
Appendix

4.A. Heat flow

As a simple application that leads to second order PDEs, we consider the prob-
lem of finding the temperature distribution inside a body. Similar equations de-
scribe the diffusion of a solute. Steady temperature distributions satisfy an elliptic
PDE, such as Laplace’s equation, while unsteady distributions satisfy a parabolic
PDE, such as the heat equation.

4.A.1. Steady heat flow. Suppose that the body occupies an open set Ω in
Rn. Let u : Ω → R denote the temperature, g : Ω → R the rate per unit volume
at which heat sources create energy inside the body, and ~q : Ω→ Rn the heat flux.
That is, the rate per unit area at which heat energy diffuses across a surface with
normal ~ν is equal to ~q · ~ν.

If the temperature distribution is steady, then conservation of energy implies
that for any smooth open set Ω′ b Ω the heat flux out of Ω′ is equal to the rate at
which heat energy is generated inside Ω′; that is,∫

∂Ω′
~q · ~ν dS =

∫
Ω′
g dV.

Here, we use dS and dV to denote integration with respect to surface area and
volume, respectively.

We assume that ~q and g are smooth. Then, by the divergence theorem,∫
Ω′

div ~q dV =

∫
Ω′
g dV.

Since this equality holds for all subdomains Ω′ of Ω, it follows that

(4.45) div ~q = g in Ω.

Equation (4.45) expresses the fundamental physical principle of conservation
of energy, but this principle alone is not enough to determine the temperature
distribution inside the body. We must supplement it with a constitutive relation
that describes how the heat flux is related to the temperature distribution.

Fourier’s law states that the heat flux at some point of the body depends linearly
on the temperature gradient at the same point and is in a direction of decreasing
temperature. This law is an excellent and well-confirmed approximation in a wide
variety of circumstances. Thus,

(4.46) ~q = −A∇u

for a suitable conductivity tensor A : Ω → L(Rn,Rn), which is required to be
symmetric and positive definite. Explicitly, if ~x ∈ Ω, then A(~x) : Rn → Rn is the
linear map that takes the negative temperature gradient at ~x to the heat flux at ~x.
In a uniform, isotropic medium A = κI where the constant κ > 0 is the thermal
conductivity. In an anisotropic medium, such as a crystal or a composite medium,
A is not proportional to the identity I and the heat flux need not be in the same
direction as the temperature gradient.

Using (4.46) in (4.45), we find that the temperature u satisfies

−div (A∇u) = g.
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If we denote the matrix of A with respect to the standard basis in Rn by (aij), then
the component form of this equation is

−
n∑

i,j=1

∂i (aij∂ju) = g.

This equation is in divergence or conservation form. For smooth functions
aij : Ω→ R, we can write it in nondivergence form as

−
n∑

i,j=1

aij∂iju−
n∑

j=1

bj∂ju = g, bj =

n∑
i

∂iaij .

These forms need not be equivalent if the coefficients aij are not smooth. For
example, in a composite medium made up of different materials, aij may be dis-
continuous across boundaries that separate the materials. Such problems can be
rewritten as smooth PDEs within domains occupied by a given material, together
with appropriate jump conditions across the boundaries. The weak formulation
incorporates both the PDEs and the jump conditions.

Next, suppose that the body is occupied by a fluid which, in addition to con-
ducting heat, is in motion with velocity ~v : Ω → Rn. Let e : Ω → R denote the
internal thermal energy per unit volume of the body, which we assume is a function
of the location ~x ∈ Ω of a point in the body. Then, in addition to the diffusive flux
~q, there is a convective thermal energy flux equal to e~v, and conservation of energy
gives ∫

∂Ω′
(~q + e~v) · ~ν dS =

∫
Ω′
g dV.

Using the divergence theorem as before, we find that

div (~q + e~v) = g,

If we assume that e = cpu is proportional to the temperature, where cp is the heat
capacity per unit volume of the material in the body, and Fourier’s law, we get the
PDE

−div (A∇u) + div(~bu) = g.

where ~b = cp~v.
Suppose that g = f − cu where f : Ω → R is a given energy source and cu

represents a linear growth or decay term with coefficient c : Ω → R. For example,
lateral heat loss at a rate proportional the temperature would give decay (c > 0),
while the effects of an exothermic temperature-dependent chemical reaction might
be approximated by a linear growth term (c < 0). We then get the linear PDE

−div (A∇u) + div(~bu) + cu = f,

or in component form with ~b = (b1, . . . , bn)

−
n∑

i,j=1

∂i (aij∂ju) +

n∑
i=1

∂i (biu) + cu = f.

This PDE describes a thermal equilibrium due to the combined effects of diffusion
with diffusion matrix aij , advection with normalized velocity bi, growth or decay
with coefficient c, and external sources with density f .

In the simplest case where, after nondimensionalization, A = I, ~b = 0, c = 0,
and f = 0, we get Laplace’s equation ∆u = 0.
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4.A.2. Unsteady heat flow. Consider a time-dependent heat flow in a region
Ω with temperature u(~x, t), energy density per unit volume e(~x, t), heat flux ~q(~x, t),
advection velocity ~v(~x, t), and heat source density g(~x, t). Conservation of energy
implies that for any subregion Ω′ b Ω

d

dt

∫
Ω′
e dV = −

∫
∂Ω′

(~q + e~v) · ~ν dS +

∫
Ω′
g dV.

Since
d

dt

∫
Ω′
e dV =

∫
Ω′
et dV,

the use of the divergence theorem and the same constitutive assumptions as in the
steady case lead to the parabolic PDE

(cpu)t −
n∑

i,j=1

∂i (aij∂ju) +

n∑
i=1

∂i (biu) + cu = f.

In the simplest case where, after nondimensionalization, cp = 1, A = I, ~b = 0,
c = 0, and f = 0, we get the heat equation ut = ∆u.

4.B. Operators on Hilbert spaces

Suppose that H is a Hilbert space with inner product (·, ·) and associated norm
‖ · ‖. We denote the space of bounded linear operators T : H → H by B(H). This
is a Banach space with respect to the operator norm, defined by

‖T‖ = sup
x ∈ H
x 6= 0

‖Tx‖
‖x‖

.

The adjoint T ∗ ∈ B(H) of T ∈ B(H) is the linear operator such that

(Tx, y) = (x, T ∗y) for all x, y ∈ H.
An operator T is self-adjoint if T = T ∗. The kernel and range of T ∈ B(H) are the
subspaces

kerT = {x ∈ H : Tx = 0} , ranT = {y ∈ H : y = Tx for some x ∈ H} .
We denote by `2(N), or `2 for short, the Hilbert space of square summable real

sequences

`2(N) =
{

(x1, x2, x3, . . . , xn, . . . ) : xn ∈ R and
∑

n∈N x
2
n <∞

}
with the standard inner product. Any infinite-dimensional, separable Hilbert space
is isomorphic to `2.

4.B.1. Compact operators.

Definition 4.33. A linear operator T ∈ B(H) is compact if it maps bounded
sets to precompact sets.

That is, T is compact if {Txn} has a convergent subsequence for every bounded
sequence {xn} in H.

Example 4.34. A bounded linear map with finite-dimensional range is com-
pact. In particular, every linear operator on a finite-dimensional Hilbert space is
compact.
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Example 4.35. The identity map I ∈ B(H) given by I : x 7→ x is compact if
and only if H is finite-dimensional.

Example 4.36. The map K ∈ B
(
`2
)

given by

K : (x1, x2, x3, . . . , xn, . . . ) 7→
(
x1,

1

2
x2,

1

3
x3, . . . ,

1

n
xn, . . .

)
is compact (and self-adjoint).

We have the following spectral theorem for compact self-adjoint operators.

Theorem 4.37. Let T : H → H be a compact, self-adjoint operator. Then T
has a finite or countably infinite number of distinct nonzero, real eigenvalues. If
there are infinitely many eigenvalues {λn ∈ R : n ∈ N} then λn → 0 as n → ∞.
The eigenspace associated with each nonzero eigenvalue is finite-dimensional, and
eigenvectors associated with distinct eigenvalues are orthogonal. Furthermore, H
has an orthonormal basis consisting of eigenvectors of T , including those (if any)
with eigenvalue zero.

4.B.2. Fredholm operators. We summarize the definition and properties of
Fredholm operators and give some examples. For proofs, see

Definition 4.38. A linear operator T ∈ B(H) is Fredholm if: (a) kerT has
finite dimension; (b) ranT is closed and has finite codimension.

Condition (b) and the projection theorem for Hilbert spaces imply that H =
ranT ⊕ (ranT )⊥ where the dimension of ranT⊥ is finite, and

codim ranT = dim(ranT )⊥.

Definition 4.39. If T ∈ B(H) is Fredholm, then the index of T is the integer

indT = dim kerT − codim ranT.

Example 4.40. Every linear operator T : H → H on a finite-dimensional
Hilbert space H is Fredholm and has index zero. The range is closed since every
finite-dimensional linear space is closed, and the dimension formula

dim kerT + dim ranT = dimH

implies that the index is zero.

Example 4.41. The identity map I on a Hilbert space of any dimension is
Fredholm, with dim kerP = codim ranP = 0 and ind I = 0.

Example 4.42. The self-adjoint projection P on `2 given by

P : (x1, x2, x3, . . . , xn, . . . ) 7→ (0, x2, x3, . . . , xn, . . . )

is Fredholm, with dim kerP = codim ranP = 1 and indP = 0. The complementary
projection

Q : (x1, x2, x3, . . . , xn, . . . ) 7→ (x1, 0, 0, . . . , 0, . . . )

is not Fredholm, although the range of Q is closed, since dim kerQ and codim ranQ
are infinite.
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Example 4.43. The left and right shift maps on `2, given by

S : (x1, x2, x3, . . . , xn, . . . ) 7→ (x2, x3, x4, . . . , xn+1, . . . ) ,

T : (x1, x2, x3, . . . , xn, . . . ) 7→ (0, x1, x2, . . . , xn−1, . . . ) ,

are Fredholm. Note that S∗ = T . We have dim kerS = 1, codim ranS = 0, and
dim kerT = 0, codim ranT = 1, so

indS = 1, indT = −1.

If n ∈ N, then indSn = n and indTn = −n, so the index of a Fredholm opera-
tor on an infinite-dimensional space can take all integer values. Unlike the finite-
dimensional case, where a linear operator A : H → H is one-to-one if and only if it
is onto, S fails to be one-to-one although it is onto, and T fails to be onto although
it is one-to-one.

The above example also illustrates the following theorem.

Theorem 4.44. If T ∈ B(H) is Fredholm, then T ∗ is Fredholm with

dim kerT ∗ = codim ranT, codim ranT ∗ = dim kerT, indT ∗ = − indT.

Example 4.45. The compact map K in Example 4.36 is not Fredholm since
the range of K,

ranK =

{
(y1, y2, y3, . . . , yn, . . . ) ∈ `2 :

∑
n∈N

n2y2
n <∞

}
,

is not closed. The range is dense in `2 but, for example,(
1,

1

2
,

1

3
, . . . ,

1

n
, . . .

)
∈ `2 \ ranK.

We denote the set of Fredholm operators by F . Then, according to the next
theorem, F is an open set in B(H), and

F =
⋃
n∈Z
Fn

is the union of connected components Fn consisting of the Fredholm operators with
index n. Moreover, if T ∈ Fn, then T +K ∈ Fn for any compact operator K.

Theorem 4.46. Suppose that T ∈ B(H) is Fredholm and K ∈ B(H) is compact.

(1) There exists ε > 0 such that T + H is Fredholm for any H ∈ B(H) with
‖H‖ < ε. Moreover, ind(T +H) = indT .

(2) T +K is Fredholm and ind(T +K) = indT .

Solvability conditions for Fredholm operators are a consequences of following
theorem.

Theorem 4.47. If T ∈ B(H), then H = ranT ⊕ kerT ∗ and ranT = (kerT )⊥.

Thus, if T ∈ B(H) has closed range, then Tx = y has a solution x ∈ H if and
only if y ⊥ z for every z ∈ H such that T ∗z = 0. For a Fredholm operator, this is
finitely many linearly independent solvability conditions.

Example 4.48. If S, T are the shift maps defined in Example 4.43, then
kerS∗ = kerT = 0 and the equation Sx = y is solvable for every y ∈ `2. Solutions
are not, however, unique since kerS 6= 0. The equation Tx = y is solvable only if
y ⊥ kerS. If it exists, the solution is unique.
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Example 4.49. The compact map K in Example 4.36 is self adjoint, K = K∗,
and kerK = 0. Thus, every element y ∈ `2 is orthogonal to kerK∗, but this
condition is not sufficient to imply the solvability of Kx = y because the range of
K os not closed. For example,(

1,
1

2
,

1

3
, . . . ,

1

n
, . . .

)
∈ `2 \ ranK.

For Fredholm operators with index zero, we get the following Fredholm alterna-
tive, which states that the corresponding linear equation has solvability properties
which are similar to those of a finite-dimensional linear system.

Theorem 4.50. Suppose that T ∈ B(H) is a Fredholm operator and indT = 0.
Then one of the following two alternatives holds:

(1) kerT ∗ = 0; kerT = 0; ranT = H, ranT ∗ = H;
(2) kerT ∗ 6= 0; kerT , kerT ∗ are finite-dimensional spaces with the same di-

mension; ranT = (kerT ∗)⊥, ranT ∗ = (kerT )⊥.

4.C. Difference quotients and weak derivatives

Difference quotients provide a useful method for proving the weak differentia-
bility of functions. The main result, in Theorem 4.53 below, is that the uniform
boundedness of the difference quotients of a function is sufficient to imply that the
function is weakly differentiable.

Definition 4.51. If u : Rn → R and h ∈ R \ {0}, the ith difference quotient
of u of size h is the function Dh

i u : Rn → R defined by

Dh
i u(x) =

u(x+ hei)− u(x)

h

where ei is the unit vector in the ith direction. The vector of difference quotient is

Dhu =
(
Dh

1u,D
h
2u, . . . ,D

h
nu
)
.

The next proposition gives some elementary properties of difference quotients
that are analogous to those of derivatives.

Proposition 4.52. The difference quotient has the following properties.

(1) Commutativity with weak derivatives: if u, ∂iu ∈ L1
loc(Rn), then

∂iD
h
j u = Dh

j ∂iu.

(2) Integration by parts: if u ∈ Lp(Rn) and v ∈ Lp′
(Rn), where 1 ≤ p ≤ ∞,

then ∫
(Dh

i u)v dx = −
∫
u(Dh

i v) dx.

(3) Product rule:

Dh
i (uv) = uhi

(
Dh

i v
)

+
(
Dh

i u
)
v = u

(
Dh

i v
)

+
(
Dh

i u
)
vhi .

where uhi (x) = u(x+ hei).
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Proof. Property (1) follows immediately from the linearity of the weak deriv-
ative. For (2), note that∫

(Dh
i u)v dx =

1

h

∫
[u(x+ hei)− u(x)] v(x) dx

=
1

h

∫
u(x′)v(x′ − hei) dx′ −

1

h

∫
u(x)v(x) dx

=
1

h

∫
u(x) [v(x− hei)− v(x)] dx

= −
∫
u
(
D−hi v

)
dx.

For (3), we have

uhi
(
Dh

i v
)

+
(
Dh

i u
)
v = u(x+ hei)

[
v(x+ hei)− v(x)

h

]
+

[
u(x+ hei)− u(x)

h

]
v(x)

=
u(x+ hei)v(x+ hei)− u(x)v(x)

h

= Dh
i (uv),

and the same calculation with u and v exchanged. �

Theorem 4.53. Suppose that Ω is an open set in Rn and Ω′ b Ω. Let

d = dist(Ω′, ∂Ω) > 0.

(1) If Du ∈ Lp(Ω) where 1 ≤ p <∞, and 0 < |h| < d, then∥∥Dhu
∥∥
Lp(Ω′)

≤ ‖Du‖Lp(Ω) .

(2) If u ∈ Lp(Ω) where 1 < p <∞, and there exists a constant C such that∥∥Dhu
∥∥
Lp(Ω′)

≤ C

for all 0 < |h| < d/2, then u ∈W 1,p(Ω′) and

‖Du‖Lp(Ω′) ≤ C.

Proof. To prove (1), we may assume by an approximation argument that u
is smooth. Then

u(x+ hei)− u(x) = h

∫ 1

0

∂iu(x+ tei) dt,

and, by Jensen’s inequality,

|u(x+ hei)− u(x)|p ≤ |h|p
∫ 1

0

|∂iu(x+ tei)|p dt.

Integrating this inequality with respect to x, and using Fubini’s theorem, together
with the fact that x+ tei ∈ Ω if x ∈ Ω′ and |t| ≤ h < d, we get∫

Ω′
|u(x+ hei)− u(x)|p dx ≤ |h|p

∫
Ω

|∂iu(x+ tei)|p dx.

Thus, ‖Dh
i u‖Lp(Ω′) ≤ ‖Dh

i u‖Lp(Ω), and (1) follows.
To prove (2), note that since{

Dh
i u : 0 < |h| < d

}
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is bounded in Lp(Ω′), the Banach-Alaoglu theorem implies that there is a sequence
{hk} such that hk → 0 as k →∞ and a function vi ∈ Lp(Ω′) such that

Dhk
i u ⇀ vi as k →∞ in Lp(Ω′).

Suppose that φ ∈ C∞c (Ω′). Then, for sufficiently small hk,∫
Ω′
uD−hk

i φdx =

∫
Ω′

(
Dhk

i u
)
φdx.

Taking the limit as k →∞, when D−hk
i φ converges uniformly to ∂iφ, we get∫

Ω′
u∂iφdx =

∫
Ω′
viφdx.

Hence u is weakly differentiable and ∂iu = vi ∈ Lp(Ω′), which proves (2). �


