,
\end{aligned}
$$

Find the solution in terms of the eigenvalues λ_{n} and eigenfunctions $\phi_{n}(x)$ of the weighted Sturm-Liouville problem

$$
-c_{0}^{2} \phi_{n}^{\prime \prime}=\lambda_{n} \phi_{n}, \quad \phi_{n}(0)=0, \quad \phi_{n}(1)=0, \quad n=1,2,3, \ldots
$$

3. The Fourier solution of the initial value problem

$$
\begin{aligned}
& u_{t t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \quad t>0 \\
& u(x, 0)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 / 2 \\
2(1-x) & \text { if } 1 / 2<x<1\end{cases} \\
& u_{t}(x, 0)=0 \quad 0 \leq x \leq 1
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t]
$$

(a) Show that the Fourier series converges to a continuous function. What order of spatial (weak) L^{2}-derivatives does $u(x, t)$ have?
(b) Verify from the Fourier solution that

$$
\int_{0}^{1}\left[u_{t}^{2}(x, t)+u_{x}^{2}(x, t)\right] d x=\text { constant } \quad \text { for }-\infty<t<\infty .
$$

(c) Use mATLAB (or another program) to compute the partial sum

$$
u_{N}(x, t)=\frac{8}{\pi^{2}} \sum_{n=1}^{N} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t]
$$

at $t=0.25$ for $N=5$ and $N=50$.
(d) Use the addition formula for sines to shows that the Fourier solution can be written in the form of the d'Alembert solution as

$$
u(x, t)=F(x-t)+F(x+t)
$$

for a suitable function $F: \mathbb{R} \rightarrow \mathbb{R}$. What is F ?
4. Suppose that $u(x, t)$ is a smooth solution of the wave equation

$$
u_{t t}=c_{0}^{2} \Delta u
$$

where $x \in \mathbb{R}^{n}$, the wave speed $c_{0}>0$ is a constant.
(a) Show that u satisfies the energy equation

$$
\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)_{t}-\nabla \cdot\left(c_{0}^{2} u_{t} \nabla u\right)=0 .
$$

(b) For $T>0$, let $\Omega_{T} \subset \mathbb{R}^{n+1}$ be the space-time cone

$$
\Omega_{T}=\left\{(x, t) \in \mathbb{R}^{n+1}:|x|<c_{0}(T-t), 0<t<T\right\},
$$

and for $0 \leq t \leq T$, let $B(T-t)$ be the spatial cross-section of Ω_{T} at time t

$$
B(T-t)=\left\{x \in \mathbb{R}^{n}:|x|<c_{0}(T-t)\right\}
$$

Define

$$
e_{T}(t)=\frac{1}{2} \int_{B(T-t)}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right) d x
$$

and show that $e_{T}(t) \leq e_{T}(0)$.
(c) Suppose that u_{1}, u_{2} are smooth solution of the wave equation such that

$$
u_{i}(x, 0)=f_{i}(x), \quad u_{i t}(x, 0)=g_{i}(x) \quad i=1,2
$$

where $f_{1}=f_{2}, g_{1}=g_{2}$ in $|x| \leq c_{0} T$, show that $u_{1}=u_{2}$ in Ω_{T}.
hint. For (b), apply the divergence theorem in space-time to the equation in (a) over the truncated cone $\left\{\left(x, t^{\prime}\right) \in \Omega_{T}: 0<t^{\prime}<t\right\}$, and note that the space-time normal to the side of the cone Ω_{T} is $N=\left(\hat{x}, c_{0}\right) / \sqrt{1+c_{0}^{2}}$ where $\hat{x}=x /|x|$. For (c), consider $u=u_{1}-u_{2}$.

