
CHAPTER 4

Elliptic PDEs

One of the main advantages of extending the class of solutions of a PDE from
classical solutions with continuous derivatives to weak solutions with weak deriva-
tives is that it is easier to prove the existence of weak solutions. Having estab-
lished the existence of weak solutions, one may then study their properties, such as
uniqueness and regularity, and perhaps prove under appropriate assumptions that
the weak solutions are, in fact, classical solutions.

There is often considerable freedom in how one defines a weak solution of a
PDE; for example, the function space to which a solution is required to belong is
not given a priori by the PDE itself. Typically, we look for a weak formulation that
reduces to the classical formulation under appropriate smoothness assumptions and
which is amenable to a mathematical analysis; the notion of solution and the spaces
to which solutions belong are dictated by the available estimates and analysis.

4.1. Weak formulation of the Dirichlet problem

Let us consider the Dirichlet problem for the Laplacian with homogeneous
boundary conditions on a bounded domain Ω in Rn,

−∆u = f in Ω,(4.1)

u = 0 on ∂Ω.(4.2)

First, suppose that the boundary of Ω is smooth and u, f : Ω → R are smooth
functions. Multiplying (4.1) by a test function φ, integrating the result over Ω, and
using the divergence theorem, we get

(4.3)

∫
Ω

Du ·Dφdx =

∫
Ω

fφ dx for all φ ∈ C∞c (Ω).

The boundary terms vanish because φ = 0 on the boundary. Conversely, if f and
Ω are smooth, then any smooth function u that satisfies (4.3) is a solution of (4.1).

Next, we formulate weaker assumptions under which (4.3) makes sense. We
use the flexibility of choice to define weak solutions with L2-derivatives that belong
to a Hilbert space; this is helpful because Hilbert spaces are easier to work with
than Banach spaces.1 It also leads to a variational form of the equation that is
symmetric in the solution u and the test function φ.

By the Cauchy-Schwartz inequality, the integral on the left-hand side of (4.3)
is finite if Du belongs to L2(Ω), so we suppose that u ∈ H1(Ω). We impose the
boundary condition (4.2) in a weak sense by requiring that u ∈ H1

0 (Ω). The left

hand side of (4.3) then extends by continuity to φ ∈ H1
0 (Ω) = C∞c (Ω).

1We would need to use Banach spaces to study the solutions of Laplace’s equation whose
derivatives lie in Lp for p 6= 2, and we may be forced to use Banach spaces for some PDEs,

especially if they are nonlinear.
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88 4. ELLIPTIC PDES

The right hand side of (4.3) is well-defined for all φ ∈ H1
0 (Ω) if f ∈ L2(Ω), but

this is not the most general f for which it makes sense; we can define the right-hand
for any f in the dual space of H1

0 (Ω).

Definition 4.1. The space of bounded linear maps f : H1
0 (Ω)→ R is denoted

by H−1(Ω) = H1
0 (Ω)∗, and the action of f ∈ H−1(Ω) on φ ∈ H1

0 (Ω) by 〈f, φ〉. The
norm of f ∈ H−1(Ω) is given by

‖f‖H−1 = sup

{
|〈f, φ〉|
‖φ‖H1

0

: φ ∈ H1
0 , φ 6= 0

}
.

A function f ∈ L2(Ω) defines a linear functional Ff ∈ H−1(Ω) by

〈Ff , v〉 =

∫
Ω

fv dx = (f, v)L2 for all v ∈ H1
0 (Ω).

Here, (·, ·)L2 denotes the standard inner product on L2(Ω). The functional Ff is
bounded on H1

0 (Ω) with ‖Ff‖H−1 ≤ ‖f‖L2 since, by the Cauchy-Schwartz inequal-
ity,

|〈Ff , v〉| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1
0
.

We identify Ff with f , and write both simply as f .
Such linear functionals are, however, not the only elements of H−1(Ω). As we

will show below, H−1(Ω) may be identified with the space of distributions on Ω
that are sums of first-order distributional derivatives of functions in L2(Ω).

Thus, after identifying functions with regular distributions, we have the follow-
ing triple of Hilbert spaces

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω), H−1(Ω) = H1

0 (Ω)∗.

Moreover, if f ∈ L2(Ω) ⊂ H−1(Ω) and u ∈ H1
0 (Ω), then

〈f, u〉 = (f, u)L2 ,

so the duality pairing coincides with the L2-inner product when both are defined.
This discussion motivates the following definition.

Definition 4.2. Let Ω be an open set in Rn and f ∈ H−1(Ω). A function
u : Ω→ R is a weak solution of (4.1)–(4.2) if: (a) u ∈ H1

0 (Ω); (b)

(4.4)

∫
Ω

Du ·Dφdx = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

Here, strictly speaking, ‘function’ means an equivalence class of functions with
respect to pointwise a.e. equality.

We have assumed homogeneous boundary conditions to simplify the discussion.
If Ω is smooth and g : ∂Ω → R is a function on the boundary that is in the range
of the trace map T : H1(Ω) → L2(∂Ω), say g = Tw, then we obtain a weak
formulation of the nonhomogeneous Dirichet problem

−∆u = f in Ω,

u = g on ∂Ω,

by replacing (a) in Definition 4.2 with the condition that u − w ∈ H1
0 (Ω). The

definition is otherwise the same. The range of the trace map on H1(Ω) for a smooth
domain Ω is the fractional-order Sobolev space H1/2(∂Ω); thus if the boundary
data g is so rough that g /∈ H1/2(∂Ω), then there is no solution u ∈ H1(Ω) of the
nonhomogeneous BVP.
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4.2. Variational formulation

Definition 4.2 of a weak solution in is closely connected with the variational
formulation of the Dirichlet problem for Poisson’s equation. To explain this con-
nection, we first summarize some definitions of the differentiability of functionals
(scalar-valued functions) acting on a Banach space.

Definition 4.3. A functional J : X → R on a Banach space X is differentiable
at x ∈ X if there is a bounded linear functional A : X → R such that

lim
h→0

|J(x+ h)− J(x)−Ah|
‖h‖X

= 0.

If A exists, then it is unique, and it is called the derivative, or differential, of J at
x, denoted DJ(x) = A.

This definition expresses the basic idea of a differentiable function as one which
can be approximated locally by a linear map. If J is differentiable at every point
of X, then DJ : X → X∗ maps x ∈ X to the linear functional DJ(x) ∈ X∗ that
approximates J near x.

A weaker notion of differentiability (even for functions J : R2 → R — see
Example 4.4) is the existence of directional derivatives

δJ(x;h) = lim
ε→0

[
J(x+ εh)− J(x)

ε

]
=

d

dε
J(x+ εh)

∣∣∣∣
ε=0

.

If the directional derivative at x exists for every h ∈ X and is a bounded linear
functional on h, then δJ(x;h) = δJ(x)h where δJ(x) ∈ X∗. We call δJ(x) the
Gâteaux derivative of J at x. The derivativeDJ is then called the Fréchet derivative
to distinguish it from the directional or Gâteaux derivative. If J is differentiable
at x, then it is Gâteaux-differentiable at x and DJ(x) = δJ(x), but the converse is
not true.

Example 4.4. Define f : R2 → R by f(0, 0) = 0 and

f(x, y) =

(
xy2

x2 + y4

)2

if (x, y) 6= (0, 0).

Then f is Gâteaux-differentiable at 0, with δf(0) = 0, but f is not Fréchet-
differentiable at 0.

If J : X → R attains a local minimum at x ∈ X and J is differentiable at x,
then for every h ∈ X the function Jx;h : R → R defined by Jx;h(t) = J(x + th) is
differentiable at t = 0 and attains a minimum at t = 0. It follows that

dJx;h

dt
(0) = δJ(x;h) = 0 for every h ∈ X.

Hence DJ(x) = 0. Thus, just as in multivariable calculus, an extreme point of a
differentiable functional is a critical point where the derivative is zero.

Given f ∈ H−1(Ω), define a quadratic functional J : H1
0 (Ω)→ R by

(4.5) J(u) =
1

2

∫
Ω

|Du|2 dx− 〈f, u〉.

Clearly, J is well-defined.



90 4. ELLIPTIC PDES

Proposition 4.5. The functional J : H1
0 (Ω)→ R in (4.5) is differentiable. Its

derivative DJ(u) : H1
0 (Ω)→ R at u ∈ H1

0 (Ω) is given by

DJ(u)h =

∫
Ω

Du ·Dhdx− 〈f, h〉 for h ∈ H1
0 (Ω).

Proof. Given u ∈ H1
0 (Ω), define the linear map A : H1

0 (Ω)→ R by

Ah =

∫
Ω

Du ·Dhdx− 〈f, h〉.

Then A is bounded, with ‖A‖ ≤ ‖Du‖L2 + ‖f‖H−1 , since

|Ah| ≤ ‖Du‖L2‖Dh‖L2 + ‖f‖H−1‖h‖H1
0
≤ (‖Du‖L2 + ‖f‖H−1) ‖h‖H1

0
.

For h ∈ H1
0 (Ω), we have

J(u+ h)− J(u)−Ah =
1

2

∫
Ω

|Dh|2 dx.

It follows that

|J(u+ h)− J(u)−Ah| ≤ 1

2
‖h‖2H1

0
,

and therefore

lim
h→0

|J(u+ h)− J(u)−Ah|
‖h‖H1

0

= 0,

which proves that J is differentiable on H1
0 (Ω) with DJ(u) = A. �

Note that DJ(u) = 0 if and only if u is a weak solution of Poisson’s equation
in the sense of Definition 4.2. Thus, we have the following result.

Corollary 4.6. If J : H1
0 (Ω) → R defined in (4.5) attains a minimum at

u ∈ H1
0 (Ω), then u is a weak solution of −∆u = f in the sense of Definition 4.2.

In the direct method of the calculus of variations, we prove the existence of a
minimizer of J by showing that a minimizing sequence {un} converges in a suitable
sense to a minimizer u. This minimizer is then a weak solution of (4.1)–(4.2). We
will not follow this method here, and instead establish the existence of a weak
solution by use of the Riesz representation theorem. The Riesz representation
theorem is, however, typically proved by a similar argument to the one used in the
direct method of the calculus of variations, so in essence the proofs are equivalent.

4.3. The space H−1(Ω)

The negative order Sobolev space H−1(Ω) can be described as a space of dis-
tributions on Ω.

Theorem 4.7. The space H−1(Ω) consists of all distributions f ∈ D′(Ω) of the
form

(4.6) f = f0 +

n∑
i=1

∂ifi where f0, fi ∈ L2(Ω).

These distributions extend uniquely by continuity from D(Ω) to bounded linear func-
tionals on H1

0 (Ω). Moreover,

(4.7) ‖f‖H−1(Ω) = inf


(

n∑
i=0

∫
Ω

f2
i dx

)1/2

: such that f0, fi satisfy (4.6)

 .
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Proof. First suppose that f ∈ H−1(Ω). By the Riesz representation theorem
there is a function g ∈ H1

0 (Ω) such that

(4.8) 〈f, φ〉 = (g, φ)H1
0

for all φ ∈ H1
0 (Ω).

Here, (·, ·)H1
0

denotes the standard inner product on H1
0 (Ω),

(u, v)H1
0

=

∫
Ω

(uv +Du ·Dv) dx.

Identifying a function g ∈ L2(Ω) with its corresponding regular distribution, re-
stricting f to φ ∈ D(Ω) ⊂ H1

0 (Ω), and using the definition of the distributional
derivative, we have

〈f, φ〉 =

∫
Ω

gφ dx+

n∑
i=1

∫
Ω

∂ig ∂iφdx

= 〈g, φ〉+

n∑
i=1

〈∂ig, ∂iφ〉

=

〈
g −

n∑
i=1

∂igi, φ

〉
for all φ ∈ D(Ω),

where gi = ∂ig ∈ L2(Ω). Thus the restriction of every f ∈ H−1(Ω) from H1
0 (Ω) to

D(Ω) is a distribution

f = g −
n∑
i=1

∂igi

of the form (4.6). Also note that taking φ = g in (4.8), we get 〈f, g〉 = ‖g‖2
H1

0
,

which implies that

‖f‖H−1 ≥ ‖g‖H1
0

=

(∫
Ω

g2 dx+

n∑
i=1

∫
Ω

g2
i dx

)1/2

,

which proves inequality in one direction of (4.7).
Conversely, suppose that f ∈ D′(Ω) is a distribution of the form (4.6). Then,

using the definition of the distributional derivative, we have for any φ ∈ D(Ω) that

〈f, φ〉 = 〈f0, φ〉+

n∑
i=1

〈∂ifi, φ〉 = 〈f0, φ〉 −
n∑
i=1

〈fi, ∂iφ〉.

Use of the Cauchy-Schwartz inequality gives

|〈f, φ〉| ≤

(
〈f0, φ〉2 +

n∑
i=1

〈fi, ∂iφ〉2
)1/2

.

Moreover, since the fi are regular distributions belonging to L2(Ω)

|〈fi, ∂iφ〉| =
∣∣∣∣∫

Ω

fi∂iφdx

∣∣∣∣ ≤ (∫
Ω

f2
i dx

)1/2(∫
Ω

∂iφ
2 dx

)1/2

,

so

|〈f, φ〉| ≤

[(∫
Ω

f2
0 dx

)(∫
Ω

φ2 dx

)
+

n∑
i=1

(∫
Ω

f2
i dx

)(∫
Ω

∂iφ
2 dx

)]1/2

,



92 4. ELLIPTIC PDES

and

|〈f, φ〉| ≤

(∫
Ω

f2
0 dx+

n∑
i=1

∫
Ω

f2
i dx

)1/2(∫
Ω

φ2 +

∫
Ω

∂iφ
2 dx

)1/2

≤

(
n∑
i=0

∫
Ω

f2
i dx

)1/2

‖φ‖H1
0

Thus the distribution f : D(Ω) → R is bounded with respect to the H1
0 (Ω)-norm

on the dense subset D(Ω). It therefore extends in a unique way to a bounded linear
functional on H1

0 (Ω), which we still denote by f . Moreover,

‖f‖H−1 ≤

(
n∑
i=0

∫
Ω

f2
i dx

)1/2

,

which proves inequality in the other direction of (4.7). �

The dual space of H1(Ω) cannot be identified with a space of distributions on Ω
because D(Ω) is not a dense subspace. Any linear functional f ∈ H1(Ω)∗ defines a
distribution by restriction to D(Ω), but the same distribution arises from different
linear functionals. Conversely, any distribution T ∈ D′(Ω) that is bounded with
respect to the H1-norm extends uniquely to a bounded linear functional on H1

0 , but
the extension of the functional to the orthogonal complement (H1

0 )⊥ in H1 is ar-
bitrary (subject to maintaining its boundedness). Roughly speaking, distributions
are defined on functions whose boundary values or trace is zero, but general linear
functionals on H1 depend on the trace of the function on the boundary ∂Ω.

Example 4.8. The one-dimensional Sobolev space H1(0, 1) is imbedded in the
space C([0, 1]) of continuous functions, since p > n for p = 2 and n = 1. In fact,
according to the Sobolev imbedding theorem H1(0, 1) ↪→ C0,1/2([0, 1]), as can be
seen directly from the Cauchy-Schwartz inequality:

|f(x)− f(y)| ≤
∫ x

y

|f ′(t)| dt

≤
(∫ x

y

1 dt

)1/2(∫ x

y

|f ′(t)|2 dt
)1/2

≤
(∫ 1

0

|f ′(t)|2 dt
)1/2

|x− y|1/2 .

As usual, we identify an element of H1(0, 1) with its continuous representative in
C([0, 1]). By the trace theorem,

H1
0 (0, 1) =

{
u ∈ H1(0, 1) : u(0) = u(1)

}
.

The orthogonal complement is

H1
0 (0, 1)⊥ =

{
u ∈ H1(0, 1) : such that (u, v)H1 = 0 for every v ∈ H1

0 (0, 1)
}
.

This condition implies that u ∈ H1
0 (0, 1)⊥ if and only if∫ 1

0

(uv + u′v′) dx = 0 for all v ∈ H1
0 (0, 1),
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which means that u is a weak solution of the ODE

−u′′ + u = 0.

It follows that u(x) = c1e
x + c2e

−x, so

H1(0, 1) = H1
0 (0, 1)⊕ E

where E is the two dimensional subspace of H1(0, 1) spanned by the orthogonal
vectors {ex, e−x}. Thus,

H1(0, 1)∗ = H−1(0, 1)⊕ E∗.

If f ∈ H1(0, 1)∗ and u = u0 + c1e
x + c2e

−x where u0 ∈ H1
0 (0, 1), then

〈f, u〉 = 〈f0, u0〉+ a1c1 + a2c2

where f0 ∈ H−1(0, 1) is the restriction of f to H1
0 (0, 1) and

a1 = 〈f, ex〉, a2 = 〈f, e−x〉.

The constants a1, a2 determine how the functional f ∈ H1(0, 1)∗ acts on the
boundary values u(0), u(1) of a function u ∈ H1(0, 1).

4.4. The Poincaré inequality for H1
0 (Ω)

We cannot, in general, estimate a norm of a function in terms of a norm of its
derivative since constant functions have zero derivative. Such estimates are possible
if we add an additional condition that eliminates non-zero constant functions. For
example, we can require that the function vanishes on the boundary of a domain, or
that it has zero mean. We typically also need some sort of boundedness condition
on the domain of the function, since even if a function vanishes at some point we
cannot expect to estimate the size of a function over arbitrarily large distances by
the size of its derivative. The resulting inequalities are called Poincaré inequalities.

The inequality we prove here is a basic example of a Poincaré inequality. We
say that an open set Ω in Rn is bounded in some direction if there is a unit vector
e ∈ Rn and constants a, b such that a < x · e < b for all x ∈ Ω.

Theorem 4.9. Suppose that Ω is an open set in Rn that is bounded is some
direction. Then there is a constant C such that

(4.9)

∫
Ω

u2 dx ≤ C
∫

Ω

|Du|2 dx for all u ∈ H1
0 (Ω).

Proof. Since C∞c (Ω) is dense in H1
0 (Ω), it is sufficient to prove the inequality

for u ∈ C∞c (Ω). The inequality is invariant under rotations and translations, so
we can assume without loss of generality that the domain is bounded in the xn-
direction and lies between 0 < xn < a.

Writing x = (x′, xn) where x′ = (x1, . . . , , xn−1), we have

|u(x′, xn)| =
∣∣∣∣∫ xn

0

∂nu(x′, t) dt

∣∣∣∣ ≤ ∫ a

0

|∂nu(x′, t)| dt.

The Cauchy-Schwartz inequality implies that∫ a

0

|∂nu(x′, t)| dt =

∫ a

0

1 · |∂nu(x′, t)| dt ≤ a1/2

(∫ a

0

|∂nu(x′, t)|2 dt
)1/2

.
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Hence,

|u(x′, xn)|2 ≤ a
∫ a

0

|∂nu(x′, t)|2 dt.

Integrating this inequality with respect to xn, we get∫ a

0

|u(x′, xn)|2 dxn ≤ a2

∫ a

0

|∂nu(x′, t)|2 dt.

A further integration with respect to x′ gives∫
Ω

|u(x)|2 dx ≤ a2

∫
Ω

|∂nu(x)|2 dx.

Since |∂nu| ≤ |Du|, the result follows with C = a2. �

This inequality implies that we may use as an equivalent inner-product on
H1

0 an expression that involves only the derivatives of the functions and not the
functions themselves.

Corollary 4.10. If Ω is an open set that is bounded in some direction, then
H1

0 (Ω) equipped with the inner product

(4.10) (u, v)0 =

∫
Ω

Du ·Dv dx

is a Hilbert space, and the corresponding norm is equivalent to the standard norm
on H1

0 (Ω).

Proof. We denote the norm associated with the inner-product (4.10) by

‖u‖0 =

(∫
Ω

|Du|2 dx
)1/2

,

and the standard norm and inner product by

‖u‖1 =

(∫
Ω

[
u2 + |Du|2

]
dx

)1/2

,

(u, v)1 =

∫
Ω

(uv +Du ·Dv) dx.

(4.11)

Then, using the Poincaré inequality (4.9), we have

‖u‖0 ≤ ‖u‖1 ≤ (C + 1)1/2‖u‖0.

Thus, the two norms are equivalent; in particular, (H1
0 , (·, ·)0) is complete since

(H1
0 , (·, ·)1) is complete, so it is a Hilbert space with respect to the inner product

(4.10). �

4.5. Existence of weak solutions of the Dirichlet problem

With these preparations, the existence of weak solutions is an immediate con-
sequence of the Riesz representation theorem.

Theorem 4.11. Suppose that Ω is an open set in Rn that is bounded in some
direction and f ∈ H−1(Ω). Then there is a unique weak solution u ∈ H1

0 (Ω) of
−∆u = f in the sense of Definition 4.2.
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Proof. We equip H1
0 (Ω) with the inner product (4.10). Then, since Ω is

bounded in some direction, the resulting norm is equivalent to the standard norm,
and f is a bounded linear functional on

(
H1

0 (Ω), (, )0

)
. By the Riesz representation

theorem, there exists a unique u ∈ H1
0 (Ω) such that

(u, φ)0 = 〈f, φ〉 for all φ ∈ H1
0 (Ω),

which is equivalent to the condition that u is a weak solution. �

The same approach works for other symmetric linear elliptic PDEs. Let us give
some examples.

Example 4.12. Consider the Dirichlet problem

−∆u+ u = f in Ω,

u = 0 on ∂Ω.

Then u ∈ H1
0 (Ω) is a weak solution if∫

Ω

(Du ·Dφ+ uφ) dx = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

This is equivalent to the condition that

(u, φ)1 = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

where (·, ·)1 is the standard inner product on H1
0 (Ω) given in (4.11). Thus, the

Riesz representation theorem implies the existence of a unique weak solution.
Note that in this example and the next, we do not use the Poincaré inequality, so

the result applies to arbitrary open sets, including Ω = Rn. In that case, H1
0 (Rn) =

H1(Rn), and we get a unique solution u ∈ H1(Rn) of −∆u + u = f for every
f ∈ H−1(Rn). Moreover, using the standard norms, we have ‖u‖H1 = ‖f‖H−1 .
Thus the operator −∆ + I is an isometry of H1(Rn) onto H−1(Rn).

Example 4.13. As a slight generalization of the previous example, suppose
that µ > 0. A function u ∈ H1

0 (Ω) is a weak solution of

−∆u+ µu = f in Ω,

u = 0 on ∂Ω.
(4.12)

if (u, φ)µ = 〈f, φ〉 for all φ ∈ H1
0 (Ω) where

(u, v)µ =

∫
Ω

(µuv +Du ·Dv) dx

The norm ‖ · ‖µ associated with this inner product is equivalent to the standard
one, since

1

C
‖u‖2µ ≤ ‖u‖21 ≤ C‖u‖2µ

where C = max{µ, 1/µ}. We therefore again get the existence of a unique weak
solution from the Riesz representation theorem.

Example 4.14. Consider the last example for µ < 0. If we have a Poincaré
inequality ‖u‖L2 ≤ C‖Du‖2L for Ω, which is the case if Ω is bounded in some
direction, then

(u, u)µ =

∫
Ω

(
µu2 +Du ·Dv

)
dx ≥ (1− C|µ|)

∫
Ω

|Du|2 dx.
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Thus ‖u‖µ defines a norm on H1
0 (Ω) that is equivalent to the standard norm if

−1/C < µ < 0, and we get a unique weak solution in this case also.
For bounded domains, the Dirichlet Laplacian has an infinite sequence of real

eigenvalues {λn : n ∈ N} such that there exists a nonzero solution u ∈ H1
0 (Ω) of

−∆u = λnu. The best constant in the Poincaré inequality can be shown to be the
minimum eigenvalue λ1, and this method does not work if µ ≤ −λ1. For µ = −λn,
a weak solution of (4.12) does not exist for every f ∈ H−1(Ω), and if one does exist
it is not unique since we can add to it an arbitrary eigenfunction. Thus, not only
does the method fail, but the conclusion of Theorem 4.11 may be false.

Example 4.15. Consider the second order PDE

−
n∑

i,j=1

∂i (aij∂ju) = f in Ω,

u = 0 on ∂Ω

(4.13)

where the coefficient functions aij : Ω → R are symmetric (aij = aji), bounded,
and satisfy the uniform ellipticity condition that for some θ > 0

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 for all x ∈ Ω and all ξ ∈ Rn.

Also, assume that Ω is bounded in some direction. Then a weak formulation of
(4.13) is that u ∈ H1

0 (Ω) and

a(u, φ) = 〈f, φ〉 for all φ ∈ H1
0 (Ω),

where the symmetric bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R is defined by

a(u, v) =

n∑
i,j=1

∫
Ω

aij∂iu∂jv dx.

The boundedness of aij , the uniform ellipticity condition, and the Poincaré inequal-
ity imply that a defines an inner product on H1

0 which is equivalent to the standard
one. An application of the Riesz representation theorem for the bounded linear
functionals f on the Hilbert space (H1

0 , a) then implies the existence of a unique
weak solution. We discuss a generalization of this example in greater detail in the
next section.

4.6. General linear, second order elliptic PDEs

Consider PDEs of the form

Lu = f

where L is a linear differential operator of the form

(4.14) Lu = −
n∑

i,j=1

∂i (aij∂ju) +

n∑
i=1

∂i (biu) + cu,

acting on functions u : Ω → R where Ω is an open set in Rn. A physical interpre-
tation of such PDEs is described briefly in Section 4.A.

We assume that the given coefficients functions aij , bi, c : Ω→ R satisfy

(4.15) aij , bi, c ∈ L∞(Ω), aij = aji.
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The operator L is elliptic if the matrix (aij) is positive definite. We will assume
the stronger condition of uniformly ellipticity given in the next definition.

Definition 4.16. The operator L in (4.14) is uniformly elliptic on Ω if there
exists a constant θ > 0 such that

(4.16)

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for x almost everywhere in Ω and every ξ ∈ Rn.

This uniform ellipticity condition allows us to estimate the integral of |Du|2 in
terms of the integral of

∑
aij∂iu∂ju.

Example 4.17. The Laplacian operator L = −∆ is uniformly elliptic on any
open set, with θ = 1.

Example 4.18. The Tricomi operator

L = y∂2
x + ∂2

y

is elliptic in y > 0 and hyperbolic in y < 0. For any 0 < ε < 1, L is uniformly
elliptic in the strip {(x, y) : ε < y < 1}, with θ = ε, but it is not uniformly elliptic
in {(x, y) : 0 < y < 1}.

For µ ∈ R, we consider the Dirichlet problem for L+ µI,

Lu+ µu = f in Ω,

u = 0 on ∂Ω.
(4.17)

We motivate the definition of a weak solution of (4.17) in a similar way to the
motivation for the Laplacian: multiply the PDE by a test function φ ∈ C∞c (Ω),
integrate over Ω, and use integration by parts, assuming that all functions and the
domain are smooth. Note that∫

Ω

∂i(biu)φdx = −
∫

Ω

biu∂iφdx.

This leads to the condition that u ∈ H1
0 (Ω) is a weak solution of (4.17) with L

given by (4.14) if∫
Ω


n∑

i,j=1

aij∂iu∂jφ−
n∑
i=1

biu∂iφ+ cuφ

 dx+ µ

∫
Ω

uφ dx = 〈f, φ〉

for all φ ∈ H1
0 (Ω).

To write this condition more concisely, we define a bilinear form

a : H1
0 (Ω)×H1

0 (Ω)→ R
by

(4.18) a(u, v) =

∫
Ω


n∑

i,j=1

aij∂iu∂jv −
n∑
i

biu∂iv + cuv

 dx.

This form is well-defined and bounded on H1
0 (Ω), as we check explicitly below. We

denote the L2-inner product by

(u, v)L2 =

∫
Ω

uv dx.
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Definition 4.19. Suppose that Ω is an open set in Rn, f ∈ H−1(Ω), and L is
a differential operator (4.14) whose coefficients satisfy (4.15). Then u : Ω→ R is a
weak solution of (4.17) if: (a) u ∈ H1

0 (Ω); (b)

a(u, φ) + µ(u, φ)L2 = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

The form a in (4.18) is not symmetric unless bi = 0. We have

a(v, u) = a∗(u, v)

where

(4.19) a∗(u, v) =

∫
Ω


n∑

i,j=1

aij∂iu∂jv +

n∑
i

bi(∂iu)v + cuv

 dx

is the bilinear form associated with the formal adjoint L∗ of L,

(4.20) L∗u = −
n∑

i,j=1

∂i (aij∂ju)−
n∑
i=1

bi∂iu+ cu.

The proof of the existence of a weak solution of (4.17) is similar to the proof
for the Dirichlet Laplacian, with one exception. If L is not symmetric, we cannot
use a to define an equivalent inner product on H1

0 (Ω) and appeal to the Riesz
representation theorem. Instead we use a result due to Lax and Milgram which
applies to non-symmetric bilinear forms.2

4.7. The Lax-Milgram theorem and general elliptic PDEs

We begin by stating the Lax-Milgram theorem for a bilinear form on a Hilbert
space. Afterwards, we verify its hypotheses for the bilinear form associated with
a general second-order uniformly elliptic PDE and use it to prove the existence of
weak solutions.

Theorem 4.20. Let H be a Hilbert space with inner-product (·, ·) : H×H → R,
and let a : H×H → R be a bilinear form on H. Assume that there exist constants
C1, C2 > 0 such that

C1‖u‖2 ≤ a(u, u), |a(u, v)| ≤ C2‖u‖ ‖v‖ for all u, v ∈ H.

Then for every bounded linear functional f : H → R, there exists a unique u ∈ H
such that

〈f, v〉 = a(u, v) for all v ∈ H.

For the proof, see [5]. The verification of the hypotheses for (4.18) depends on
the following energy estimates.

2The story behind this result — the story might be completely true or completely false —

is that Lax and Milgram attended a seminar where the speaker proved existence for a symmetric

PDE by use of the Riesz representation theorem, and one of them asked the other if symmetry
was required; in half an hour, they convinced themselves that is wasn’t, giving birth to the Lax-

Milgram “lemma.”
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Theorem 4.21. Let a be the bilinear form on H1
0 (Ω) defined in (4.18), where

the coefficients satisfy (4.15) and the uniform ellipticity condition (4.16) with con-
stant θ. Then there exist constants C1, C2 > 0 and γ ∈ R such that for all
u, v ∈ H1

0 (Ω)

C1‖u‖2H1
0
≤ a(u, u) + γ‖u‖2L2(4.21)

|a(u, v)| ≤ C2 ‖u‖H1
0
‖v‖H1

0
,(4.22)

If b = 0, we may take γ = θ − c0 where c0 = infΩ c, and if b 6= 0, we may take

γ =
1

2θ

n∑
i=1

‖bi‖2L∞ +
θ

2
− c0.

Proof. First, we have for any u, v ∈ H1
0 (Ω) that

|a(u, v)| ≤
n∑

i,j=1

∫
Ω

|aij∂iu∂jv| dx+

n∑
i=1

∫
Ω

|biu∂iv| dx+

∫
Ω

|cuv| dx.

≤
n∑

i,j=1

‖aij‖L∞ ‖∂iu‖L2 ‖∂jv‖L2

+

n∑
i=1

‖bi‖L∞ ‖u‖L2 ‖∂iv‖L2 + ‖c‖L∞ ‖u‖L2 ‖v‖L2

≤ C

 n∑
i,j=1

‖aij‖L∞ +

n∑
i=1

‖bi‖L∞ + ‖c‖L∞

 ‖u‖H1
0
‖v‖H1

0
,

which shows (4.22).
Second, using the uniform ellipticity condition (4.16), we have

θ‖Du‖2L2 = θ

∫
Ω

|Du|2 dx

≤
n∑

i,j=1

∫
Ω

aij∂iu∂ju dx

≤ a(u, u) +

n∑
i=1

∫
Ω

biu∂iu dx−
∫

Ω

cu2 dx

≤ a(u, u) +

n∑
i=1

∫
Ω

|biu∂iu| dx− c0
∫

Ω

u2 dx

≤ a(u, u) +

n∑
i=1

‖bi‖L∞ ‖u‖L2 ‖∂iu‖L2 − c0 ‖u‖L2

≤ a(u, u) + β ‖u‖L2 ‖Du‖L2 − c0 ‖u‖L2 ,

where c(x) ≥ c0 a.e. in Ω, and

β =

(
n∑
i=1

‖bi‖2L∞

)1/2

.

If β = 0, we get (4.21) with

γ = θ − c0, C1 = θ.
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If β > 0, by Cauchy’s inequality with ε, we have for any ε > 0 that

‖u‖L2 ‖Du‖L2 ≤ ε ‖Du‖2L2 +
1

4ε
‖u‖2L2 .

Hence, choosing ε = θ/2β, we get

θ

2
‖Du‖2L2 ≤ a(u, u) +

(
β2

2θ
− c0

)
‖u‖L2 ,

and (4.21) follows with

γ =
β2

2θ
+
θ

2
− c0, C1 =

θ

2
.

�

Equation (4.21) is called G̊arding’s inequality; this estimate of the H1
0 -norm

of u in terms of a(u, u), using the uniform ellipticity of L, is the crucial energy
estimate. Equation (4.22) states that the bilinear form a is bounded on H1

0 . The
expression for γ in this Theorem is not necessarily sharp. For example, as in the
case of the Laplacian, the use of Poincaré’s inequality gives smaller values of γ for
bounded domains.

Theorem 4.22. Suppose that Ω is an open set in Rn, and f ∈ H−1(Ω). Let L
be a differential operator (4.14) with coefficients that satisfy (4.15), and let γ ∈ R
be a constant for which Theorem 4.21 holds. Then for every µ ≥ γ there is a unique
weak solution of the Dirichlet problem

Lu+ µf = 0, u ∈ H1
0 (Ω)

in the sense of Definition 4.19.

Proof. For µ ∈ R, define aµ : H1
0 (Ω)×H1

0 (Ω)→ R by

(4.23) aµ(u, v) = a(u, v) + µ(u, v)L2

where a is defined in (4.18). Then u ∈ H1
0 (Ω) is a weak solution of Lu+ µu = f if

and only if

aµ(u, φ) = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

From (4.22),

|aµ(u, v)| ≤ C2 ‖u‖H1
0
‖v‖H1

0
+ |µ| ‖u‖L2‖v‖L2 ≤ (C2 + |µ|) ‖u‖H1

0
‖v‖H1

0

so aµ is bounded on H1
0 (Ω). From (4.21),

C1‖u‖2H1
0
≤ a(u, u) + γ‖u‖2L2 ≤ aµ(u, u)

whenever µ ≥ γ. Thus, by the Lax-Milgram theorem, for every f ∈ H−1(Ω) there
is a unique u ∈ H1

0 (Ω) such that 〈f, φ〉 = aµ(u, φ) for all v ∈ H1
0 (Ω), which proves

the result. �

Although L∗ is not of exactly the same form as L, since it first derivative term
is not in divergence form, the same proof of the existence of weak solutions for L
applies to L∗ with a in (4.18) replaced by a∗ in (4.19).



4.8. COMPACTNESS OF THE RESOLVENT 101

4.8. Compactness of the resolvent

An elliptic operator L+ µI of the type studied above is a bounded, invertible
linear map from H1

0 (Ω) onto H−1(Ω) for sufficiently large µ ∈ R, so we may de-
fine an inverse operator K = (L + µI)−1. If Ω is a bounded open set, then the
Sobolev imbedding theorem implies that H1

0 (Ω) is compactly imbedded in L2(Ω),
and therefore K is a compact operator on L2(Ω).

The operator (L− λI)−1 is called the resolvent of L, so this property is some-
times expressed by saying that L has compact resolvent. As discussed in Exam-
ple 4.14, L+ µI may fail to be invertible at smaller values of µ, such that λ = −µ
belongs to the spectrum σ(L) of L, and the resolvent is not defined as a bounded
operator on L2(Ω) for λ ∈ σ(L).

The compactness of the resolvent of elliptic operators on bounded open sets
has several important consequences for the solvability of the elliptic PDE and the
spectrum of the elliptic operator. Before describing some of these, we discuss the
resolvent in more detail.

From Theorem 4.22, for µ ≥ γ we can define

K : L2(Ω)→ L2(Ω), K = (L+ µI)−1
∣∣
L2(Ω)

.

We define the inverse K on L2(Ω), rather than H−1(Ω), in which case its range is
a subspace of H1

0 (Ω). If the domain Ω is sufficiently smooth for elliptic regularity
theory to apply, then u ∈ H2(Ω) if f ∈ L2(Ω), and the range of K is H2(Ω)∩H1

0 (Ω);
for non-smooth domains, the range of K is more difficult to describe.

If we consider L as an operator acting in L2(Ω), then the domain of L is
D = ranK, and

L : D ⊂ L2(Ω)→ L2(Ω)

is an unbounded linear operator with dense domain D. The operator L is closed,
meaning that if {un} is a sequence of functions in D such that un → u and Lun → f
in L2(Ω), then u ∈ D and Lu = f . By using the resolvent, we can replace an
analysis of the unbounded operator L by an analysis of the bounded operator K.

If f ∈ L2(Ω), then 〈f, v〉 = (f, v)L2 . It follows from the definition of weak
solution of Lu+ µu = f that

(4.24) Kf = u if and only if aµ(u, v) = (f, v)L2 for all v ∈ H1
0 (Ω)

where aµ is defined in (4.23). We also define the operator

K∗ : L2(Ω)→ L2(Ω), K∗ = (L∗ + µI)−1
∣∣
L2(Ω)

,

meaning that

(4.25) K∗f = u if and only if a∗µ(u, v) = (f, v)L2 for all v ∈ H1
0 (Ω)

where a∗µ(u, v) = a∗(u, v) + µ (u, v)L2 and a∗ is given in (4.19).

Theorem 4.23. If K ∈ B
(
L2(Ω)

)
is defined by (4.24), then the adjoint of K

is K∗ defined by (4.25). If Ω is a bounded open set, then K is a compact operator.

Proof. If f, g ∈ L2(Ω) and Kf = u, K∗g = v, then using (4.24) and (4.25),
we get

(f,K∗g)L2 = (f, v)L2 = aµ(u, v) = a∗µ(v, u) = (g, u)L2 = (u, g)L2 = (Kf, g)L2 .

Hence, K∗ is the adjoint of K.
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If Kf = u, then (4.21) with µ ≥ γ and (4.24) imply that

C1‖u‖2H1
0
≤ aµ(u, u) = (f, u)L2 ≤ ‖f‖L2 ‖u‖L2 ≤ ‖f‖L2 ‖u‖H1

0
.

Hence ‖Kf‖H1
0
≤ C‖f‖L2 where C = 1/C1. It follows that K is compact if Ω is

bounded, since it maps bounded sets in L2(Ω) into bounded sets in H1
0 (Ω), which

are precompact in L2(Ω) by the Sobolev imbedding theorem. �

4.9. The Fredholm alternative

Consider the Dirichlet problem

(4.26) Lu = f in Ω, u = 0 on ∂Ω,

where Ω is a smooth, bounded open set, and

Lu = −
n∑

i,j=1

∂i (aij∂ju) +

n∑
i=1

∂i (biu) + cu.

If u = v = 0 on ∂Ω, Green’s formula implies that∫
Ω

(Lu)v dx =

∫
Ω

u (L∗v) dx,

where the formal adjoint L∗ of L is defined by

L∗v = −
n∑

i,j=1

∂i (aij∂jv)−
n∑
i=1

bi∂iv + cv.

It follows that if u is a smooth solution of (4.26) and v is a smooth solution of the
homogeneous adjoint problem,

L∗v = 0 in Ω, v = 0 on ∂Ω,

then ∫
Ω

fv dx =

∫
Ω

(Lu)v dx =

∫
Ω

uL∗v dx = 0.

Thus, a necessary condition for (4.26) to be solvable is that f is orthogonal with
respect to the L2(Ω)-inner product to every solution of the homogeneous adjoint
problem.

For bounded domains, we will use the compactness of the resolvent to prove
that this condition is necessary and sufficient for the existence of a weak solution of
(4.26) where f ∈ L2(Ω). Moreover, the solution is unique if and only if a solution
exists for every f ∈ L2(Ω).

This result is a consequence of the fact that if K is compact, then the operator
I+σK is a Fredholm operator with index zero on L2(Ω) for any σ ∈ R, and therefore
satisfies the Fredholm alternative (see Section 4.B.2). Thus, if K = (L + µI)−1 is
compact, the inverse elliptic operator L−λI also satisfies the Fredholm alternative.

Theorem 4.24. Suppose that Ω is a bounded open set in Rn and L is a uni-
formly elliptic operator of the form (4.14) whose coefficients satisfy (4.15). Let L∗

be the adjoint operator (4.20) and λ ∈ R. Then one of the following two alternatives
holds.

(1) The only weak solution of the equation L∗v − λv = 0 is v = 0. For every
f ∈ L2(Ω) there is a unique weak solution u ∈ H1

0 (Ω) of the equation
Lu− λu = f . In particular, the only solution of Lu− λu = 0 is u = 0.
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(2) The equation L∗v − λv = 0 has a nonzero weak solution v. The solution
spaces of Lu− λu = 0 and L∗v − λv = 0 are finite-dimensional and have
the same dimension. For f ∈ L2(Ω), the equation Lu − λu = f has a
weak solution u ∈ H1

0 (Ω) if and only if (f, v) = 0 for every v ∈ H1
0 (Ω)

such that L∗v − λv = 0, and if a solution exists it is not unique.

Proof. Since K = (L+ µI)−1 is a compact operator on L2(Ω), the Fredholm
alternative holds for the equation

(4.27) u+ σKu = g u, g ∈ L2(Ω)

for any σ ∈ R. Let us consider the two alternatives separately.
First, suppose that the only solution of v + σK∗v = 0 is v = 0, which implies

that the only solution of L∗v+(µ+σ)v = 0 is v = 0. Then the Fredholm alterative
for I+σK implies that (4.27) has a unique solution u ∈ L2(Ω) for every g ∈ L2(Ω).
In particular, for any g ∈ ranK, there exists a unique solution u ∈ L2(Ω), and
the equation implies that u ∈ ranK. Hence, we may apply L + µI to (4.27),
and conclude that for every f = (L + µI)g ∈ L2(Ω), there is a unique solution
u ∈ ranK ⊂ H1

0 (Ω) of the equation

(4.28) Lu+ (µ+ σ)u = f.

Taking σ = −(λ+ µ), we get part (1) of the Fredholm alternative for L.
Second, suppose that v + σK∗v = 0 has a finite-dimensional subspace of solu-

tions v ∈ L2(Ω). It follows that v ∈ ranK∗ (clearly, σ 6= 0 in this case) and

L∗v + (µ+ σ)v = 0.

By the Fredholm alternative, the equation u + σKu = 0 has a finite-dimensional
subspace of solutions of the same dimension, and hence so does

Lu+ (µ+ σ)u = 0.

Equation (4.27) is solvable for u ∈ L2(Ω) given g ∈ ranK if and only if

(4.29) (v, g)L2 = 0 for all v ∈ L2(Ω) such that v + σK∗v = 0,

and then u ∈ ranK. It follows that the condition (4.29) with g = Kf is necessary
and sufficient for the solvability of (4.28) given f ∈ L2(Ω). Since

(v, g)L2 = (v,Kf)L2 = (K∗v, f)L2 = − 1

σ
(v, f)L2

and v + σK∗v = 0 if and only if L∗v + (µ + σ)v = 0, we conclude that (4.28) is
solvable for u if and only if f ∈ L2(Ω) satisfies

(v, f)L2 = 0 for all v ∈ ranK such that L∗v + (µ+ σ)v = 0.

Taking σ = −(λ+ µ), we get alternative (2) for L. �

Elliptic operators on a Riemannian manifold may have nonzero Fredholm in-
dex. The Atiyah-Singer index theorem (1968) relates the Fredholm index of such
operators with a topological index of the manifold.
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4.10. The spectrum of a self-adjoint elliptic operator

Suppose that L is a symmetric, uniformly elliptic operator of the form

(4.30) Lu = −
n∑

i,j=1

∂i (aij∂ju) + cu

where aij = aji and aij , c ∈ L∞(Ω). The associated symmetric bilinear form

a : H1
0 (Ω)×H1

0 (Ω)→ R

is given by

a(u, v) =

∫
Ω

 n∑
i,j=1

aij∂iu∂ju+ cuv

 dx.

The resolvent K = (L+ µI)−1 is a compact self-adjoint operator on L2(Ω) for
sufficiently large µ. Therefore its eigenvalues are real and its eigenfunctions provide
an orthonormal basis of L2(Ω). Since L has the same eigenfunctions as K, we get
the corresponding result for L.

Theorem 4.25. The operator L has an increasing sequence of real eigenvalues
of finite multiplicity

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ . . .
such that λn →∞. There is an orthonormal basis {φn : n ∈ N} of L2(Ω) consisting
of eigenfunctions functions φn ∈ H1

0 (Ω) such that

Lφn = λnφn.

Proof. If Kφ = 0 for any φ ∈ L2(Ω), then applying L + µI to the equation
we find that φ = 0, so 0 is not an eigenvalue of K. If Kφ = κφ, for φ ∈ L2(Ω) and
κ 6= 0, then φ ∈ ranK and

Lφ =

(
1

κ
− µ

)
φ,

so φ is an eigenfunction of L with eigenvalue λ = 1/κ−µ. From G̊arding’s inequality
(4.21) with u = φ, and the fact that a(φ, φ) = λ‖φ‖2L2 , we get

C1‖φ‖2H1
0
≤ (λ+ γ)‖φ‖2L2 .

It follows that λ > −γ, so the eigenvalues of L are bounded from below, and at
most a finite number are negative. The spectral theorem for the compact self-
adjoint operator K then implies the result. �

The boundedness of the domain Ω is essential here, otherwise K need not be
compact, and the spectrum of L need not consist only of eigenvalues.

Example 4.26. Suppose that Ω = Rn and L = −∆. Let K = (−∆ + I)−1.
Then, from Example 4.12, K : L2(Rn) → L2(Rn). The range of K is H2(Rn).
This operator is bounded but not compact. For example, if φ ∈ C∞c (Rn) is any
nonzero function and {aj} is a sequence in Rn such that |aj | ↑ ∞ as j →∞, then
the sequence {φj} defined by φj(x) = φ(x − aj) is bounded in L2(Rn) but {Kφj}
has no convergent subsequence. In this example, K has continuous spectrum [0, 1]
on L2(Rn) and no eigenvalues. Correspondingly, −∆ has the purely continuous
spectrum [0,∞).
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Finally, let us briefly consider the Fredholm alternative for a self-adjoint elliptic
equation from the perspective of this spectral theory. The equation

(4.31) Lu− λu = f

may be solved by expansion with respect to the eigenfunctions of L. Suppose that
{φn : n ∈ N} is an orthonormal basis of L2(Ω) such that Lφn = λnφn, where the
eigenvalues λn are increasing and repeated according to their multiplicity. We get
the following alternatives, where all series converge in L2(Ω):

(1) If λ 6= λn for any n ∈ N, then (4.31) has the unique solution

u =

∞∑
n=1

(f, φn)

λn − λ
φn

for every f ∈ L2(Ω);
(2) If λ = λM for for some M ∈ N and λn = λM for M ≤ n ≤ N , then (4.31)

has a solution u ∈ H1
0 (Ω) if and only if f ∈ L2(Ω) satisfies

(f, φn) = 0 for M ≤ n ≤ N.
In that case, the solutions are

u =
∑
λn 6=λ

(f, φn)

λn − λ
φn +

N∑
n=M

cnφn

where {cM , . . . , cN} are arbitrary real constants.

4.11. Interior regularity

Roughly speaking, solutions of elliptic PDEs are as smooth as the data allows.
For boundary value problems, it is convenient to consider the regularity of the
solution in the interior of the domain and near the boundary separately. We begin
by studying the interior regularity of solutions. We follow closely the presentation
in [5].

To motivate the regularity theory, consider the following simple a priori esti-
mate for the Laplacian. Suppose that u ∈ C∞c (Rn). Then, integrating by parts
twice, we get ∫

(∆u)
2
dx =

n∑
i,j=1

∫ (
∂2
iiu
) (
∂2
jju
)
dx

= −
n∑

i,j=1

∫ (
∂3
iiju
)

(∂ju) dx

=

n∑
i,j=1

∫ (
∂2
iju
) (
∂2
iju
)
dx

=

∫ ∣∣D2u
∣∣2 dx.

Hence, if −∆u = f , then ∥∥D2u
∥∥
L2 = ‖f‖2L2 .

Thus, we can control the L2-norm of all second derivatives of u by the L2-norm
of the Laplacian of u. This estimate suggests that we should have u ∈ H2

loc if
f, u ∈ L2, as is in fact true. The above computation is, however, not justified for
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weak solutions that belong to H1; as far as we know from the previous existence
theory, such solutions may not even possess second-order weak derivatives.

We will consider a PDE

(4.32) Lu = f in Ω

where Ω is an open set in Rn, f ∈ L2(Ω), and L is a uniformly elliptic of the form

(4.33) Lu = −
n∑

i,j=1

∂i (aij∂ju) .

It is straightforward to extend the proof of the regularity theorem to uniformly
elliptic operators that contain lower-order terms [5].

A function u ∈ H1(Ω) is a weak solution of (4.32)–(4.33) if

(4.34) a(u, v) = (f, v) for all v ∈ H1
0 (Ω),

where the bilinear form a is given by

(4.35) a(u, v) =

n∑
i,j=1

∫
Ω

aij∂iu∂jv dx.

We do not impose any boundary condition on u, for example by requiring that
u ∈ H1

0 (Ω), so the interior regularity theorem applies to any weak solution of
(4.32).

Before stating the theorem, we illustrate the idea of the proof with a further
a priori estimate. To obtain a local estimate for D2u on a subdomain Ω′ b Ω, we
introduce a cut-off function η ∈ C∞c (Ω) such that 0 ≤ η ≤ 1 and η = 1 on Ω′. We
take as a test function

(4.36) v = −∂kη2∂ku.

Note that v is given by a positive-definite, symmetric operator acting on u of a
similar form to L, which leads to the positivity of the resulting estimate for D∂ku.

Multiplying (4.32) by v and integrating over Ω, we get (Lu, v) = (f, v). Two
integrations by parts imply that

(Lu, v) =

n∑
i,j=1

∫
Ω

∂j (aij∂iu)
(
∂kη

2∂ku
)
dx

=

n∑
i,j=1

∫
Ω

∂k (aij∂iu)
(
∂jη

2∂ku
)
dx

=

n∑
i,j=1

∫
Ω

η2aij (∂i∂ku) (∂j∂ku) dx+ F

where

F =

n∑
i,j=1

∫
Ω

{
η2 (∂kaij) (∂iu) (∂j∂ku)

+ 2η∂jη
[
aij (∂i∂ku) (∂ku) + (∂kaij) (∂iu) (∂ku)

]}
dx.
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The term F is linear in the second derivatives of u. We use the uniform ellipticity
of L to get

θ

∫
Ω′
|D∂ku|2 dx ≤

n∑
i,j=1

∫
Ω

η2aij (∂i∂ku) (∂j∂ku) dx = (f, v)− F,

and a Cauchy inequality with ε to absorb the linear terms in second derivatives on
the right-hand side into the quadratic terms on the left-hand side. This results in
an estimate of the form

‖D∂ku‖2L2(Ω′) ≤ C
(
f2 + ‖u‖2H1(Ω)

)
.

The proof of regularity is entirely analogous, with the derivatives in the test function
(4.36) replaced by difference quotients (see Section 4.C). We obtain an L2(Ω′)-
bound for the difference quotients D∂hku that is uniform in h, which implies that
u ∈ H2(Ω′).

Theorem 4.27. Suppose that Ω is an open set in Rn. Assume that aij ∈ C1(Ω)
and f ∈ L2(Ω). If u ∈ H1(Ω) is a weak solution of (4.32)–(4.33), then u ∈ H2(Ω′)
for every Ω′ b Ω. Furthermore,

(4.37) ‖u‖H2(Ω′) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
where the constant C depends only on n, Ω′, Ω and aij.

Proof. Choose a cut-off function η ∈ C∞c (Ω) such that 0 ≤ η ≤ 1 and η = 1
on Ω′. We use the compactly supported test function

v = −D−hk
(
η2Dh

ku
)
∈ H1

0 (Ω)

in the definition (4.34)–(4.35) for weak solutions. (As in (4.36), v is given by a
positive self-adjoint operator acting on u.) This implies that

(4.38) −
n∑

i,j=1

∫
Ω

aij (∂iu)D−hk ∂j
(
η2Dh

ku
)
dx = −

∫
Ω

fD−hk
(
η2Dh

ku
)
dx.

Performing a discrete integration by parts and using the product rule, we may write
the left-hand side of (4.38) as

−
n∑

i,j=1

∫
Ω

aij (∂iu)D−hk ∂j
(
η2Dh

ku
)
dx =

n∑
i,j=1

∫
Ω

Dh
k (aij∂iu) ∂j

(
η2Dh

ku
)
dx

=

n∑
i,j=1

∫
Ω

η2aij
(
Dh
k∂iu

) (
Dh
k∂ju

)
dx+ F,

(4.39)

where, with ahij(x) = aij(x+ hek),

F =

n∑
i,j=1

∫
Ω

{
η2
(
Dh
kaij

)
(∂iu)

(
Dh
k∂ju

)
+ 2η∂jη

[
ahij
(
Dh
k∂iu

) (
Dh
ku
)

+
(
Dh
kaij

)
(∂iu)

(
Dh
ku
)]}

dx.

(4.40)
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Using the uniform ellipticity of L in (4.16), we estimate

θ

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx ≤ n∑

i,j=1

∫
Ω

η2aij
(
Dh
k∂iu

) (
Dh
k∂ju

)
dx.

Using (4.38)–(4.39) and this inequality, we find that

(4.41) θ

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx ≤ −∫

Ω

fD−hk
(
η2Dh

ku
)
dx− F.

By the Cauchy-Schwartz inequality,∣∣∣∣∫
Ω

fD−hk
(
η2Dh

ku
)
dx

∣∣∣∣ ≤ ‖f‖L2(Ω)

∥∥D−hk (
η2Dh

ku
)∥∥
L2(Ω)

.

Since spt η b Ω, Proposition 4.52 implies that for sufficiently small h,∥∥D−hk (
η2Dh

ku
)∥∥
L2(Ω)

≤
∥∥∂k (η2Dh

ku
)∥∥
L2(Ω)

≤
∥∥η2∂kD

h
ku
∥∥
L2(Ω)

+
∥∥2η (∂kη)Dh

ku
∥∥
L2(Ω)

≤
∥∥η∂kDh

ku
∥∥
L2(Ω)

+ C ‖Du‖L2(Ω) .

A similar estimate of F in (4.40) gives

|F | ≤ C
(
‖Du‖L2(Ω)

∥∥ηDh
kDu

∥∥
L2(Ω)

+ ‖Du‖2L2(Ω)

)
.

Using these results in (4.41), we find that

θ
∥∥ηDh

kDu
∥∥2

L2(Ω)
≤C
(
‖f‖L2(Ω)

∥∥ηDh
kDu

∥∥
L2(Ω)

+ ‖f‖L2(Ω) ‖Du‖L2(Ω)

+ ‖Du‖L2(Ω)

∥∥ηDh
kDu

∥∥
L2(Ω)

+ ‖Du‖2L2(Ω)

)
.

(4.42)

By Cauchy’s inequality with ε, we have

‖f‖L2(Ω)

∥∥ηDh
kDu

∥∥
L2(Ω)

≤ ε
∥∥ηDh

kDu
∥∥2

L2(Ω)
+

1

4ε
‖f‖2L2(Ω) ,

‖Du‖L2(Ω)

∥∥ηDh
kDu

∥∥
L2(Ω)

≤ ε
∥∥ηDh

kDu
∥∥2

L2(Ω)
+

1

4ε
‖Du‖2L2(Ω) .

Hence, choosing ε so that 4Cε = θ, and using the result in (4.42) we get that

θ

4

∥∥ηDh
kDu

∥∥2

L2(Ω)
≤ C

(
‖f‖2L2(Ω) + ‖Du‖2L2(Ω)

)
.

Thus, since η = 1 on Ω′,

(4.43)
∥∥Dh

kDu
∥∥2

L2(Ω′)
≤ C

(
‖f‖2L2(Ω) + ‖Du‖2L2(Ω)

)
where the constant C depends on Ω, Ω′, aij , but is independent of h, u, f .
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We can further estimate ‖Du‖ in terms of ‖u‖ by taking v = u in (4.34)–(4.35)
and using the uniform ellipticity of L to get

θ

∫
Ω

|Du|2 dx ≤
n∑

i,j=1

aij∂iu∂ju

≤
∫

Ω

fu dx

≤ ‖f‖L2(Ω)‖u‖L2(Ω)

≤ 1

2

(
‖f‖2L2(Ω) + ‖u‖2L2(Ω)

)
.

Using this result in (4.43), we get that∥∥Dh
kDu

∥∥2

L2(Ω′)
≤ C

(
‖f‖2L2(Ω) + ‖u‖2L2(Ω)

)
.

Theorem 4.53 theorem now implies that the weak second derivatives of u exist and
belong to L2(Ω). Furthermore, the H2-norm of u satisfies (4.37). �

If u ∈ H2
loc(Ω) and f ∈ L2(Ω), then the equation Lu = f relating the weak

derivatives of u and f holds pointwise a.e.; such solutions are often called strong
solutions, to distinguish them from weak solutions which may not possess weak
second order derivatives and classical solutions which possess continuous second
order derivatives.

The repeated application of these estimates leads to higher interior regularity.

Theorem 4.28. Suppose that aij ∈ Ck+1(Ω) and f ∈ Hk(Ω). If u ∈ H1(Ω) is a
weak solution of (4.32)–(4.33), then u ∈ Hk+2(Ω′) for every Ω′ b Ω. Furthermore,

‖u‖Hk+2(Ω′) ≤ C
(
‖f‖Hk(Ω) + ‖u‖L2(Ω)

)
where the constant C depends only on n, k, Ω′, Ω and aij.

See [5] for a detailed proof. Note that if the above conditions hold with k > n/2,
then f ∈ C(Ω) and u ∈ C2(Ω), so u is a classical solution of the PDE Lu = f .
Furthermore, if f and aij are smooth then so is the solution.

Corollary 4.29. If aij , f ∈ C∞(Ω) and u ∈ H1(Ω) is a weak solution of
(4.32)–(4.33), then u ∈ C∞(Ω)

Proof. If Ω′ b Ω, then f ∈ Hk(Ω′) for every k ∈ N, so by Theorem (4.28)

u ∈ Hk+2
loc (Ω′) for every k ∈ N, and by the Sobolev imbedding theorem u ∈ C∞(Ω′).

Since this holds for every open set Ω′ b Ω, we have u ∈ C∞(Ω). �

4.12. Boundary regularity

To study the regularity of solutions near the boundary, we localize the problem
to a neighborhood of a boundary point by use of a partition of unity: We decompose
the solution into a sum of functions that are compactly supported in the sets of a
suitable open cover of the domain and estimate each function in the sum separately.

Assuming, as in Section 1.10, that the boundary is at least C1, we may ‘flatten’
the boundary in a neighborhood U by a diffeomorphism ϕ : U → V that maps U∩Ω
to an upper half space V = B1 (0)∩ {yn > 0}. If ϕ−1 = ψ and x = ψ(y), then by a
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change of variables (c.f. Theorem 1.38 and Proposition 3.20) the weak formulation
(4.32)–(4.33) on U becomes

n∑
i,j=1

∫
V

ãij
∂ũ

∂yi

∂ṽ

∂yj
dy =

∫
V

f̃ ṽ dy for all functions ṽ ∈ H1
0 (V ),

where ũ ∈ H1(V ). Here, ũ = u ◦ ψ, ṽ = v ◦ ψ, and

ãij = |detDψ|
n∑

p,q=1

apq

(
∂ϕi
∂xp
◦ ψ
)(

∂ϕj
∂xq
◦ ψ
)
, f̃ = |detDψ| f ◦ ψ.

The matrix ãij satisfies the uniform ellipticity condition if apq does. To see this,
we define ζ = (Dϕt) ξ, or

ζp =

n∑
i=1

∂ϕi
∂xp

ξi.

Then, since Dϕ and Dψ = Dϕ−1 are invertible and bounded away from zero, we
have for some constant C > 0 that

n∑
i,j

ãijξiξj = |detDψ|
n∑

p,q=1

apqζpζq ≥ |detDψ| θ|ζ|2 ≥ Cθ|ξ|2.

Thus, we obtain a problem of the same form as before after the change of variables.
Note that we must require that the boundary is C2 to ensure that ãij is C1.

It is important to recognize that in changing variables for weak solutions, we
need to verify the change of variables for the weak formulation directly and not for
the original PDE. A transformation that is valid for smooth solutions of a PDE is
not always valid for weak solutions, which may lack sufficient smoothness to justify
the transformation.

We now state a boundary regularity theorem. Unlike the interior regularity
theorem, we impose a boundary condition u ∈ H1

0 (Ω) on the solution, and we re-
quire that the boundary of the domain is smooth. A solution of an elliptic PDE
with smooth coefficients and smooth right-hand side is smooth in the interior of
its domain of definition, whatever its behavior near the boundary; but we can-
not expect to obtain smoothness up to the boundary without imposing a smooth
boundary condition on the solution and requiring that the boundary is smooth.

Theorem 4.30. Suppose that Ω is a bounded open set in Rn with C2-boundary.
Assume that aij ∈ C1(Ω) and f ∈ L2(Ω). If u ∈ H1

0 (Ω) is a weak solution of
(4.32)–(4.33), then u ∈ H2(Ω), and

‖u‖H2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)
where the constant C depends only on n, Ω and aij.

Proof. By use of a partition of unity and a flattening of the boundary, it is
sufficient to prove the result for an upper half space Ω = {(x1, . . . , xn) : xn > 0}
space and functions u, f : Ω→ R that are compactly supported in B1 (0) ∩ Ω. Let
η ∈ C∞c (Rn) be a cut-off function such that 0 ≤ η ≤ 1 and η = 1 on B1 (0). We
will estimate the tangential and normal difference quotients of Du separately.

First consider a test function that depends on tangential differences,

v = −D−hk η2Dh
ku for k = 1, 2, . . . , n− 1.
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Since the trace of u is zero on ∂Ω, the trace of v on ∂Ω is zero and, by Theorem 3.42,
v ∈ H1

0 (Ω). Thus we may use v in the definition of weak solution to get (4.38).
Exactly the same argument as the one in the proof of Theorem 4.27 gives (4.43).
It follows from Theorem 4.53 that the weak derivatives ∂k∂iu exist and satisfy

(4.44) ‖∂kDu‖L2(Ω) ≤ C
(
‖f‖2L2(Ω) + ‖u‖2L2(Ω)

)
for k = 1, 2, . . . , n− 1.

The only derivative that remains is the second-order normal derivative ∂2
nu,

which we can estimate from the equation. Using (4.32)–(4.33), we have for φ ∈
C∞c (Ω) that∫

Ω

ann (∂nu) (∂nφ) dx = −
∑′

∫
Ω

aij (∂iu) (∂jφ) dx+

∫
Ω

fφ dx

where
∑′

denotes the sum over 1 ≤ i, j ≤ n with the term i = j = n omitted. Since
aij ∈ C1(Ω) and ∂iu is weakly differentiable with respect to xj unless i = j = n we
get, using Proposition 3.20, that∫

Ω

ann (∂nu) (∂nφ) dx =
∑′

∫
Ω

{∂j [aij (∂iu)] + f}φdx for every φ ∈ C∞c (Ω).

It follows that ann (∂nu) is weakly differentiable with respect to xn, and

∂n [ann (∂nu)] = −
{∑′

∂j [aij (∂iu)] + f
}
∈ L2(Ω).

From the uniform ellipticity condition (4.16) with ξ = en, we have ann ≥ θ. Hence,
by Proposition 3.20,

∂nu =
1

ann
ann∂nu

is weakly differentiable with respect to xn with derivative

∂2
nnu =

1

ann
∂n [ann∂nu] + ∂n

(
1

ann

)
ann∂nu ∈ L2(Ω).

Furthermore, using (4.44) we get an estimate of the same form for ‖∂2
nnu‖2L2(Ω), so

that ∥∥D2u
∥∥
L2(Ω)

≤ C
(
‖f‖2L2(Ω) + ‖u‖2L2(Ω)

)
�

The repeated application of these estimates leads to higher-order regularity.

Theorem 4.31. Suppose that Ω is a bounded open set in Rn with Ck+2-
boundary. Assume that aij ∈ Ck+1(Ω) and f ∈ Hk(Ω). If u ∈ H1

0 (Ω) is a weak
solution of (4.32)–(4.33), then u ∈ Hk+2(Ω) and

‖u‖Hk+2(Ω) ≤ C
(
‖f‖Hk(Ω) + ‖u‖L2(Ω)

)
where the constant C depends only on n, k, Ω, and aij.

Sobolev imbedding then yields the following result.

Corollary 4.32. Suppose that Ω is a bounded open set in Rn with C∞ bound-
ary. If aij , f ∈ C∞(Ω) and u ∈ H1

0 (Ω) is a weak solution of (4.32)–(4.33), then

u ∈ C∞(Ω)
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4.13. Some further perspectives

The above results give an existence and L2-regularity theory for second-order,
uniformly elliptic PDEs in divergence form. This theory is based on the simple
a priori energy estimate for ‖Du‖L2 that we obtain by multiplying the equation
Lu = f by u, or some derivative of u, and integrating the result by parts.

This theory is a fundamental one, but there is a bewildering variety of ap-
proaches to the existence and regularity of solutions of elliptic PDEs. In an at-
tempt to put the above analysis in a broader context, we briefly list some of these
approaches and other important results, without any claim to completeness. Many
of these topics are discussed further in the references [5, 10, 12].

Lp-theory: If 1 < p <∞, there is a similar regularity result that solutions
of Lu = f satisfy u ∈W 2,p if f ∈ Lp. The derivation is not as simple when
p 6= 2, however, and requires the use of more sophisticated tools from real
analysis (such as Calderón-Zygmund operators in harmonic analysis).

Schauder theory: The Schauder theory provides Hölder-estimates similar
to those derived in Section 2.7.2 for Laplace’s equation, and a correspond-
ing existence theory of solutions u ∈ C2,α of Lu = f if f ∈ C0,α and L has
Hölder continuous coefficients. General linear elliptic PDEs are treated
by regarding them as perturbations of constant coefficient PDEs, an ap-
proach that works because there is no ‘loss of derivatives’ in the estimates
of the solution. The Hölder estimates were originally obtained by the use
of potential theory, but other ways to obtain them are now known; for
example, by the use of Campanato spaces, which provide Hölder norms
in terms of suitable integrals that are easier to estimate directly.

Perron’s method: Perron (1923) showed that solutions of the Dirichlet
problem for Laplace’s equation can be obtained as the infimum of super-
harmonic functions or the supremum of subharmonic functions, together
with the use of barrier functions to prove that, under suitable assumptions
on the boundary, the solution attains the prescribed boundary values.
This method is based on maximum principle estimates.

Boundary integral methods: By the use of Green’s functions, one can
often reduce a linear elliptic BVP to an integral equation on the boundary,
and then use the theory of integral equations to study the existence and
regularity of solutions. These methods also provide efficient numerical
schemes because of the lower dimensionality of the boundary.

Pseudo-differential operators: The Fourier transform provides an effec-
tive method for solving linear PDEs with constant coefficients. The theory
of pseudo-differential and Fourier-integral operators is a powerful exten-
sion of this method that applies to general linear PDEs with variable co-
efficients, and elliptic PDEs in particular. It is, however, less well-suited
to the analysis of nonlinear PDEs.

Variational methods: Many elliptic PDEs — especially those in diver-
gence form — arise as Euler-Lagrange equations for variational princi-
ples. Existence of weak solutions can often be shown by use of the direct
method of the calculus of variations, after which one studies the regularity
of a minimizer (or, in some cases, a critical point).

Di Giorgi-Nash-Moser: The work of Di Giorgi (1957), Nash (1958), and
Moser (1960) showed that weak solutions of a second order elliptic PDE
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in divergence form with bounded (L∞) coefficients are Hölder continu-
ous (C0,α). This was the key step in developing a regularity theory for
minimizers of nonlinear variational principles with elliptic Euler-Lagrange
equations. Moser also obtained a Harnack inequality for weak solutions.

Fully nonlinear equations: Krylov and Safonov (1979) obtained a Har-
nack inequality for second order elliptic equations in nondivergence form.
This allowed the development of a regularity theory for fully nonlinear
elliptic equations (e.g. second-order equations for u that depend nonlin-
early on D2u). Crandall and Lions (1983) introduced the notion of viscos-
ity solutions which — despite the name — uses the maximum principle
and is based on a comparison with appropriate sub and super solutions
This theory applies to fully nonlinear elliptic PDEs, although it is mainly
restricted to scalar equations.

Degree theory: Topological methods based on the Leray-Schauder degree
of a mapping on a Banach space can be used to prove existence of solu-
tions of various nonlinear elliptic problems (see e.g. L. Nirenberg, Topics
in Nonlinear Functional Analysis). These methods can provide global
existence results for large solutions, but often do not give much detailed
analytical information about the solutions.

Heat flow methods: Parabolic PDEs, such as ut + Lu = f , are closely
connected with the associated elliptic PDEs for stationary solutions, such
as Lu = f . One may use this connection to obtain solutions of an ellip-
tic PDE as the limit as t → ∞ of solutions of the associated parabolic
PDE. For example, Hamilton (1981) introduced the Ricci flow on a man-
ifold, in which the metric approaches a Ricci-flat metric as t → ∞, as a
means to understand the topological classification of smooth manifolds,
and Perelman (2003) used this approach to prove the Poincaré conjecture
(that every simply connected, three-dimensional, compact manifold with-
out boundary is homeomorphic to a three-dimensional sphere) and, more
generally, the geometrization conjecture of Thurston.


