
Problem set 6: Solutions
Math 207B, Winter 2016

1. Suppose that u1, u2 : R → R are two solutions of the homogeneous
Sturm-Liouville equation

−(pu′)′ + qu = 0

where p, q : R → R are smooth functions and p > 0. If W = u1u
′
2 − u2u′1 is

the Wronskian of u1, u2, show that pW = constant.

Solution.

• Using the ODE, we compute that

(pW )′ = (u1 · pu′2 − u2 · pu′1)
′

= u1 · (pu2)′ + u′1 · pu′2 − u2 · (pu1)′ − u′2 · pu′1
= u1 · qu2 − u2 · qu1
= 0

so pW is a constant.



2. Compute the Green’s function for the BVP

− u′′ + u = f(x) 0 < x < 1

u(0) = 0, u(1) = 0.

Write down the integral representation of the solution u in terms of f .

Solution.

• The Green’s function G(x, ξ) satisfies

−Gxx +G = δ(x− ξ) 0 < x < 1

G(0, ξ) = 0, G(1, ξ) = 0.

• Solving the homogeneous ODE for 0 < x < ξ and ξ < x < 1 and
imposing the appropriate boundary conditions, we get that

G(x, ξ) =

{
A(ξ) sinhx if 0 ≤ x < ξ

B(ξ) sinh(1− x) if ξ < x ≤ 1

• Imposition of the continuity of G(x, ξ) at x = ξ and the jump-condition

−Gx(ξ+, ξ) +Gx(ξ−, ξ) = 1,

gives the equations

A(ξ) sinh ξ −B(ξ) sinh(1− ξ) = 0,

A(ξ) cosh ξ +B(ξ) cosh(1− ξ) = 1.

Using the addition formula

sinh ξ cosh(1− ξ) + cosh ξ sinh(1− ξ) = sinh 1,

we get the solution

A(ξ) =
sinh(1− ξ)

sinh 1
, B(ξ) =

sinh ξ

sinh 1
,

so the Green’s function is

G(x, ξ) =
sinh(x<) sinh(1− x>)

sinh 1

where x< = min(x, ξ), x> = max(x, ξ).

• The Green’s function representation is

u(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.



3. Compute the Green’s function for the BVP

− u′′ = f(x) 0 < x < 1

u(0) + u(1) = 0, u′(0) + u′(1) = 0.

Write down the integral representation of the solution u in terms of f .

Solution.

• The Green’s function G(x, ξ) satisfies

−Gxx = δ(x− ξ),
G(0, ξ) +G(1, ξ) = 0, Gx(0, ξ) +Gx(1, ξ) = 0.

• The boundary conditions are not separated, so we use general solutions
of the homogeneous equation in x < ξ and x > ξ to get

G(x, ξ) =

{
A(ξ) +B(ξ)x if 0 ≤ x < ξ

C(ξ) +D(ξ)(1− x) if ξ < x ≤ 1

The boundary conditions give

A+ C = 0, B −D = 0.

The continuity of G and the jump condition −[Gx] = 1 give

A+Bξ = C +D(1− ξ), B +D = 1.

• It follows that B = D = 1/2 and

A = −C =
1

4
− 1

2
ξ,

so

G(x, ξ) =

{
1/4 + (x− ξ)/2 if 0 ≤ x < ξ

1/4 + (ξ − x)/2 if ξ < x ≤ 1
=

1

4
− 1

2
|x− ξ|.

• The Green’s function representation is

u(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.



4. Compute the generalized Green’s function G(x, ξ) for the BVP

− u′′ = π2u+ f(x) 0 < x < 1

u(0) = 0, u(1) = 0.

State the equations that are satisfied by the function

u(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.

Solution.

• A normalized solution of the homogeneous problem, with L2-norm one,
is φ(x) =

√
2 sin(πx).

• The generalized Green’s function G(x, ξ) satisfies

−Gxx − π2G = δ(x− ξ)− 2 sin(πξ) sin(πx) 0 < x < 1

G(0, ξ) = 0, G(1, ξ) = 0,∫ 1

0

G(x, ξ) sin(πx) dx = 0.

The right-hand side of the ODE is the projection of the δ-function
onto the space orthogonal to φ to ensure that a solution exists, and the
condition G(·, ξ) ⊥ φ specifies a unique solution.

• In x < ξ and x > ξ, we have

−Gxx − π2G = −2 sin(πξ) sin(πx).

• A particular solution of the non-homogeneous ODE

−u′′ − π2u = C sin(πx),

whose right-hand side is a solution of the homogeneous ODE, is

u(x) =
C

2π
x cos(πx),

so the general solution is

u(x) = A cos(πx) +B sin(πx) +
C

2π
x cos(πx).



• Imposing the appropriate boundary conditions on G, we get that

G(x, ξ) = A(ξ) sin(πx)− 1

π
sin(πξ)x cos(πx) if 0 ≤ x < ξ

G(x, ξ) = B(ξ) sin(πx)− 1

π
sin(πξ)x cos(πx)

+
1

π
sin(πξ) cos(πx) if ξ < x ≤ 1.

• The continuity of G at x = ξ implies that

π(A−B) = cos(πξ).

One can verify directly that the jump condition −[Gx] = 1 at x = ξ
gives the same equation, so it is also satisfied, and therefore

G(x, ξ) = B(ξ) sin(πx)− 1

π
sin(πξ)x cos(πx)

+
1

π
cos(πξ) sin(πx) if 0 ≤ x < ξ

G(x, ξ) = B(ξ) sin(πx)− 1

π
sin(πξ)x cos(πx)

+
1

π
sin(πξ) cos(πx) if ξ < x ≤ 1.

• The orthogonality condition G(·, ξ) ⊥ φ gives, after some algebra,

B = − 1

π
ξ cos(πξ).

• The generalized Green’s function can then be written as

G(x, ξ) =
1

π
cos(πx>) sin(πx<)

− 1

π
x> cos(πx>) sin(πx<)− 1

π
x< cos(πx<) sin(πx>)

where x< = min(x, ξ), x> = max(x, ξ).

• The function u(x) satisfies

− u′′ = π2u+ f(x)− 2

(∫ 1

0

f(ξ) sin(πξ) dξ

)
sin(πx),

u(0) = 0, u(1) = 0,∫ 1

0

u(x) sin(πx) dx = 0.



5. Consider the Sturm-Liouville equation

−(pu′)′ + qu = λru, a < x < b

where p, q, r : [a, b]→ R are smooth functions and p(x), r(x) > 0 for a ≤ x ≤
b. Show that the change of variables

t =

∫ x

a

√
r(s)

p(s)
ds, v(t) = [r(x)p(x)]1/4 u(x)

transforms this equation into a Sturm-Liouville equation with p = r = 1 of
the form

−v′′ +Qv = λv, 0 < t < c.

What are c and Q : [0, c]→ R?

Solution.

• This is an exercise in the chain rule. One finds that

Q = q − (pr)1/4

r

[
p

(
1

(pr)1/4

)′]′
, c =

∫ b

a

√
r(s)

p(s)
ds.

This transformation is called the Liouville transformation, and it shows
that every Sturm-Liouville equation can be transformed to a normal
form with p = r = 1.


