Problem set 6: Solutions
 Math 207B, Winter 2016

1. Suppose that $u_{1}, u_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are two solutions of the homogeneous Sturm-Liouville equation

$$
-\left(p u^{\prime}\right)^{\prime}+q u=0
$$

where $p, q: \mathbb{R} \rightarrow \mathbb{R}$ are smooth functions and $p>0$. If $W=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ is the Wronskian of u_{1}, u_{2}, show that $p W=$ constant.

Solution.

- Using the ODE, we compute that

$$
\begin{aligned}
(p W)^{\prime} & =\left(u_{1} \cdot p u_{2}^{\prime}-u_{2} \cdot p u_{1}^{\prime}\right)^{\prime} \\
& =u_{1} \cdot\left(p u_{2}\right)^{\prime}+u_{1}^{\prime} \cdot p u_{2}^{\prime}-u_{2} \cdot\left(p u_{1}\right)^{\prime}-u_{2}^{\prime} \cdot p u_{1}^{\prime} \\
& =u_{1} \cdot q u_{2}-u_{2} \cdot q u_{1} \\
& =0
\end{aligned}
$$

so $p W$ is a constant.
2. Compute the Green's function for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}+u=f(x) \quad 0<x<1 \\
& u(0)=0, \quad u(1)=0 .
\end{aligned}
$$

Write down the integral representation of the solution u in terms of f.

Solution.

- The Green's function $G(x, \xi)$ satisfies

$$
\begin{aligned}
& -G_{x x}+G=\delta(x-\xi) \quad 0<x<1 \\
& G(0, \xi)=0, \quad G(1, \xi)=0 .
\end{aligned}
$$

- Solving the homogeneous ODE for $0<x<\xi$ and $\xi<x<1$ and imposing the appropriate boundary conditions, we get that

$$
G(x, \xi)= \begin{cases}A(\xi) \sinh x & \text { if } 0 \leq x<\xi \\ B(\xi) \sinh (1-x) & \text { if } \xi<x \leq 1\end{cases}
$$

- Imposition of the continuity of $G(x, \xi)$ at $x=\xi$ and the jump-condition

$$
-G_{x}\left(\xi^{+}, \xi\right)+G_{x}\left(\xi^{-}, \xi\right)=1
$$

gives the equations

$$
\begin{aligned}
& A(\xi) \sinh \xi-B(\xi) \sinh (1-\xi)=0 \\
& A(\xi) \cosh \xi+B(\xi) \cosh (1-\xi)=1
\end{aligned}
$$

Using the addition formula

$$
\sinh \xi \cosh (1-\xi)+\cosh \xi \sinh (1-\xi)=\sinh 1
$$

we get the solution

$$
A(\xi)=\frac{\sinh (1-\xi)}{\sinh 1}, \quad B(\xi)=\frac{\sinh \xi}{\sinh 1}
$$

so the Green's function is

$$
G(x, \xi)=\frac{\sinh \left(x_{<}\right) \sinh \left(1-x_{>}\right)}{\sinh 1}
$$

where $x_{<}=\min (x, \xi), x_{>}=\max (x, \xi)$.

- The Green's function representation is

$$
u(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

3. Compute the Green's function for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}=f(x) \quad 0<x<1 \\
& u(0)+u(1)=0, \quad u^{\prime}(0)+u^{\prime}(1)=0 .
\end{aligned}
$$

Write down the integral representation of the solution u in terms of f.

Solution.

- The Green's function $G(x, \xi)$ satisfies

$$
\begin{aligned}
-G_{x x} & =\delta(x-\xi) \\
G(0, \xi) & +G(1, \xi)=0, \quad G_{x}(0, \xi)+G_{x}(1, \xi)=0
\end{aligned}
$$

- The boundary conditions are not separated, so we use general solutions of the homogeneous equation in $x<\xi$ and $x>\xi$ to get

$$
G(x, \xi)= \begin{cases}A(\xi)+B(\xi) x & \text { if } 0 \leq x<\xi \\ C(\xi)+D(\xi)(1-x) & \text { if } \xi<x \leq 1\end{cases}
$$

The boundary conditions give

$$
A+C=0, \quad B-D=0
$$

The continuity of G and the jump condition $-\left[G_{x}\right]=1$ give

$$
A+B \xi=C+D(1-\xi), \quad B+D=1
$$

- It follows that $B=D=1 / 2$ and

$$
A=-C=\frac{1}{4}-\frac{1}{2} \xi
$$

so

$$
G(x, \xi)=\left\{\begin{array}{ll}
1 / 4+(x-\xi) / 2 & \text { if } 0 \leq x<\xi \\
1 / 4+(\xi-x) / 2 & \text { if } \xi<x \leq 1
\end{array}=\frac{1}{4}-\frac{1}{2}|x-\xi|\right.
$$

- The Green's function representation is

$$
u(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

4. Compute the generalized Green's function $G(x, \xi)$ for the BVP

$$
\begin{aligned}
& -u^{\prime \prime}=\pi^{2} u+f(x) \quad 0<x<1 \\
& u(0)=0, \quad u(1)=0 .
\end{aligned}
$$

State the equations that are satisfied by the function

$$
u(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

Solution.

- A normalized solution of the homogeneous problem, with L^{2}-norm one, is $\phi(x)=\sqrt{2} \sin (\pi x)$.
- The generalized Green's function $G(x, \xi)$ satisfies

$$
\begin{aligned}
& -G_{x x}-\pi^{2} G=\delta(x-\xi)-2 \sin (\pi \xi) \sin (\pi x) \quad 0<x<1 \\
& G(0, \xi)=0, \quad G(1, \xi)=0 \\
& \int_{0}^{1} G(x, \xi) \sin (\pi x) d x=0
\end{aligned}
$$

The right-hand side of the ODE is the projection of the δ-function onto the space orthogonal to ϕ to ensure that a solution exists, and the condition $G(\cdot, \xi) \perp \phi$ specifies a unique solution.

- In $x<\xi$ and $x>\xi$, we have

$$
-G_{x x}-\pi^{2} G=-2 \sin (\pi \xi) \sin (\pi x) .
$$

- A particular solution of the non-homogeneous ODE

$$
-u^{\prime \prime}-\pi^{2} u=C \sin (\pi x),
$$

whose right-hand side is a solution of the homogeneous ODE, is

$$
u(x)=\frac{C}{2 \pi} x \cos (\pi x),
$$

so the general solution is

$$
u(x)=A \cos (\pi x)+B \sin (\pi x)+\frac{C}{2 \pi} x \cos (\pi x) .
$$

- Imposing the appropriate boundary conditions on G, we get that

$$
\begin{aligned}
G(x, \xi)=A(\xi) \sin (\pi x) & -\frac{1}{\pi} \sin (\pi \xi) x \cos (\pi x) \quad \text { if } 0 \leq x<\xi \\
G(x, \xi)=B(\xi) \sin (\pi x) & -\frac{1}{\pi} \sin (\pi \xi) x \cos (\pi x) \\
& +\frac{1}{\pi} \sin (\pi \xi) \cos (\pi x) \quad \text { if } \xi<x \leq 1
\end{aligned}
$$

- The continuity of G at $x=\xi$ implies that

$$
\pi(A-B)=\cos (\pi \xi)
$$

One can verify directly that the jump condition $-\left[G_{x}\right]=1$ at $x=\xi$ gives the same equation, so it is also satisfied, and therefore

$$
\begin{aligned}
G(x, \xi)=B(\xi) \sin (\pi x) & -\frac{1}{\pi} \sin (\pi \xi) x \cos (\pi x) \\
& +\frac{1}{\pi} \cos (\pi \xi) \sin (\pi x) \quad \text { if } 0 \leq x<\xi \\
G(x, \xi)=B(\xi) \sin (\pi x) & -\frac{1}{\pi} \sin (\pi \xi) x \cos (\pi x) \\
& +\frac{1}{\pi} \sin (\pi \xi) \cos (\pi x) \quad \text { if } \xi<x \leq 1 .
\end{aligned}
$$

- The orthogonality condition $G(\cdot, \xi) \perp \phi$ gives, after some algebra,

$$
B=-\frac{1}{\pi} \xi \cos (\pi \xi)
$$

- The generalized Green's function can then be written as

$$
\begin{aligned}
G(x, \xi)= & \frac{1}{\pi} \cos \left(\pi x_{>}\right) \sin \left(\pi x_{<}\right) \\
& -\frac{1}{\pi} x_{>} \cos \left(\pi x_{>}\right) \sin \left(\pi x_{<}\right)-\frac{1}{\pi} x_{<} \cos \left(\pi x_{<}\right) \sin \left(\pi x_{>}\right)
\end{aligned}
$$

where $x_{<}=\min (x, \xi), x_{>}=\max (x, \xi)$.

- The function $u(x)$ satisfies

$$
\begin{aligned}
& -u^{\prime \prime}=\pi^{2} u+f(x)-2\left(\int_{0}^{1} f(\xi) \sin (\pi \xi) d \xi\right) \sin (\pi x) \\
& u(0)=0, \quad u(1)=0 \\
& \int_{0}^{1} u(x) \sin (\pi x) d x=0
\end{aligned}
$$

5. Consider the Sturm-Liouville equation

$$
-\left(p u^{\prime}\right)^{\prime}+q u=\lambda r u, \quad a<x<b
$$

where $p, q, r:[a, b] \rightarrow \mathbb{R}$ are smooth functions and $p(x), r(x)>0$ for $a \leq x \leq$ b. Show that the change of variables

$$
t=\int_{a}^{x} \sqrt{\frac{r(s)}{p(s)}} d s, \quad v(t)=[r(x) p(x)]^{1 / 4} u(x)
$$

transforms this equation into a Sturm-Liouville equation with $p=r=1$ of the form

$$
-v^{\prime \prime}+Q v=\lambda v, \quad 0<t<c .
$$

What are c and $Q:[0, c] \rightarrow \mathbb{R}$?

Solution.

- This is an exercise in the chain rule. One finds that

$$
Q=q-\frac{(p r)^{1 / 4}}{r}\left[p\left(\frac{1}{(p r)^{1 / 4}}\right)^{\prime}\right]^{\prime}, \quad c=\int_{a}^{b} \sqrt{\frac{r(s)}{p(s)}} d s
$$

This transformation is called the Liouville transformation, and it shows that every Sturm-Liouville equation can be transformed to a normal form with $p=r=1$.

