
Problem set 5: Solutions
Math 207B, Winter 2016

1. Suppose that p : [a, b] → R is a continuously differentiable function such
that p > 0, and q, r : [a, b] → R are continuous functions such that r > 0,
q ≥ 0. Define a weighted inner product on L2(a, b) by

〈u, v〉r =

∫ b

a

r(x)u(x)v(x) dx.

Let A : D(A) ⊂ L2(a, b)→ L2(a, b) be the operator

A =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
with Dirichlet boundary conditions and domain

D(A) =
{
u ∈ H2(a, b) : u(a) = 0, u(b) = 0

}
.

(a) Show that

〈u,Av〉r = 〈Au, v〉r for all u, v ∈ D(A),

meaning that A is self-adjoint with respect to 〈·, ·〉r.
(b) Show that the eigenvalues λ of the weighted Sturm-Liouville eigenvalue
problem

−(pu′)′ + qu = λru, u(a) = 0, u(b) = 0

are real and positive and eigenfunctions associated with different eigenvalues
are orthogonal with respect to 〈·, ·〉r.

Solution.

• (a) Using integration by parts and the boundary conditions satisfied
by u, v ∈ D(A), we have

〈u,Av〉r =

∫ b

a

u [−(pv′)′ + qv] dx

= [p(ū′v − ūv′)]ba +

∫ b

a

[−(pū′)′ + qū] v dx

=

∫ b

a

[−(pu′)′ + qu]v dx

= 〈Au, v〉r.



• (b) The reality of the eigenvalues and the orthogonality of the eigen-
functions follows directly from the self-adjointness of A. Moreover, if
Au = λu and u ∈ D(A) is normalized so that ‖u‖r = 1, then an
integration by parts gives

λ = 〈u,Au〉r =

∫ b

a

ū[−(pu′)′ + qu] dx =

∫ b

a

[
p|u′|2 + q|u|2

]
dx ≥ 0.

• If λ = 0, then
∫ b

a
p|u′|2 dx = 0, so u′ = 0 and u = constant. Then the

boundary condition implies that u = 0, so λ = 0 is not an eigenvalue,
and λ > 0.



2. A nonuniform string of length one with wave speed c0(x) =
√
T/ρ0(x) > 0

is fixed at each end, with zero initial displacement and nonzero initial velocity.
The transverse displacement y = u(x, t) of the string satisfies the IBVP

utt = c2
0(x)uxx 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0 t > 0,

u(x, 0) = 0 0 < x < 1,

ut(x, 0) = g(x) 0 < x < 1,

Find the solution in terms of the eigenvalues λn and eigenfunctions φn(x) of
the weighted Sturm-Liouville problem

−c2
0φ
′′
n = λnφn, φn(0) = 0, φn(1) = 0, n = 1, 2, 3, . . .

Solution.

• Separation of variables gives the solutions

u(x, t) =

{
φn(x) cos(knt),

φn(x) sin(knt),

where kn > 0 with k2
n = λn. From the previous question, λn > 0 and

the eigenfuctions are orthogonal with respect to the weight r = c−2
0 .

• Superposing the separated solutions that are zero at t = 0, we get that

u(x, t) =
∞∑
n=1

bnφn(x) sin(knt).

• The initial condition for ut(x, 0) is satisfied if g(x) =
∑∞

n=1 knbnφn(x).
Using the orthogonality of the eigenfunctions, we get that

knbn =
〈g, φn〉r
‖φn‖2

r

,

or

bn =

∫ 1

0
c−2

0 gφn dx

kn
∫ 1

0
c−2

0 φ2
n dx

.



3. The Fourier solution of the initial value problem

utt = uxx 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0 t > 0,

u(x, 0) =

{
2x if 0 ≤ x ≤ 1/2

2(1− x) if 1/2 < x < 1,

ut(x, 0) = 0 0 ≤ x ≤ 1,

is given by

u(x, t) =
8

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
sin [(2n− 1)πx] cos [(2n− 1)πt]

(a) Show that the Fourier series converges to a continuous function. What
order of spatial (weak) L2-derivatives does u(x, t) have?

(b) Verify from the Fourier solution that∫ 1

0

[
u2
t (x, t) + u2

x(x, t)
]
dx = constant for −∞ < t <∞.

(c) Use matlab (or another program) to compute the partial sum

uN(x, t) =
8

π2

N∑
n=1

(−1)n+1

(2n− 1)2
sin [(2n− 1)πx] cos [(2n− 1)πt]

at t = 0.25 for N = 5 and N = 50.

(d) Use the addition formula for sines to shows that the Fourier solution can
be written in the form of the d’Alembert solution as

u(x, t) = F (x− t) + F (x+ t)

for a suitable function F : R→ R. What is F?

Solution.

• (a) We have∣∣∣∣ (−1)n+1

(2n− 1)2
sin [(2n− 1)πx] cos [(2n− 1)πt]

∣∣∣∣ ≤ 1

(2n− 1)2
,



and
∞∑
n=1

1

(2n− 1)2
<∞,

so the Weierstrass M -test implies that the series of continuous functions
converges uniformly to a continuous function.

• We have

ux(x, t) =
8

π

∞∑
n=1

(−1)n+1

(2n− 1)
cos [(2n− 1)πx] cos [(2n− 1)πt] ,

so by Parseval’s theorem (and the fact that ‖ cosmπx‖2
L2 = 1/2)

‖ux(·, t)‖2
L2 =

32

π2

∞∑
n=1

1

(2n− 1)2
cos2 [(2n− 1)πt]

≤ 32

π2

∞∑
n=1

1

(2n− 1)2
,

meaning that ux(·, t) ∈ L2(0, 1) for all t ∈ R.

• We have the distributional derivative

uxx(x, t) = 8
∞∑
n=1

(−1)n sin [(2n− 1)πx] cos [(2n− 1)πt] ,

which does not belong to L2 since
∑∞

n=1 cos2 [(2n− 1)πt] diverges (ex-
cept for special values of t, such as t = 1/2). It follows that u(·, t) ∈
H1(0, 1) has one spatial L2-derivative.

• More generally, if we also consider fractional derivatives of order s, then
u(·, t) ∈ Hs(0, 1) for s < 3/2.

• (b) We have

ut(x, t) = − 8

π

∞∑
n=1

(−1)n+1

(2n− 1)
sin [(2n− 1)πx] sin [(2n− 1)πt] ,

ux(x, t) =
8

π

∞∑
n=1

(−1)n+1

(2n− 1)
cos [(2n− 1)πx] cos [(2n− 1)πt] .



Parseval’s theorem implies that∫ 1

0

u2
t (x, t) dx =

32

π2

∞∑
n=1

1

(2n− 1)2
sin2 [(2n− 1)πt] ,∫ 1

0

u2
x(x, t) dx =

32

π2

∞∑
n=1

1

(2n− 1)2
cos2 [(2n− 1)πt] ,

so ∫ 1

0

[
u2
t (x, t) + u2

x(x, t)
]
dx =

32

π2

∞∑
n=1

1

(2n− 1)2

is a constant independent of time.

• At t = 0 ∫ 1

0

[
u2
t (x, 0) + u2

x(x, 0)
]
dx =

∫ 1

0

u2
x(x, 0) dx = 4,

so we get the following sum from the Fourier expansion of the function
ux(x, 0):

∞∑
n=1

1

(2n− 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · · = π2

8
.

• (c) The partial sums are shown below. Although the Fourier series
converges uniformly, it isn’t rapidly convergent since the solution isn’t
a smooth function of x.

• (d) Using the trigonometric identity

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] ,

we get that

u(x, t) =
4

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
sin [(2n− 1)π(x− t)]

+
4

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
sin [(2n− 1)π(x+ t)]

= F (x− t) + F (x+ t),



where

F (x) =
4

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
sin [(2n− 1)πx] .

• The function 2F : R → R is the odd, periodic extension of the initial
data, meaning that F (−x) = −F (x), F (x+ 2) = F (x), and

F (x) =

{
x if 0 ≤ x ≤ 1/2

1− x if 1/2 < x < 1,



4. Suppose that u(x, t) is a smooth solution of the wave equation

utt = c2
0∆u,

where x ∈ Rn, and the wave speed c0 > 0 is a constant.

(a) Show that u satisfies the energy equation

1

2

(
u2
t + c2

0|∇u|2
)
t
−∇ ·

(
c2

0ut∇u
)

= 0.

(b) For T > 0, let ΩT ⊂ Rn+1 be the space-time cone

ΩT =
{

(x, t) ∈ Rn+1 : |x| < c0(T − t), 0 < t < T
}
,

and for 0 ≤ t ≤ T , let B(T − t) be the spatial cross-section of ΩT at time t

B(T − t) = {x ∈ Rn : |x| < c0(T − t)} .

Define

eT (t) =
1

2

∫
B(T−t)

(
u2
t + c2

0|∇u|2
)
dx,

and show that eT (t) ≤ eT (0).

(c) Suppose that u1, u2 are smooth solution of the wave equation such that

ui(x, 0) = fi(x), uit(x, 0) = gi(x) i = 1, 2

where f1 = f2, g1 = g2 in |x| ≤ c0T , show that u1 = u2 in ΩT .

hint. For (b), apply the divergence theorem in space-time to the equation
in (a) over the truncated cone {(x, t′) ∈ ΩT : 0 < t′ < t}, and note that the
space-time normal to the side of the cone ΩT is N = (x̂, c0)/

√
1 + c2

0 where
x̂ = x/|x|. For (c), consider u = u1 − u2.

Solution.

• (a) Multiplying the wave equation by ut, we have

ututt − c2
0ut∆u = 0.

Using the identities

ututt =

(
1

2
u2
t

)
t

, ut∆u = ∇ · (ut∇u)−
(

1

2
∇u · ∇u

)
t

,

we get that
1

2

(
u2
t + c2

0|∇u|2
)
t
−∇ ·

(
c2

0ut∇u
)

= 0.



• For 0 < T ′ < T , let ΩT ′,T denote the truncated cone

ΩT ′,T =
{

(x, t) ∈ Rn+1 : |x| < c0(T − t) and 0 < t < T ′
}
.

The boundary of ΩT ′,T

∂ΩT ′,T = Γ ∪ Σ ∪ Γ′

consists of the bottom

Γ =
{

(x, 0) ∈ Rn+1 : |x| ≤ c0T
}

with outward space-time normal N = (0,−1), the side

Σ =
{

(x, t) ∈ Rn+1 : |x| = c0(T − t) and 0 < t < T ′
}

with outward space-time normal N = (x̂, c0)/
√

1 + c2
0, and the top

Γ′ =
{

(x, T ′) ∈ Rn+1 : |x| ≤ c0(T − T ′)
}

with outward space-time normal N = (0, 1).

• Integrating the energy equation over ΩT ′,T and applying the divergence
theorem, we get that

0 =

∫
ΩT ′,T

{
1

2

(
u2
t + c2

0|∇u|2
)
t
−∇ ·

(
c2

0ut∇u
)}

dxdt

=

∫
∂ΩT ′,T

{
1

2

(
u2
t + c2

0|∇u|2
)
ν − c2

0ut∇u · n
}
dS

where N = (n, ν) is the outward space-time normal to ∂ΩT ′,T .

• Splitting the boundary integral into an integral over the bottom, side,
and top, we get that

eT (T ′) = eT (0)− c0√
1 + c2

0

∫
Σ

{
1

2

(
u2
t + c2

0|∇u|2
)
− c0ut∇u · x̂

}
dS,

where

eT (T ′) =

∫
Γ′

1

2

(
u2
t + c2

0|∇u|2
)
dx, eT (0) =

∫
Γ

1

2

(
u2
t + c2

0|∇u|2
)
dx.



• Completing the square, and using the fact that x̂ is a unit vector, we
get that

1

2

(
u2
t + c2

0|∇u|2
)
− c0ut∇u · x̂ =

1

2
(utx̂− c0∇u) · (utx̂− c0∇u) ≥ 0.

It follows that eT (T ′) ≤ eT (0) for 0 < T ′ < T .

• A physical interpretation of this inequality is that energy can only
propagate out of the cone ΩT , not into it.

• (c) If u1, u2 are two solutions with the same initial data for ui and uit
in |x| ≤ c0T , then u = u1 − u2 has zero initial data, in |x| ≤ c0T and
therefore eT (0) = 0. The previous inequality implies that 0 ≤ eT (t) ≤
eT (0) for 0 < t < T , so eT (t) = 0. It follows that ut = 0 and ∇u = 0
in ΩT , meaning that u = constant. Then the initial condition implies
that u = 0 and u1 = u2 in ΩT .

Remark. As this result shows, the solution of the wave equation at some
point in space-time can only depend on, or influence, the solution at other
points of space-time that can be reached by traveling at speeds less than or
equal to c0.


