Problem set 6

Math 207B, Winter 2016
Due: Fri, Mar. 4

1. Suppose that $u_{1}, u_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are two solutions of the homogeneous Sturm-Liouville equation

$$
-\left(p u^{\prime}\right)^{\prime}+q u=0
$$

where $p, q: \mathbb{R} \rightarrow \mathbb{R}$ are smooth functions and $p>0$. If $W=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ is the Wronskian of u_{1}, u_{2}, show that $p W=$ constant.
2. Compute the Green's function for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}+u=f(x) \quad 0<x<1 \\
& u(0)=0, \quad u(1)=0 .
\end{aligned}
$$

Write down the integral representation of the solution u in terms of f.
3. Compute the Green's function for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}=f(x) \quad 0<x<1 \\
& u(0)+u(1)=0, \quad u^{\prime}(0)+u^{\prime}(1)=0 .
\end{aligned}
$$

Write down the integral representation of the solution u in terms of f.
4. Compute the generalized Green's function $G(x, \xi)$ for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}=\pi^{2} u+f(x) \quad 0<x<1 \\
& u(0)=0, \quad u(1)=0 .
\end{aligned}
$$

State the equations that are satisfied by the function

$$
u(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

5. Consider the Sturm-Liouville equation

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u, \quad a<x<b
$$

where $p, q, r:[a, b] \rightarrow \mathbb{R}$ are smooth functions and $p(x), r(x)>0$ for $a \leq x \leq$ b. Show that the change of variables

$$
t=\int_{a}^{x} \sqrt{\frac{r(s)}{p(s)}} d s, \quad v(t)=[r(x) p(x)]^{1 / 4} u(x)
$$

transforms this equation into a Sturm-Liouville equation with $p=r=1$ of the form

$$
-v^{\prime \prime}+Q v=\lambda v, \quad 0<t<c .
$$

What are c and $Q:[0, c] \rightarrow \mathbb{R}$?

