
CHAPTER 1

Preliminaries

In this chapter, we collect various definitions and theorems for future use.
Proofs may be found in the references e.g. [7, 13, 16, 17, 18].

1.1. Euclidean space

Let Rn be n-dimensional Euclidean space. We denote the Euclidean norm of a
vector x = (x1, x2, . . . , xn) ∈ Rn by

|x| =
(
x2

1 + x2
2 + · · ·+ x2

n

)1/2
and the inner product of vectors x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) by

x · y = x1y1 + x2y2 + · · ·+ xnyn.

We denote Lebesgue measure on Rn by dx, and the Lebesgue measure of a set
E ⊂ Rn by |E|.

If E is a subset of Rn, we denote the complement by Ec = Rn \E, the closure
by E, the interior by E◦ and the boundary by ∂E = E \ E◦. The characteristic
function χE : Rn → R of E is defined by

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E.

A set E is bounded if {|x| : x ∈ E} is bounded in R. A set is connected if it is not
the disjoint union of two nonempty relatively open subsets. We sometimes refer to
a connected open set as a domain.

We say that an open set Ω′ in Rn is compactly contained in an open set Ω,
written Ω′ b Ω, if Ω′ ⊂ Ω and Ω′ is compact. If Ω′ ⊂ Ω, then

dist (Ω′, ∂Ω) = inf {|x− y| : x ∈ Ω′, y ∈ ∂Ω} > 0.

This distance is finite provided that Ω′ 6= ∅ and Ω 6= Rn.

1.2. Spaces of continuous functions

Let Ω be an open set in Rn. We denote the space of continuous functions
u : Ω → R by C(Ω); the space of functions with continuous partial derivatives in
Ω of order less than or equal to k ∈ N by Ck(Ω); and the space of functions with
continuous derivatives of all orders by C∞(Ω). Functions in these spaces need not
be bounded even if Ω is bounded; for example, (1/x) ∈ C∞(0, 1).

If Ω is a bounded open set in Rn, we denote by C(Ω) the space of continuous
functions u : Ω → R. This is a Banach space with respect to the maximum, or
supremum, norm

‖u‖∞ = sup
x∈Ω
|u(x)|.
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We denote the support of a continuous function u : Ω→ Rn by

sptu = {x ∈ Ω : u(x) 6= 0}.

We denote by Cc(Ω) the space of continuous functions whose support is compactly
contained in Ω, and by C∞c (Ω) the space of functions with continuous derivatives
of all orders and compact support in Ω. We will sometimes refer to such functions
as test functions.

The completion of Cc(Rn) with respect to the uniform norm is the space C0(Rn)
of continuous functions that approach zero at infinity. (Note that in many places the
notation C0 and C∞0 is used to denote the spaces of compactly supported functions
that we denote by Cc and C∞c .)

If Ω is bounded, we say that a function u : Ω → R belongs to Ck(Ω) if it is
continuous and its partial derivatives of order less than or equal to k are uniformly
continuous in Ω, in which case they extend to continuous functions on Ω. The space
Ck(Ω) is a Banach space with respect to the norm

‖u‖Ck(Ω) =
∑
|α|≤k

sup
Ω
|∂αu|

where we use the multi-index notation for partial derivatives explained in Sec-
tion 1.8. This norm is finite because the derivatives ∂αu are continuous functions
on the compact set Ω.

A vector field X : Ω→ Rm belongs to Ck(Ω) if each of its components belongs
to Ck(Ω).

1.3. Hölder spaces

The definition of continuity is not a quantitative one, because it does not say
how rapidly the values u(y) of a function approach its value u(x) as y → x. The
modulus of continuity ω : [0,∞] → [0,∞] of a general continuous function u,
satisfying

|u(x)− u(y)| ≤ ω (|x− y|) ,
may decrease arbitrarily slowly. As a result, despite their simple and natural ap-
pearance, spaces of continuous functions are often not suitable for the analysis of
PDEs, which is almost always based on quantitative estimates.

A straightforward and useful way to strengthen the definition of continuity is
to require that the modulus of continuity is proportional to a power |x − y|α for
some exponent 0 < α ≤ 1. Such functions are said to be Hölder continuous, or Lip-
schitz continuous if α = 1. Roughly speaking, one can think of Hölder continuous
functions with exponent α as functions with bounded fractional derivatives of the
the order α.

Definition 1.1. Suppose that Ω is an open set in Rn and 0 < α ≤ 1. A
function u : Ω → R is uniformly Hölder continuous with exponent α in Ω if the
quantity

(1.1) [u]α,Ω = sup
x, y ∈ Ω

x 6= y

|u(x)− u(y)|
|x− y|α

is finite. A function u : Ω→ R is locally uniformly Hölder continuous with exponent
α in Ω if [u]α,Ω′ is finite for every Ω′ b Ω. We denote by C0,α(Ω) the space of locally
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uniformly Hölder continuous functions with exponent α in Ω. If Ω is bounded,
we denote by C0,α

(
Ω
)

the space of uniformly Hölder continuous functions with
exponent α in Ω.

We typically use Greek letters such as α, β both for Hölder exponents and
multi-indices; it should be clear from the context which they denote.

When α and Ω are understood, we will abbreviate ‘u is (locally) uniformly
Hölder continuous with exponent α in Ω’ to ‘u is (locally) Hölder continuous.’ If u
is Hölder continuous with exponent one, then we say that u is Lipschitz continu-
ous. There is no purpose in considering Hölder continuous functions with exponent
greater than one, since any such function is differentiable with zero derivative, and
is therefore constant.

The quantity [u]α,Ω is a semi-norm, but it is not a norm since it is zero for

constant functions. The space C0,α
(
Ω
)
, where Ω is bounded, is a Banach space

with respect to the norm

‖u‖C0,α(Ω) = sup
Ω
|u|+ [u]α,Ω .

Example 1.2. For 0 < α < 1, define u(x) : (0, 1) → R by u(x) = |x|α. Then
u ∈ C0,α ([0, 1]), but u /∈ C0,β ([0, 1]) for α < β ≤ 1.

Example 1.3. The function u(x) : (−1, 1)→ R given by u(x) = |x| is Lipschitz
continuous, but not continuously differentiable. Thus, u ∈ C0,1 ([−1, 1]), but u /∈
C1 ([−1, 1]).

We may also define spaces of continuously differentiable functions whose kth
derivative is Hölder continuous.

Definition 1.4. If Ω is an open set in Rn, k ∈ N, and 0 < α ≤ 1, then
Ck,α(Ω) consists of all functions u : Ω→ R with continuous partial derivatives in Ω
of order less than or equal to k whose kth partial derivatives are locally uniformly
Hölder continuous with exponent α in Ω. If the open set Ω is bounded, then
Ck,α

(
Ω
)

consists of functions with uniformly continuous partial derivatives in Ω
of order less than or equal to k whose kth partial derivatives are uniformly Hölder
continuous with exponent α in Ω.

The space Ck,α
(
Ω
)

is a Banach space with respect to the norm

‖u‖Ck,α(Ω) =
∑
|β|≤k

sup
Ω

∣∣∂βu∣∣+
∑
|β|=k

[
∂βu

]
α,Ω

1.4. Lp spaces

As before, let Ω be an open set in Rn (or, more generally, a Lebesgue-measurable
set).

Definition 1.5. For 1 ≤ p < ∞, the space Lp(Ω) consists of the Lebesgue
measurable functions f : Ω→ R such that∫

Ω

|f |p dx <∞,

and L∞(Ω) consists of the essentially bounded functions.



4 1. PRELIMINARIES

These spaces are Banach spaces with respect to the norms

‖f‖p =

(∫
Ω

|f |p dx
)1/p

, ‖f‖∞ = sup
Ω
|f |

where sup denotes the essential supremum,

sup
Ω
f = inf {M ∈ R : f ≤M almost everywhere in Ω} .

Strictly speaking, elements of the Banach space Lp are equivalence classes of func-
tions that are equal almost everywhere, but we identify a function with its equiva-
lence class unless we need to refer to the pointwise values of a specific representative.
For example, we say that a function f ∈ Lp(Ω) is continuous if it is equal almost
everywhere to a continuous function, and that it has compact support if it is equal
almost everywhere to a function with compact support.

Next we summarize some fundamental inequalities for integrals, in addition to
Minkowski’s inequality which is implicit in the statement that ‖ · ‖Lp is a norm for
p ≥ 1.

Jensen’s inequality states that the value of a convex function at a mean is less
than or equal to the mean of the values of the convex function.

Theorem 1.6. Suppose that φ : R→ R is a convex function, Ω is a set in Rn
with finite Lebesgue measure, and f ∈ L1(Ω). Then

φ

(
1

|Ω|

∫
Ω

f dx

)
≤ 1

|Ω|

∫
Ω

φ ◦ f dx.

To state the next inequality, we first define the Hölder conjugate of an exponent
p. We denote it by p′ to distinguish it from the Sobolev conjugate p∗ which we will
introduce later on.

Definition 1.7. The Hölder conjugate of p ∈ [1,∞] is the quantity p′ ∈ [1,∞]
such that

1

p
+

1

p′
= 1,

with the convention that 1/∞ = 0.

The following result is called Hölder’s inequality.1 The special case when p =
p′ = 1/2 is the Cauchy-Schwartz inequality.

Theorem 1.8. If 1 ≤ p ≤ ∞, f ∈ Lp(Ω), and g ∈ Lp′(Ω), then fg ∈ L1(Ω)
and

‖fg‖1 ≤ ‖f‖p ‖g‖p′ .

Repeated application of this inequality gives the following generalization.

Theorem 1.9. If 1 ≤ pi ≤ ∞ for 1 ≤ i ≤ N satisfy

N∑
i=1

1

pi
= 1

1In retrospect, it would’ve been better to use L1/p spaces instead of Lp spaces, just as
it would’ve been better to use inverse temperature instead of temperature, with absolute zero

corresponding to infinite coldness.
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and fi ∈ Lpi(Ω) for 1 ≤ i ≤ N , then f =
∏N
i=1 fi ∈ L1(Ω) and

‖f‖1 ≤
N∏
i=1

‖fi‖pi .

If Ω has finite measure and 1 ≤ q ≤ p, then Hölder’s inequality shows that
f ∈ Lp(Ω) implies that f ∈ Lq(Ω) and

‖f‖q ≤ |Ω|1/q−1/p‖f‖p.

Thus, the embedding Lp(Ω) ↪→ Lq(Ω) is continuous. This result is not true if the
measure of Ω is infinite, but in general we have the following interpolation result.

Lemma 1.10. If p ≤ q ≤ r, then Lp(Ω) ∩ Lr(Ω) ↪→ Lq(Ω) and

‖f‖q ≤ ‖f‖θp‖f‖1−θr

where 0 ≤ θ ≤ 1 is given by

1

q
=
θ

p
+

1− θ
r

.

Proof. Assume without loss of generality that f ≥ 0. Using Hölder’s inequal-
ity with exponents 1/σ and 1/(1− σ), we get∫

fq dx =

∫
fθqf (1−θ)q dx ≤

(∫
fθq/σ dx

)σ (∫
f (1−θ)q/(1−σ) dx

)1−σ

.

Choosing σ/θ = q/p, when (1− σ)/(1− θ) = q/r, we get∫
fq dx ≤

(∫
fp dx

)qθ/p(∫
fr dx

)q(1−θ)/r
and the result follows. �

It is often useful to consider local Lp spaces consisting of functions that have
finite integral on compact sets.

Definition 1.11. The space Lploc(Ω), where 1 ≤ p ≤ ∞, consists of functions
f : Ω→ R such that f ∈ Lp (Ω′) for every open set Ω′ b Ω. A sequence of functions
{fn} converges to f in Lploc(Ω) if {fn} converges to f in Lp(Ω′) for every open set
Ω′ b Ω.

If p < q, then Lqloc(Ω) ↪→ Lploc(Ω) even if the measure of Ω is infinite. Thus,
L1

loc(Ω) is the ‘largest’ space of integrable functions on Ω.

Example 1.12. Consider f : Rn → R defined by

f(x) =
1

|x|a

where a ∈ R. Then f ∈ L1
loc(Rn) if and only if a < n. To prove this, let

f ε(x) =

{
f(x) if |x| > ε,
0 if |x| ≤ ε.
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Then {f ε} is monotone increasing and converges pointwise almost everywhere to f
as ε→ 0+. For any R > 0, the monotone convergence theorem implies that∫

BR(0)

f dx = lim
ε→0+

∫
BR(0)

f ε dx

= lim
ε→0+

∫ R

ε

rn−a−1 dr

=

{
∞ if n− a ≤ 0,
(n− a)−1Rn−a if n− a > 0,

which proves the result. The function f does not belong to Lp(Rn) for 1 ≤ p <∞
for any value of a, since the integral of fp diverges at infinity whenever it converges
at zero.

1.5. Compactness

A subset F of a metric space X is precompact if the closure of F is com-
pact; equivalently, F is precompact if every sequence in F has a subsequence that
converges in X.

The Arzelà-Ascoli theorem gives a basic criterion for compactness in function
spaces: it states that a set of continuous functions on a compact metric space is
precompact if and only if it is bounded and equicontinuous. We state the result
explicitly for the spaces of interest here.

Theorem 1.13. Suppose that Ω is a bounded open set in Rn. A subset F of
C
(
Ω
)
, equipped with the maximum norm, is precompact if and only if:

(1) there exists a constant M such that

‖f‖∞ ≤M for all f ∈ F ;

(2) for every ε > 0 there exists δ > 0 such that if x, x + h ∈ Ω and |h| < δ
then

|f(x+ h)− f(x)| < ε for all f ∈ F .
The following theorem (known as the Fréchet-Kolmogorov, Kolmogorov-Riesz,

or Riesz-Tamarkin theorem) gives conditions analogous to the ones in the Arzelà-
Ascoli theorem for a set to be precompact in Lp(R), namely that the set is bounded,
‘tight’, and Lp-equicontinuous.

Theorem 1.14. Let 1 ≤ p < ∞. A subset F of Lp(Rn) is precompact if and
only if:

(1) there exists M such that

‖f‖Lp ≤M for all f ∈ F ;

(2) for every ε > 0 there exists R such that(∫
|x|>R

|f(x)|p dx

)1/p

< ε for all f ∈ F .

(3) for every ε > 0 there exists δ > 0 such that if |h| < δ,(∫
Rn
|f(x+ h)− f(x)|p dx

)1/p

< ε for all f ∈ F .

For a proof, see [18].
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1.6. Averages

For x ∈ Rn and r > 0, let

Br (x) = {y ∈ Rn : |x− y| < r}

denote the open ball centered at x with radius r, and

∂Br (x) = {y ∈ Rn : |x− y| = r}

the corresponding sphere.
The volume of the unit ball in Rn is given by

αn =
2πn/2

nΓ(n/2)

where Γ is the Gamma function, which satisfies

Γ(1/2) =
√
π, Γ(1) = 1, Γ(x+ 1) = xΓ(x).

Thus, for example, α2 = π and α3 = 4π/3. An integration with respect to polar
coordinates shows that the area of the (n− 1)-dimensional unit sphere is nαn.

We denote the average of a function f ∈ L1
loc(Ω) over a ball Br (x) b Ω, or the

corresponding sphere ∂Br (x), by

(1.2) −
∫
Br(x)

f dx =
1

αnrn

∫
Br(x)

f dx, −
∫
∂Br(x)

f dS =
1

nαnrn−1

∫
∂Br(x)

f dS.

If f is continuous at x, then

lim
r→0+

−
∫
Br(x)

f dx = f(x).

The following result, called the Lebesgue differentiation theorem, implies that the
averages of a locally integrable function converge pointwise almost everywhere to
the function as the radius r shrinks to zero.

Theorem 1.15. If f ∈ L1
loc (Rn) then

(1.3) lim
r→0+

−
∫
Br(x)

|f(y)− f(x)| dx = 0

pointwise almost everywhere for x ∈ Rn.

A point x ∈ Rn for which (1.3) holds is called a Lebesgue point of f . For a
proof of this theorem (using the Wiener covering lemma and the Hardy-Littlewood
maximal function) see Folland [7] or Taylor [17].

1.7. Convolutions

Definition 1.16. If f, g : Rn → R are measurable function, we define the
convolution f ∗ g : Rn → R by

(f ∗ g) (x) =

∫
Rn
f(x− y)g(y) dy

provided that the integral converges pointwise almost everywhere in x.
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When defined, the convolutiom product is both commutative and associative,

f ∗ g = g ∗ f, f ∗ (g ∗ h) = (f ∗ g) ∗ h.

In many respects, the convolution of two functions inherits the best properties of
both functions.

If f, g ∈ Cc(Rn), then their convolution also belongs to Cc(Rn) and

spt(f ∗ g) ⊂ spt f + spt g.

If f ∈ Cc(Rn) and g ∈ C(Rn), then f∗g ∈ C(Rn) is defined, however rapidly g grows
at infinity, but typically it does not have compact support. If neither f nor g have
compact support, we need some conditions on their growth or decay at infinity to
ensure that the convolution exists. The following result, called Young’s inequality,
gives conditions for the convolution of Lp functions to exist and estimates its norm.

Theorem 1.17. Suppose that 1 ≤ p, q, r ≤ ∞ and

1

r
=

1

p
+

1

q
− 1.

If f ∈ Lp (Rn) and g ∈ Lq (Rn), then f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

The following special cases are useful to keep in mind.

Example 1.18. If p = q = 2 then r =∞. In this case, the result follows from
the Cauchy-Schwartz inequality, since for any x ∈ Rn∣∣∣∣∫ f(x− y)g(y) dx

∣∣∣∣ ≤ ‖f‖L2‖g‖L2 .

Moreover, a density argument shows that f ∗ g ∈ C0 (Rn): Choose fk, gk ∈ Cc(Rn)
such that fk → f , gk → g in L2(Rn), then fk ∗ gk ∈ Cc(Rn) and fk ∗ gk → f ∗ g
uniformly. A similar argument is used in the proof of the Riemann-Lebesgue lemma

that f̂ ∈ C0(Rn) if f ∈ L1(Rn).

Example 1.19. If p = q = 1, then r = 1, and the result follows directly from
Fubini’s theorem, since∫ ∣∣∣∣∫ f(x− y)g(y) dy

∣∣∣∣ dx ≤ ∫ |f(x− y)g(y)| dxdy =

(∫
|f(x)| dx

)(∫
|g(y)| dy

)
.

Thus, the space L1(Rn) is an algebra under the convolution product. The Fourier
transform maps the convolution product of two L1-functions to the pointwise prod-
uct of their Fourier transforms.

Example 1.20. If q = 1, then p = r. Thus convolution with an integrable
function k ∈ L1(Rn), is a bounded linear map f 7→ k ∗ f on Lp(Rn).

1.8. Derivatives and multi-index notation

We define the derivative of a scalar field u : Ω→ R by

Du =

(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xn

)
.
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We will also denote the ith partial derivative by ∂iu, the ijth derivative by ∂iju,
and so on. The divergence of a vector field X = (X1, X2, . . . , Xn) : Ω→ Rn is

divX =
∂X1

∂x1
+
∂X2

∂x2
+ · · ·+ ∂Xn

∂xn
.

Let N0 = {0, 1, 2, . . . } denote the non-negative integers. An n-dimensional
multi-indexis a vector α ∈ Nn0 , meaning that

α = (α1, α2, . . . , αn) , αi = 0, 1, 2, . . . .

We write

|α| = α1 + α2 + · · ·+ αn, α! = α1!α2! . . . αn!.

We define derivatives and powers of order α by

∂α =
∂

∂xα1

∂

∂xα2
. . .

∂

∂xαn
, xα = xα1

1 xα2
2 . . . xαnn .

If α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) are multi-indices, we define the
multi-index (α+ β) by

α+ β = (α1 + β1, α2 + β2, . . . , αn + βn) .

We denote by χn(k) the number of multi-indices α ∈ Nn0 with order 0 ≤ |α| ≤ k,
and by χ̃n(k) the number of multi-indices with order |α| = k. Then

χn(k) =
(n+ k)!

n!k!
, χ̃n(k) =

(n+ k − 1)!

(n− 1)!k!

1.8.1. Taylor’s theorem for functions of several variables. The multi-
index notation provides a compact way to write the multinomial theorem and the
Taylor expansion of a function of several variables. The multinomial expansion of
a power is

(x1 + x2 + · · ·+ xn)
k

=
∑

α1+...αn=k

(
k

α1α2 . . . αn

)
xαii =

∑
|α|=k

(
k

α

)
xα

where the multinomial coefficient of a multi-index α = (α1, α2, . . . , αn) of order
|α| = k is given by (

k

α

)
=

(
k

α1α2 . . . αn

)
=

k!

α1!α2! . . . αn!
.

Theorem 1.21. Suppose that u ∈ Ck (Br (x)) and h ∈ Br (0). Then

u(x+ h) =
∑

|α|≤k−1

∂αu(x)

α!
hα +Rk(x, h)

where the remainder is given by

Rk(x, h) =
∑
|α|=k

∂αu(x+ θh)

α!
hα

for some 0 < θ < 1.
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Proof. Let f(t) = u(x+ th) for 0 ≤ t ≤ 1. Taylor’s theorem for a function of
a single variable implies that

f(1) =

k−1∑
j=0

1

j!

djf

dtj
(0) +

1

k!

dkf

dtk
(θ)

for some 0 < θ < 1. By the chain rule,

df

dt
= Du · h =

n∑
i=1

hi∂iu,

and the multinomial theorem gives

dk

dtk
=

(
n∑
i=1

hi∂i

)k
=
∑
|α|=k

(
n

α

)
hα∂α.

Using this expression to rewrite the Taylor series for f in terms of u, we get the
result. �

A function u : Ω → R is real-analytic in an open set Ω if it has a power-series
expansion that converges to the function in a ball of non-zero radius about every
point of its domain. We denote by Cω(Ω) the space of real-analytic functions on
Ω. A real-analytic function is C∞, since its Taylor series can be differentiated
term-by-term, but a C∞ function need not be real-analytic. For example, see (1.4)
below.

1.9. Mollifiers

The function

(1.4) η(x) =

{
C exp

[
−1/(1− |x|2)

]
if |x| < 1

0 if |x| ≥ 1

belongs to C∞c (Rn) for any constant C. We choose C so that∫
Rn
η dx = 1

and for any ε > 0 define the function

(1.5) ηε(x) =
1

εn
η
(x
ε

)
.

Then ηε is a C∞-function with integral equal to one whose support is the closed
ball Bε(0). We refer to (1.5) as the ‘standard mollifier.’

We remark that η(x) in (1.4) is not real-analytic when |x| = 1. All of its
derivatives are zero at those points, so the Taylor series converges to zero in any
neighborhood, not to the original function. The only function that is real-analytic
with compact support is the zero function. In rough terms, an analytic function
is a single ‘organic’ entity: its values in, for example, a single open ball determine
its values everywhere in a maximal domain of analyticity (which is a Riemann
surface) through analytic continuation. The behavior of C∞-function at one point
is, however, completely unrelated to its behavior at another point.

Suppose that f ∈ L1
loc(Ω) is a locally integrable function. For ε > 0, let

(1.6) Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}
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and define f ε : Ωε → R by

(1.7) f ε(x) =

∫
Ω

ηε(x− y)f(y) dy

where ηε is the mollifier in (1.5). We define f ε for x ∈ Ωε so that Bε (x) ⊂ Ω and
we have room to average f . If Ω = Rn, we have simply Ωε = Rn. The function f ε

is a smooth approximation of f .

Theorem 1.22. Suppose that f ∈ Lploc(Ω) for 1 ≤ p < ∞, and ε > 0. Define
f ε : Ωε → R by (1.7). Then: (a) f ε ∈ C∞(Ωε) is smooth; (b) f ε → f pointwise
almost everywhere in Ω as ε→ 0+; (c) f ε → f in Lploc(Ω) as ε→ 0+.

Proof. The smoothness of f ε follows by differentiation under the integral sign

∂αf ε(x) =

∫
Ω

∂αηε(x− y)f(y) dy

which may be justified by use of the dominated convergence theorem. The point-
wise almost everywhere convergence (at every Lebesgue point of f) follows from
the Lebesgue differentiation theorem. The convergence in Lploc follows by the ap-
proximation of f by a continuous function (for which the result is easy to prove)
and the use of Young’s inequality, since ‖ηε‖L1 = 1 is bounded independently of
ε. �

One consequence of this theorem is that the space of test functions C∞c (Ω) is
dense in Lp(Ω) for 1 ≤ p < ∞. Note that this is not true when p = ∞, since the
uniform limit of smooth test functions is continuous.

1.9.1. Cutoff functions.

Theorem 1.23. Suppose that Ω′ b Ω are open sets in Rn. Then there is a
function φ ∈ C∞c (Ω) such that 0 ≤ φ ≤ 1 and φ = 1 on Ω′.

Proof. Let d = dist (Ω′, ∂Ω) and define

Ω′′ = {x ∈ Ω : dist(x,Ω′) < d/2} .

Let χ be the characteristic function of Ω′′, and define φ = ηd/2 ∗ χ where ηε is the
standard mollifier. Then one may verify that φ has the required properties. �

We refer to a function with the properties in this theorem as a cutoff function.

Example 1.24. If 0 < r < R and Ω′′ = Br (0), Ω′ = BR (0) are balls in Rn,
then the corresponding cut-off function φ satisfies

|Dφ| ≤ C

R− r
where C is a constant that is independent of r, R.

1.9.2. Partitions of unity. Partitions of unity allow us to piece together
global results from local results.

Theorem 1.25. Suppose that K is a compact set in Rn which is covered by
a finite collection {Ω1,Ω2, . . . ,ΩN} of open sets. Then there exists a collection of

functions {η1, η2, . . . , ηN} such that 0 ≤ ηi ≤ 1, ηi ∈ C∞c (Ωi), and
∑N
i=1 ηi = 1 on

K.
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We call {ηi} a partition of unity subordinate to the cover {Ωi}. To prove this
result, we use Urysohn’s lemma to construct a collection of continuous functions
with the desired properties, then use mollification to obtain a collection of smooth
functions.

1.10. Boundaries of open sets

When we analyze solutions of a PDE in the interior of their domain of definition,
we can often consider domains that are arbitrary open sets and analyze the solutions
in a sufficiently small ball. In order to analyze the behavior of solutions at a
boundary, however, we typically need to assume that the boundary has some sort
of smoothness. In this section, we define the smoothness of the boundary of an open
set. We also explain briefly how one defines analytically the normal vector-field and
the surface area measure on a smooth boundary.

In general, the boundary of an open set may be complicated. For example, it
can have nonzero Lebesgue measure.

Example 1.26. Let {qi : i ∈ N} be an enumeration of the rational numbers
qi ∈ (0, 1). For each i ∈ N, choose an open interval (ai, bi) ⊂ (0, 1) that contains
qi, and let

Ω =
⋃
i∈N

(ai, bi).

The Lebesgue measure of |Ω| > 0 is positive, but we can make it as small as we
wish; for example, choosing bi − ai = ε2−i, we get |Ω| ≤ ε. One can check that
∂Ω = [0, 1] \ Ω. Thus, if |Ω| < 1, then ∂Ω has nonzero Lebesgue measure.

Moreover, an open set, or domain, need not lie on one side of its boundary (we

say that Ω lies on one side of its boundary if Ω
◦

= Ω), and corners, cusps, or other
singularities in the boundary cause analytical difficulties.

Example 1.27. The unit disc in R2 with the nonnegative x-axis removed,

Ω =
{

(x, y) ∈ R2 : x2 + y2 < 1
}
\
{

(x, 0) ∈ R2 : 0 ≤ x < 1
}
,

does not lie on one side of its boundary.

In rough terms, the boundary of an open set is smooth if it can be ‘flattened
out’ locally by a smooth map.

Definition 1.28. Suppose that k ∈ N. A map φ : U → V between open sets
U , V in Rn is a Ck-diffeomorphism if it one-to-one, onto, and φ and φ−1 have
continuous derivatives of order less than or equal to k.

Note that the derivative Dφ(x) : Rn → Rn of a diffeomorphism φ : U → V is
an invertible linear map for every x ∈ U .

Definition 1.29. Let Ω be a bounded open set in Rn and k ∈ N. We say that
the boundary ∂Ω is Ck, or that Ω is Ck for short, if for every x ∈ Ω there is an
open neighborhood U ⊂ Rn of x, an open set V ⊂ Rn, and a Ck-diffeomorphism
φ : U → V such that

φ(U ∩ Ω) = V ∩ {yn > 0}, φ(U ∩ ∂Ω) = V ∩ {yn = 0}

where (y1, . . . , yn) are coordinates in the image space Rn.
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If φ is a C∞-diffeomorphism, then we say that the boundary is C∞, with an
analogous definition of a Lipschitz or analytic boundary.

In other words, the definition says that a Ck open set in Rn is an n-dimensional
Ck-manifold with boundary. The maps φ in Definition 1.29 are coordinate charts for
the manifold. It follows from the definition that Ω lies on one side of its boundary
and that ∂Ω is an oriented (n−1)-dimensional submanifold of Rn without boundary.
The standard orientation is given by the outward-pointing normal (see below).

Example 1.30. The open set

Ω =
{

(x, y) ∈ R2 : x > 0, y > sin(1/x)
}

lies on one side of its boundary, but the boundary is not C1 since there is no
coordinate chart of the required form for the boundary points {(x, 0) : −1 ≤ x ≤ 1}.

1.10.1. Open sets in the plane. A simple closed curve, or Jordan curve,
Γ is a set in the plane that is homeomorphic to a circle. That is, Γ = γ(T)
is the image of a one-to-one continuous map γ : T → R2 with continuous inverse
γ−1 : Γ→ T. (The requirement that the inverse is continuous follows from the other
assumptions.) According to the Jordan curve theorem, a Jordan curve divides the
plane into two disjoint connected open sets, so that R2 \ Γ = Ω1 ∪ Ω2. One of
the sets (the ‘interior’) is bounded and simply connected. The interior region of a
Jordan curve is called a Jordan domain.

Example 1.31. The slit disc Ω in Example 1.27 is not a Jordan domain. For
example, its boundary separates into three nonempty connected components when
the point (1, 0) is removed, but the circle remains connected when any point is
removed, so ∂Ω cannot be homeomorphic to the circle.

Example 1.32. The interior Ω of the Koch, or ‘snowflake,’ curve is a Jordan
domain. The Hausdorff dimension of its boundary is strictly greater than one. It is
interesting to note that, despite the irregular nature of its boundary, this domain
has the property that every function in W k,p(Ω) with k ∈ N and 1 ≤ p < ∞ can
be extended to a function in W k,p(R2).

If γ : T → R2 is one-to-one, C1, and |Dγ| 6= 0, then the image of γ is the
C1 boundary of the open set which it encloses. The condition that γ is one-to-
one is necessary to avoid self-intersections (for example, a figure-eight curve), and
the condition that |Dγ| 6= 0 is necessary in order to ensure that the image is a
C1-submanifold of R2.

Example 1.33. The curve γ : t 7→
(
t2, t3

)
is not C1 at t = 0 where Dγ(0) = 0.

1.10.2. Parametric representation of a boundary. If Ω is an open set in
Rn with Ck-boundary and φ is a chart on a neighborhood U of a boundary point,
as in Definition 1.29, then we can define a local chart

Φ = (Φ1,Φ2, . . . ,Φn−1) : U ∩ ∂Ω ⊂ Rn →W ⊂ Rn−1

for the boundary ∂Ω by Φ = (φ1, φ2, . . . , φn−1). Thus, ∂Ω is an (n−1)-dimensional
submanifold of Rn.

The boundary is parametrized locally by xi = Ψi (y1, y2, . . . , yn−1) where 1 ≤
i ≤ n and Ψ = Φ−1 : W → U ∩ ∂Ω. The (n− 1)-dimensional tangent space of ∂Ω
is spanned by the vectors

∂Ψ

∂y1
,
∂Ψ

∂y2
, . . . ,

∂Ψ

∂yn−1
.
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The outward unit normal ν : ∂Ω→ Sn−1 ⊂ Rn is orthogonal to this tangent space,
and it is given locally by

ν =
ν̃

|ν̃|
, ν̃ =

∂Ψ

∂y1
∧ ∂Ψ

∂y2
∧ · · · ∧ ∂Ψ

∂yn−1
,

ν̃i =

∣∣∣∣∣∣∣∣∣∣∣∣

∂Ψ1/∂y1 ∂Ψ1/∂Ψ2 . . . ∂Ψ1/∂yn−1

. . . . . . . . . . . .
∂Ψi−1/∂y1 ∂Ψi−1/∂y2 . . . ∂Ψi−1/∂yn−1

∂Ψi+1/∂y1 ∂Ψi+1/∂y2 . . . ∂Ψi+1/∂yn−1

. . . . . . . . . . . .
∂Ψn/∂y1 ∂Ψn/∂y2 . . . ∂Ψn/∂yn−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 1.34. For a three-dimensional region with two-dimensional boundary,
the outward unit normal is

ν =
(∂Ψ/∂y1)× (∂Ψ/∂y2)

|(∂Ψ/∂y1)× (∂Ψ/∂y2)|
.

The restriction of the Euclidean metric on Rn to the tangent space of the
boundary gives a Riemannian metric on the boundary whose volume form defines
the surface measure dS. Explicitly, the pull-back of the Euclidean metric

n∑
i=1

dx2
i

to the boundary under the mapping x = Ψ(y) is the metric

n∑
i=1

n−1∑
p,q=1

∂Ψi

∂yp

∂Ψi

∂yq
dypdyq.

The volume form associated with a Riemannian metric
∑
hpq dypdyq is

√
deth dy1dy2 . . . dyn−1.

Thus the surface measure on ∂Ω is given locally by

dS =
√

det (DΨtDΨ) dy1dy2 . . . dyn−1

where DΨ is the derivative of the parametrization,

DΨ =


∂Ψ1/∂y1 ∂Ψ1/∂y2 . . . ∂Ψ1/∂yn−1

∂Ψ2/∂y1 ∂Ψ2/∂y2 . . . ∂Ψ2/∂yn−1

. . . . . . . . . . . .
∂Ψn/∂y1 ∂Ψn/∂y2 . . . ∂Ψn/∂yn−1

 .

These local expressions may be combined to give a global definition of the surface
integral by means of a partition of unity.

Example 1.35. In the case of a two-dimensional surface with metric

ds2 = E dy2
1 + 2F dy1dy2 +Gdy2

2 ,

the element of surface area is

dS =
√
EG− F 2 dy1dy2.
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Example 1.36. The two-dimensional sphere

S2 =
{

(x, y, z) ∈ R3 : x2 + y2 + z2 = 1
}

is a C∞ submanifold of R3. A local C∞-parametrization of

U = S2 \
{

(x, 0, z) ∈ R3 : x ≥ 0
}

is given by Ψ : W ⊂ R2 → U ⊂ S2 where

Ψ(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ)

W =
{

(θ, φ) ∈ R3 : 0 < θ < 2π, 0 < φ < π
}
.

The metric on the sphere is

Ψ∗
(
dx2 + dy2 + dz2

)
= sin2 φdθ2 + dφ2

and the corresponding surface area measure is

dS = sinφdθdφ.

The integral of a continuous function f(x, y, z) over the sphere that is supported in
U is then given by∫

S2
f dS =

∫
W

f (cos θ sinφ, sin θ sinφ, cosφ) sinφdθdφ.

We may use similar rotated charts to cover the points with x ≥ 0 and y = 0.

1.10.3. Representation of a boundary as a graph. An alternative, and
computationally simpler, way to represent the boundary of a smooth open set is
as a graph. After rotating coordinates, if necessary, we may assume that the nth
component of the normal vector to the boundary is nonzero. If k ≥ 1, the implicit
function theorem implies that we may represent a Ck-boundary as a graph

xn = h (x1, x2, . . . , xn−1)

where h : W ⊂ Rn−1 → R is in Ck(W ) and Ω is given locally by xn < h(x1, . . . , xn−1).
If the boundary is only Lipschitz, then the implicit function theorem does not ap-
ply, and it is not always possible to represent a Lipschitz boundary locally as the
region lying above the graph of a Lipschitz continuous function.

If ∂Ω is C1, then the outward normal ν is given in terms of h by

ν =
1√

1 + |Dh|2

(
− ∂h

∂x1
,− ∂h

∂x2
, . . . ,− ∂h

∂xn−1
, 1

)
and the surface area measure on ∂Ω is given by

dS =
√

1 + |Dh|2 dx1dx2 . . . dxn−1.

Example 1.37. Let Ω = B1 (0) be the unit ball in Rn and ∂Ω the unit sphere.
The upper hemisphere

H = {x ∈ ∂Ω : xn > 0}
is the graph of xn = h(x′) where h : D → R is given by

h(x′) =

√
1− |x′|2, D =

{
x′ ∈ Rn−1 : |x′| < 1

}
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and we write x = (x′, xn) with x′ = (x1, . . . , xn−1) ∈ Rn−1. The surface measure
on H is

dS =
1√

1− |x′|2
dx′

and the surface integral of a function f(x) over H is given by∫
H

f dS =

∫
D

f (x′, h(x′))√
1− |x′|2

dx′.

The integral of a function over ∂Ω may be computed in terms of such integrals by
use of a partition of unity subordinate to an atlas of hemispherical charts.

1.11. Change of variables

We state a theorem for a C1 change of variables in the Lebesgue integral. A
special case is the change of variables from Cartesian to polar coordinates. For
proofs, see [7, 17].

Theorem 1.38. Suppose that Ω is an open set in Rn and φ : Ω → Rn is a
C1 diffeomorphism of Ω onto its image φ(Ω). If f : φ(Ω) → R is a nonnegative
Lebesgue measurable function or an integrable function, then∫

φ(Ω)

f(y) dy =

∫
Ω

f ◦ φ(x) |detDφ(x)| dx.

We define polar coordinates in Rn \ {0} by x = ry, where r = |x| > 0 and
y ∈ ∂B1 (0) is a point on the unit sphere. In these coordinates, Lebesgue measure
has the representation

dx = rn−1drdS(y)

where dS(y) is the surface area measure on the unit sphere. We have the following
result for integration in polar coordinates.

Proposition 1.39. If f : Rn → R is integrable, then∫
f dx =

∫ ∞
0

[∫
∂B1(0)

f (x+ ry) dS(y)

]
rn−1 dr

=

∫
∂B1(0)

[∫ ∞
0

f (x+ ry) rn−1 dr

]
dS(y).

1.12. Divergence theorem

We state the divergence (or Gauss-Green) theorem.

Theorem 1.40. Let X : Ω → Rn be a C1(Ω)-vector field, and Ω ⊂ Rn a
bounded open set with C1-boundary ∂Ω. Then∫

Ω

divX dx =

∫
∂Ω

X · ν dS.

To prove the theorem, we prove it for functions that are compactly supported
in a half-space, show that it remains valid under a C1 change of coordinates with
the divergence defined in an appropriately invariant way, and then use a partition
of unity to add the results together.
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In particular, if u, v ∈ C1(Ω), then an application of the divergence theorem
to the vector field X = (0, 0, . . . , uv, . . . , 0), with ith component uv, gives the
integration by parts formula∫

Ω

u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
v dx+

∫
∂Ω

uvνi dS.

The statement in Theorem 1.40 is, perhaps, the natural one from the perspec-
tive of smooth differential geometry. The divergence theorem, however, remains
valid under weaker assumptions than the ones in Theorem 1.40. For example, it
applies to a cube, whose boundary is not C1, as well as to other sets with piecewise
smooth boundaries.

From the perspective of geometric measure theory, a general form of the diver-
gence theorem holds for Lipschitz vector fields (vector fields whose weak derivative
belongs to L∞) and sets of finite perimeter (sets whose characteristic function has
bounded variation). The surface integral is taken over a measure-theoretic bound-
ary with respect to (n−1)-dimensional Hausdorff measure, and a measure-theoretic
normal exists almost everywhere on the boundary with respect to this measure
[6, 19].


