PROBLEM SET 5: SOLUTIONS
Math 207B, Winter 2016

1. Suppose that p : [a,b] — R is a continuously differentiable function such
that p > 0, and ¢,r : [a,b] — R are continuous functions such that r > 0,
q > 0. Define a weighted inner product on L?(a,b) by

(u,v)T:/ r(z)u(x)v(z) de.

Let A: D(A) C L*(a,b) — L*(a,b) be the operator

A= s |l +ato)

with Dirichlet boundary conditions and domain

D(A) = {u € H*(a,b) : u(a) = 0,u(b) = 0}.
(a) Show that

(u, Av), = (Au,v), for all u,v € D(A),

meaning that A is self-adjoint with respect to (-, ).

(b) Show that the eigenvalues A of the weighted Sturm-Liouville eigenvalue
problem
—(pu") + qu = Aru, u(a) =0, wu(b)=0

are real and positive and eigenfunctions associated with different eigenvalues
are orthogonal with respect to (-, ).

Solution.

e (a) Using integration by parts and the boundary conditions satisfied
by u,v € D(A), we have

(u,Avh, = [ a0y + o] da
b
= [p(@'v — @], + / [—(pa')’ + qu] v dx

:/ [—(pu')" + qu|vdx
= (Au,v),.



e (b) The reality of the eigenvalues and the orthogonality of the eigen-
functions follows directly from the self-adjointness of A. Moreover, if
Au = M and v € D(A) is normalized so that |lul|, = 1, then an
integration by parts gives

b b
A = (u, Au), = / ul—(pu') + qu] dx = / [plu'|? + qlul?] dz > 0.

e If A\ =0, then fabp|u’|2dx =0, so v’ = 0 and u = constant. Then the
boundary condition implies that u = 0, so A = 0 is not an eigenvalue,
and A > 0.



2. A nonuniform string of length one with wave speed co(z) = +/T"/po(z) > 0
is fixed at each end, with zero initial displacement and nonzero initial velocity.
The transverse displacement y = u(x,t) of the string satisfies the IBVP

Uy = Co(T) Uy 0O<ax<l, >0,
u(0,t) =0, u(l,t) =0 t >0,
u(z,0) =0 0<z<l,

u(x,0) = g(z) 0<z<l,

Find the solution in terms of the eigenvalues A, and eigenfunctions ¢, (z) of
the weighted Sturm-Liouville problem

—o ! = A, ,(0) =0, ¢n(1) =0, n=123,...

Solution.
e Separation of variables gives the solutions
n knt),
ooty = o) costint)
¢n(z) sin(kpt),

where k,, > 0 with k2 = ),. From the previous question, ), > 0 and

the eigenfuctions are orthogonal with respect to the weight r = ¢ 2,

e Superposing the separated solutions that are zero at ¢t = 0, we get that
u(z,t) = Z by () sin(knt).
n=1

e The initial condition for u:(x,0) is satisfied if g(z) = > 07 | kb ().
Using the orthogonality of the eigenfunctions, we get that

(9, Pn)r
knbn - >
[ dnl[?

or 1
y _ oo gdade
"k fol co 22 da




3. The Fourier solution of the initial value problem
Ut = Ugy O<z<l, t>0,
u(0,t) =0, u(l,t) =0 t>0,

2 fo<x<1/2
@oy=42  ro=r=l
21 —2) if1/2<z<1,
u(z,0) =0 0<z<1,
is given by
8 0 n+1
= 5 sin [(2n — 1)mz] cos [(2n — 1)7t]

T2 2n —1)2
n=1

(a) Show that the Fourier series converges to a continuous function. What
order of spatial (weak) L*-derivatives does u(z,t) have?

(b) Verify from the Fourier solution that
1
/ [uj (z,t) + u2(z,t)] do = constant for —oo <t < o0.
0
(c) Use MATLAB (or another program) to compute the partial sum

un(z,t) = Z 2711—211:) sin [(2n — 1)wz] cos [(2n — 1)7t]

at t = 0.25 for N =5 and N = 50.

(d) Use the addition formula for sines to shows that the Fourier solution can
be written in the form of the d’Alembert solution as

u(z,t) = F(x —t)+ F(x + 1)
for a suitable function F': R — R. What is F'?
Solution.
e (a) We have

(=1t !
Tan =Ty Sinl(en = Dmalcos [(2n — Dmt]) < o,



and

o0

1
— < 00,
2 Gty

so the Weierstrass M-test implies that the series of continuous functions
converges uniformly to a continuous function.

We have

8 n+1

(x,t) == ; 2n Y cos [(2n — 1)mz] cos [(2n — 1)7t],

so by Parseval’s theorem (and the fact that || cosmmz||2, = 1/2)

32 — 1
2 _ 2
[ua (-, )22 = 2 g n—1p2 cos” [(2n — 1)7t]
32 — 1
<

== (20— 1)
meaning that u,(-,t) € L*(0,1) for all ¢t € R.

We have the distributional derivative

Ugz (T, ) = 82 "sin [(2n — 1)7x] cos [(2n — 1)wt],

which does not belong to L? since Y - | cos® [(2n — 1)t] diverges (ex-
cept for special values of ¢, such as t = 1/2). It follows that u(-,t) €
H'(0,1) has one spatial [2-derivative.

More generally, if we also consider fractional derivatives of order s, then
u(-,t) € H*(0,1) for s < 3/2.

e (b) We have

w(z,t) = —; Z % sin [(2n — 1)mz]sin [(2n — 1)7t] ,

uz(x,t) = ; Z Fi cos [(2n — 1)z cos [(2n — 1)mt] .



Parseval’s theorem implies that

/1 otydr =223 L [(om — 1)
U\ T Xr = — ——— S1n n — T
0 T2 £ (2n — 1) ’

/1 2o tydr= 25 L oo — 1)
u.\xr Xr = — ——— X = COS n — v
0o o 72 £ (2n — 1) ’

SO
00

1
32 1
Hot) + (v, t)] de = =y ——
/0v [ut (:C7 ) + uac(x? )} €z 7T2 Z (2n . 1)2
is a constant independent of time.

Att=0

/01 [uj (z,0) + u2(z,0)] do = /Olui(x,O) dr = 4,

so we get the following sum from the Fourier expansion of the function
uz(x,0):

= 1 1 1 2
n=1

(c) The partial sums are shown below. Although the Fourier series
converges uniformly, it isn’t rapidly convergent since the solution isn’t
a smooth function of x.

(d) Using the trigonometric identity

1
sin Acos B = B [sin(A — B) +sin(A + B)],

we get that
u(z,t) = % > ((2;11”;2 sin[(2n — D) (x = 1)]
+ % Z % sin [(2n — 1)m(x + t)]



where

Fla) = % Zl % sin[(2n — 1)ma] .

e The function 2F : R — R is the odd, periodic extension of the initial
data, meaning that F(—x) = —F(z), F(z +2) = F(x), and

F@ﬁ={x if0<a2<1/2

1—=x

if1/2 <z <1,
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4. Suppose that u(z,t) is a smooth solution of the wave equation
Uy = chu,

where x € R", and the wave speed ¢y > 0 is a constant.
(a) Show that wu satisfies the energy equation

% (uf + cg|Vu|2)t -V (C(Q)utVu) = 0.
(b) For T > 0, let Q7 C R™™! be the space-time cone
Qr = {(z,t) eR"™ : || < (T —1),0<t <T},
and for 0 <t < T, let B(T — t) be the spatial cross-section of {27 at time ¢
B(T—-t)={x€R": |z| < (T —1t)}.

Define

1
er(t) = _/ (uf + ci|Vul®) dz,
2 Jpr—v

and show that er(t) < er(0).
(c) Suppose that uy, us are smooth solution of the wave equation such that
where f1 = fo, g1 = g2 in || < T, show that u; = ug in Q.
HINT. For (b), apply the divergence theorem in space-time to the equation
in (a) over the truncated cone {(z,t') € Qr : 0 < t' < t}, and note that the
space-time normal to the side of the cone Qr is N = (&, ¢p)/+/1 + ¢3 where
& = z/|x|. For (c), consider u = u; — us.
Solution.
e (a) Multiplying the wave equation by u;, we have
Uplyy — cgutAu =0.
Using the identities
1, 1
wuy = | =uy | wAu=V - (yVu) — [ =Vu-Vu | ,
2/ 2 t
we get that
(uf + GIVul?), = V - (cGuVu) = 0.

N | —



e For 0 <71’ < T, let Qg 1 denote the truncated cone
Qpip={(z,t) eR"™ 2| < (T —t)and 0 <t <T'}.
The boundary of Qg
pr=TUXUT
consists of the bottom
I'={(z,0) e R : 2| < T}
with outward space-time normal N = (0, —1), the side
S={(z,t) eR" i |z|=co(T—t) and 0 <t <T"}

with outward space-time normal N = (&, ¢p)/ \/rcg, and the top

I'={(z,T") e R"™ : |z| < co(T - T")}
with outward space-time normal N = (0, 1).

o Integrating the energy equation over {27/ 1 and applying the divergence
theorem, we get that

0= / {% (uf + G| Vul?), = V - (cgutVu)} dxdt
QT’,T

1
= / {— (u?—{—cg\Vu\z)l/—cgutVu-n} s
02 L2
T

where N = (n,v) is the outward space-time normal to 0Q .

e Splitting the boundary integral into an integral over the bottom, side,
and top, we get that

u; + | Vul?) — cow Vu - i} ds,

=4

, 1 1
er(T') = // 3 (uj + | Vul?) dz, er(0) = /1“5 (uf + G| Vul®) du.



e Completing the square, and using the fact that z is a unit vector, we
get that

1
(v + | Vul®) — couVu - & = 5 (wd — coVu) - (upt — coVu) > 0.

N —

It follows that er(T") < er(0) for 0 <T" < T.

e A physical interpretation of this inequality is that energy can only
propagate out of the cone {07, not into it.

e (c) If uy, ug are two solutions with the same initial data for u; and wu;
in x| < ¢oT, then u = u; — uy has zero initial data, in |z| < ¢T and
therefore e1(0) = 0. The previous inequality implies that 0 < ep(t) <
er(0) for 0 <t < T, so ep(t) = 0. It follows that u; = 0 and Vu = 0
in Q7, meaning that v = constant. Then the initial condition implies
that v = 0 and u; = ug in Qp.

Remark. As this result shows, the solution of the wave equation at some
point in space-time can only depend on, or influence, the solution at other
points of space-time that can be reached by traveling at speeds less than or
equal to c.



