Problem set 5: Solutions

Math 207B, Winter 2016

1. Suppose that $p:[a, b] \rightarrow \mathbb{R}$ is a continuously differentiable function such that $p>0$, and $q, r:[a, b] \rightarrow \mathbb{R}$ are continuous functions such that $r>0$, $q \geq 0$. Define a weighted inner product on $L^{2}(a, b)$ by

$$
\langle u, v\rangle_{r}=\int_{a}^{b} r(x) \overline{u(x)} v(x) d x
$$

Let $A: D(A) \subset L^{2}(a, b) \rightarrow L^{2}(a, b)$ be the operator

$$
A=\frac{1}{r(x)}\left[-\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right]
$$

with Dirichlet boundary conditions and domain

$$
D(A)=\left\{u \in H^{2}(a, b): u(a)=0, u(b)=0\right\} .
$$

(a) Show that

$$
\langle u, A v\rangle_{r}=\langle A u, v\rangle_{r} \quad \text { for all } u, v \in D(A)
$$

meaning that A is self-adjoint with respect to $\langle\cdot, \cdot\rangle_{r}$.
(b) Show that the eigenvalues λ of the weighted Sturm-Liouville eigenvalue problem

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u, \quad u(a)=0, \quad u(b)=0
$$

are real and positive and eigenfunctions associated with different eigenvalues are orthogonal with respect to $\langle\cdot, \cdot\rangle_{r}$.

Solution.

- (a) Using integration by parts and the boundary conditions satisfied by $u, v \in D(A)$, we have

$$
\begin{aligned}
\langle u, A v\rangle_{r} & =\int_{a}^{b} \bar{u}\left[-\left(p v^{\prime}\right)^{\prime}+q v\right] d x \\
& =\left[p\left(\bar{u}^{\prime} v-\bar{u} v^{\prime}\right)\right]_{a}^{b}+\int_{a}^{b}\left[-\left(p \bar{u}^{\prime}\right)^{\prime}+q \bar{u}\right] v d x \\
& =\int_{a}^{b} \overline{\left[-\left(p u^{\prime}\right)^{\prime}+q u\right]} v d x \\
& =\langle A u, v\rangle_{r} .
\end{aligned}
$$

- (b) The reality of the eigenvalues and the orthogonality of the eigenfunctions follows directly from the self-adjointness of A. Moreover, if $A u=\lambda u$ and $u \in D(A)$ is normalized so that $\|u\|_{r}=1$, then an integration by parts gives

$$
\lambda=\langle u, A u\rangle_{r}=\int_{a}^{b} \bar{u}\left[-\left(p u^{\prime}\right)^{\prime}+q u\right] d x=\int_{a}^{b}\left[p\left|u^{\prime}\right|^{2}+q|u|^{2}\right] d x \geq 0
$$

- If $\lambda=0$, then $\int_{a}^{b} p\left|u^{\prime}\right|^{2} d x=0$, so $u^{\prime}=0$ and $u=$ constant. Then the boundary condition implies that $u=0$, so $\lambda=0$ is not an eigenvalue, and $\lambda>0$.

2. A nonuniform string of length one with wave speed $c_{0}(x)=\sqrt{T / \rho_{0}(x)}>0$ is fixed at each end, with zero initial displacement and nonzero initial velocity. The transverse displacement $y=u(x, t)$ of the string satisfies the IBVP

$$
\begin{aligned}
& u_{t t}=c_{0}^{2}(x) u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \quad t>0 \\
& u(x, 0)=0 \quad 0<x<1 \\
& u_{t}(x, 0)=g(x) \quad 0<x<1
\end{aligned}
$$

Find the solution in terms of the eigenvalues λ_{n} and eigenfunctions $\phi_{n}(x)$ of the weighted Sturm-Liouville problem

$$
-c_{0}^{2} \phi_{n}^{\prime \prime}=\lambda_{n} \phi_{n}, \quad \phi_{n}(0)=0, \quad \phi_{n}(1)=0, \quad n=1,2,3, \ldots
$$

Solution.

- Separation of variables gives the solutions

$$
u(x, t)=\left\{\begin{array}{l}
\phi_{n}(x) \cos \left(k_{n} t\right), \\
\phi_{n}(x) \sin \left(k_{n} t\right)
\end{array}\right.
$$

where $k_{n}>0$ with $k_{n}^{2}=\lambda_{n}$. From the previous question, $\lambda_{n}>0$ and the eigenfuctions are orthogonal with respect to the weight $r=c_{0}^{-2}$.

- Superposing the separated solutions that are zero at $t=0$, we get that

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \phi_{n}(x) \sin \left(k_{n} t\right)
$$

- The initial condition for $u_{t}(x, 0)$ is satisfied if $g(x)=\sum_{n=1}^{\infty} k_{n} b_{n} \phi_{n}(x)$. Using the orthogonality of the eigenfunctions, we get that

$$
k_{n} b_{n}=\frac{\left\langle g, \phi_{n}\right\rangle_{r}}{\left\|\phi_{n}\right\|_{r}^{2}}
$$

or

$$
b_{n}=\frac{\int_{0}^{1} c_{0}^{-2} g \phi_{n} d x}{k_{n} \int_{0}^{1} c_{0}^{-2} \phi_{n}^{2} d x}
$$

3. The Fourier solution of the initial value problem

$$
\begin{aligned}
& u_{t t}=u_{x x} \quad 0<x<1, \quad t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \quad t>0 \\
& u(x, 0)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 / 2 \\
2(1-x) & \text { if } 1 / 2<x<1\end{cases} \\
& u_{t}(x, 0)=0 \quad 0 \leq x \leq 1,
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t]
$$

(a) Show that the Fourier series converges to a continuous function. What order of spatial (weak) L^{2}-derivatives does $u(x, t)$ have?
(b) Verify from the Fourier solution that

$$
\int_{0}^{1}\left[u_{t}^{2}(x, t)+u_{x}^{2}(x, t)\right] d x=\text { constant } \quad \text { for }-\infty<t<\infty
$$

(c) Use matlab (or another program) to compute the partial sum

$$
u_{N}(x, t)=\frac{8}{\pi^{2}} \sum_{n=1}^{N} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t]
$$

at $t=0.25$ for $N=5$ and $N=50$.
(d) Use the addition formula for sines to shows that the Fourier solution can be written in the form of the d'Alembert solution as

$$
u(x, t)=F(x-t)+F(x+t)
$$

for a suitable function $F: \mathbb{R} \rightarrow \mathbb{R}$. What is F ?

Solution.

- (a) We have

$$
\left|\frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t]\right| \leq \frac{1}{(2 n-1)^{2}},
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}<\infty
$$

so the Weierstrass M-test implies that the series of continuous functions converges uniformly to a continuous function.

- We have

$$
u_{x}(x, t)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)} \cos [(2 n-1) \pi x] \cos [(2 n-1) \pi t],
$$

so by Parseval's theorem (and the fact that $\|\cos m \pi x\|_{L^{2}}^{2}=1 / 2$)

$$
\begin{aligned}
\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} & =\frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos ^{2}[(2 n-1) \pi t] \\
& \leq \frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
\end{aligned}
$$

meaning that $u_{x}(\cdot, t) \in L^{2}(0,1)$ for all $t \in \mathbb{R}$.

- We have the distributional derivative

$$
u_{x x}(x, t)=8 \sum_{n=1}^{\infty}(-1)^{n} \sin [(2 n-1) \pi x] \cos [(2 n-1) \pi t],
$$

which does not belong to L^{2} since $\sum_{n=1}^{\infty} \cos ^{2}[(2 n-1) \pi t]$ diverges (except for special values of t, such as $t=1 / 2)$. It follows that $u(\cdot, t) \in$ $H^{1}(0,1)$ has one spatial L^{2}-derivative.

- More generally, if we also consider fractional derivatives of order s, then $u(\cdot, t) \in H^{s}(0,1)$ for $s<3 / 2$.
- (b) We have

$$
\begin{aligned}
& u_{t}(x, t)=-\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)} \sin [(2 n-1) \pi x] \sin [(2 n-1) \pi t] \\
& u_{x}(x, t)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)} \cos [(2 n-1) \pi x] \cos [(2 n-1) \pi t]
\end{aligned}
$$

Parseval's theorem implies that

$$
\begin{aligned}
& \int_{0}^{1} u_{t}^{2}(x, t) d x=\frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \sin ^{2}[(2 n-1) \pi t] \\
& \int_{0}^{1} u_{x}^{2}(x, t) d x=\frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos ^{2}[(2 n-1) \pi t]
\end{aligned}
$$

so

$$
\int_{0}^{1}\left[u_{t}^{2}(x, t)+u_{x}^{2}(x, t)\right] d x=\frac{32}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

is a constant independent of time.

- At $t=0$

$$
\int_{0}^{1}\left[u_{t}^{2}(x, 0)+u_{x}^{2}(x, 0)\right] d x=\int_{0}^{1} u_{x}^{2}(x, 0) d x=4
$$

so we get the following sum from the Fourier expansion of the function $u_{x}(x, 0)$:

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

- (c) The partial sums are shown below. Although the Fourier series converges uniformly, it isn't rapidly convergent since the solution isn't a smooth function of x.
- (d) Using the trigonometric identity

$$
\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]
$$

we get that

$$
\begin{aligned}
u(x, t)= & \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi(x-t)] \\
& +\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi(x+t)] \\
= & F(x-t)+F(x+t)
\end{aligned}
$$

where

$$
F(x)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin [(2 n-1) \pi x] .
$$

- The function $2 F: \mathbb{R} \rightarrow \mathbb{R}$ is the odd, periodic extension of the initial data, meaning that $F(-x)=-F(x), F(x+2)=F(x)$, and

$$
F(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 / 2 \\ 1-x & \text { if } 1 / 2<x<1\end{cases}
$$

4. Suppose that $u(x, t)$ is a smooth solution of the wave equation

$$
u_{t t}=c_{0}^{2} \Delta u
$$

where $x \in \mathbb{R}^{n}$, and the wave speed $c_{0}>0$ is a constant.
(a) Show that u satisfies the energy equation

$$
\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)_{t}-\nabla \cdot\left(c_{0}^{2} u_{t} \nabla u\right)=0
$$

(b) For $T>0$, let $\Omega_{T} \subset \mathbb{R}^{n+1}$ be the space-time cone

$$
\Omega_{T}=\left\{(x, t) \in \mathbb{R}^{n+1}:|x|<c_{0}(T-t), 0<t<T\right\}
$$

and for $0 \leq t \leq T$, let $B(T-t)$ be the spatial cross-section of Ω_{T} at time t

$$
B(T-t)=\left\{x \in \mathbb{R}^{n}:|x|<c_{0}(T-t)\right\} .
$$

Define

$$
e_{T}(t)=\frac{1}{2} \int_{B(T-t)}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right) d x
$$

and show that $e_{T}(t) \leq e_{T}(0)$.
(c) Suppose that u_{1}, u_{2} are smooth solution of the wave equation such that

$$
u_{i}(x, 0)=f_{i}(x), \quad u_{i t}(x, 0)=g_{i}(x) \quad i=1,2
$$

where $f_{1}=f_{2}, g_{1}=g_{2}$ in $|x| \leq c_{0} T$, show that $u_{1}=u_{2}$ in Ω_{T}.
HINT. For (b), apply the divergence theorem in space-time to the equation in (a) over the truncated cone $\left\{\left(x, t^{\prime}\right) \in \Omega_{T}: 0<t^{\prime}<t\right\}$, and note that the space-time normal to the side of the cone Ω_{T} is $N=\left(\hat{x}, c_{0}\right) / \sqrt{1+c_{0}^{2}}$ where $\hat{x}=x /|x|$. For (c), consider $u=u_{1}-u_{2}$.

Solution.

- (a) Multiplying the wave equation by u_{t}, we have

$$
u_{t} u_{t t}-c_{0}^{2} u_{t} \Delta u=0
$$

Using the identities

$$
u_{t} u_{t t}=\left(\frac{1}{2} u_{t}^{2}\right)_{t}, \quad u_{t} \Delta u=\nabla \cdot\left(u_{t} \nabla u\right)-\left(\frac{1}{2} \nabla u \cdot \nabla u\right)_{t}
$$

we get that

$$
\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)_{t}-\nabla \cdot\left(c_{0}^{2} u_{t} \nabla u\right)=0
$$

- For $0<T^{\prime}<T$, let $\Omega_{T^{\prime}, T}$ denote the truncated cone

$$
\Omega_{T^{\prime}, T}=\left\{(x, t) \in \mathbb{R}^{n+1}:|x|<c_{0}(T-t) \text { and } 0<t<T^{\prime}\right\} .
$$

The boundary of $\Omega_{T^{\prime}, T}$

$$
\partial \Omega_{T^{\prime}, T}=\Gamma \cup \Sigma \cup \Gamma^{\prime}
$$

consists of the bottom

$$
\Gamma=\left\{(x, 0) \in \mathbb{R}^{n+1}:|x| \leq c_{0} T\right\}
$$

with outward space-time normal $N=(0,-1)$, the side

$$
\Sigma=\left\{(x, t) \in \mathbb{R}^{n+1}:|x|=c_{0}(T-t) \text { and } 0<t<T^{\prime}\right\}
$$

with outward space-time normal $N=\left(\hat{x}, c_{0}\right) / \sqrt{1+c_{0}^{2}}$, and the top

$$
\Gamma^{\prime}=\left\{\left(x, T^{\prime}\right) \in \mathbb{R}^{n+1}:|x| \leq c_{0}\left(T-T^{\prime}\right)\right\}
$$

with outward space-time normal $N=(0,1)$.

- Integrating the energy equation over $\Omega_{T^{\prime}, T}$ and applying the divergence theorem, we get that

$$
\begin{aligned}
0 & =\int_{\Omega_{T^{\prime}, T}}\left\{\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)_{t}-\nabla \cdot\left(c_{0}^{2} u_{t} \nabla u\right)\right\} d x d t \\
& =\int_{\partial \Omega_{T^{\prime}, T}}\left\{\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right) \nu-c_{0}^{2} u_{t} \nabla u \cdot n\right\} d S
\end{aligned}
$$

where $N=(n, \nu)$ is the outward space-time normal to $\partial \Omega_{T^{\prime}, T}$.

- Splitting the boundary integral into an integral over the bottom, side, and top, we get that

$$
e_{T}\left(T^{\prime}\right)=e_{T}(0)-\frac{c_{0}}{\sqrt{1+c_{0}^{2}}} \int_{\Sigma}\left\{\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)-c_{0} u_{t} \nabla u \cdot \hat{x}\right\} d S
$$

where

$$
e_{T}\left(T^{\prime}\right)=\int_{\Gamma^{\prime}} \frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right) d x, \quad e_{T}(0)=\int_{\Gamma} \frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right) d x .
$$

- Completing the square, and using the fact that \hat{x} is a unit vector, we get that

$$
\frac{1}{2}\left(u_{t}^{2}+c_{0}^{2}|\nabla u|^{2}\right)-c_{0} u_{t} \nabla u \cdot \hat{x}=\frac{1}{2}\left(u_{t} \hat{x}-c_{0} \nabla u\right) \cdot\left(u_{t} \hat{x}-c_{0} \nabla u\right) \geq 0
$$

It follows that $e_{T}\left(T^{\prime}\right) \leq e_{T}(0)$ for $0<T^{\prime}<T$.

- A physical interpretation of this inequality is that energy can only propagate out of the cone Ω_{T}, not into it.
- (c) If u_{1}, u_{2} are two solutions with the same initial data for u_{i} and $u_{i t}$ in $|x| \leq c_{0} T$, then $u=u_{1}-u_{2}$ has zero initial data, in $|x| \leq c_{0} T$ and therefore $e_{T}(0)=0$. The previous inequality implies that $0 \leq e_{T}(t) \leq$ $e_{T}(0)$ for $0<t<T$, so $e_{T}(t)=0$. It follows that $u_{t}=0$ and $\nabla u=0$ in Ω_{T}, meaning that $u=$ constant. Then the initial condition implies that $u=0$ and $u_{1}=u_{2}$ in Ω_{T}.

Remark. As this result shows, the solution of the wave equation at some point in space-time can only depend on, or influence, the solution at other points of space-time that can be reached by traveling at speeds less than or equal to c_{0}.

