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CHAPTER 5

The Heat Equation

The heat, or diffusion, equation is

(5.1) ut = ∆u.

Section 4.A derives (5.1) as a model of heat flow.
Steady solutions of the heat equation satisfy Laplace’s equation. Using (2.4),

we have for smooth functions that

∆u(x) = lim
r→0+

−
∫
Br(x)

∆u dx

= lim
r→0+

n

r

∂

∂r

[
−
∫
∂Br(x)

u dS

]

= lim
r→0+

2n

r2

[
−
∫
∂Br(x)

u dS − u(x)

]
.

Thus, if u is a solution of the heat equation, then the rate of change of u(x, t) with
respect to t at a point x is proportional to the difference between the value of u at
x and the average of u over nearby spheres centered at x. The solution decreases in
time if its value at a point is greater than the nearby averages and increases if its
value is less than the nearby averages. The heat equation therefore describes the
evolution of a function towards its mean. As t→∞ solutions of the heat equation
typically approach functions with the mean value property, which are solutions of
Laplace’s equation.

The properties of the heat equation and more general parabolic PDEs parallel
those of Laplace’s equation and elliptic PDEs. For example, there are parabolic
versions of maximum principles, Harnack inequalities, Schauder theory, and Sobolev
solutions.

5.1. The initial value problem

Consider the initial value problem for u(x, t) where x ∈ Rn

ut = ∆u for x ∈ Rn and t > 0,

u(x, 0) = f(x) for x ∈ Rn.
(5.2)

We will solve (5.2) explicitly by use of the Fourier transform, following the pre-
sentation in [15]. Before doing this, we describe the sense in which we define a
solution.
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124 5. THE HEAT EQUATION

5.1.1. Schwartz solutions. Assume first that the initial data f : Rn → R
is a smooth, rapidly decreasing Schwartz function f ∈ S (see Section 5.A). The
solution we construct is also a Schwartz function of x at later times t > 0, and we will
regard it as a function of time with values in S. This is analogous to the geometrical
interpretation of a first-order system of ODEs, in which the finite-dimensional phase
space of the ODE is replaced by the infinite-dimensional function space S; we then
think of a solution of the heat equation as a parametrized curve in the vector space
S. A similar viewpoint is useful for many evolutionary PDEs, where the Schwartz
space may be replaced other function spaces (for example, Sobolev spaces).

By a convenient abuse of notation, we use the same symbol u to denote the
scalar-valued function u(x, t), where u : Rn×[0,∞)→ R, and the associated vector-
valued function u(t), where u : [0,∞) → S. We write the vector-valued function
corresponding to the associated scalar-valued function as u(t) = u(·, t).

Definition 5.1. Suppose that (a, b) is an open interval in R. A function
u : (a, b)→ S is continuous at t ∈ (a, b) if

u(t+ h)→ u(t) in S as h→ 0,

and differentiable at t ∈ (a, b) if there exists a function v ∈ S such that

u(t+ h)− u(t)

h
→ v in S as h→ 0.

The derivative v of u at t is denoted by ut(t), and if u is differentiable for every
t ∈ (a, b), then ut : (a, b)→ S denotes the map ut : t 7→ ut(t).

In other words, u is continuous at t if

u(t) = S-lim
h→0

u(t+ h),

and u is differentiable at t with derivative ut(t) if

ut(t) = S-lim
h→0

u(t+ h)− u(t)

h
.

We will refer to this derivative as the strong derivative of u if we want to emphasize
that it is defined as the limit of difference quotients in S.

The convergence of functions in S implies uniform pointwise convergence. Thus,
if u(t) = u(·, t) is strongly differentiable at t, then the pointwise partial derivative
∂tu(x, t) exists for every x ∈ Rn and ut(t) = ∂tu(·, t) ∈ S.

We define spaces of differentiable Schwartz-valued functions in the natural way.
For half-open or closed intervals, we make the obvious modifications to left or right
limits at an endpoint.

Definition 5.2. The space C ([a, b];S) consists of the continuous functions
u : [a, b]→ S. The space Ck ((a, b);S) consists of functions u : (a, b)→ S that are k-

times strongly differentiable in (a, b) with continuous derivatives ∂jt u ∈ C ((a, b);S)
for 0 ≤ j ≤ k, and C∞ ((a, b);S) is the space of functions with continuous strong
derivatives of all orders.

We interpret the initial value problem (5.2) for the heat equation as follows: A
solution is a function u : [0,∞)→ S that is continuous for t ≥ 0, so that it makes
sense to impose the initial condition at t = 0, and continuously differentiable for
t > 0, so that it makes sense to impose the PDE pointwise in t. That is, for every
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t > 0, the strong derivative ut(t) is required to equal ∆u(t) where ∆ : S → S is the
Laplacian operator.

Theorem 5.3. If f ∈ S, there is a unique solution

(5.3) u ∈ C ([0,∞);S) ∩ C1 ((0,∞);S)

of (5.2). Furthermore, u ∈ C∞ ((0,∞);S) and for t > 0 it is given by

(5.4) u(x, t) =

∫
Rn

Γ(x− y, t)f(y) dy

where

(5.5) Γ(x, t) =
1

(4πt)n/2
e−|x|

2/4t.

Proof. Since the spatial Fourier transform F is a continuous linear map on
S with continuous inverse, the time-derivative of u exists if and only if the time
derivative of û = Fu exists, and

F (ut) = (Fu)t .

Moreover, u ∈ C ([0,∞);S) if and only if û ∈ C ([0,∞);S), and u ∈ Ck ((0,∞);S)
if and only if û ∈ Ck ((0,∞);S).

Taking the Fourier transform of (5.2) with respect to x, we find that u is a
solution if and only if û(k, t) satisfies

(5.6) ût = −|k|2û, û(0) = f̂ .

This ODE has a unique solution û ∈ C ([0,∞);S) ∩ C∞ ((0,∞);S) given by

(5.7) û(k, t) = f̂(k)e−t|k|
2

.

To prove this in detail, suppose first that u satisfies (5.3). Then

û ∈ C ([0,∞);S) ∩ C1 ((0,∞);S) ,

which implies that for each fixed k ∈ Rn the scalar-valued function û(k, t) is
pointwise-differentiable with respect to t in t > 0 and continuous in t ≥ 0. Solving
the ODE (5.6) with k as a parameter, we find that û must be given by (5.7). Con-
versely, we claim that the function defined by (5.7) is strongly differentiable with
derivative

ût(k, t) = −|k|2f̂(k)e−t|k|
2

.

To prove this claim, note that for h > 0 we have

û(k, t+ h)− û(k, t)

h
− ut(k, t) = f̂(k)e−t|k|

2

(
e−h|k|

2 − 1 + h|k|2

h

)
.

and
e−h|k|

2 − 1 + h|k|2

h
→ 0 in S as h→ 0+;

while for h < 0 we have

û(k, t+ h)− û(k, t)

h
− ut(k, t) = f̂(k)e−(t+h)|k|2

(
1− h|k|2 − eh|k|2

h

)
,

and a similar conclusion follows. Thus, (5.2) has a unique solution that satisfies
(5.3). Moreover, using induction, we see that u ∈ C∞ ((0,∞);S).
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From Example 5.24, we have

F−1
[
e−t|k|

2
]

=
(π
t

)n/2

e−|x|
2/4t.

Taking the inverse Fourier transform of (5.7) and using the convolution theorem,
we get (5.4)–(5.5). �

This solution of the heat equation satisfies two basic estimates, one in L2 and
the other in L∞; the L2 estimate follows from the Fourier representation, and the
L1 estimate follows from the spatial representation. We let ‖·‖Lp denote the spatial
Lp-norm,

‖f‖Lp =

(∫
Rn

|f |p dx
)1/p

for 1 ≤ p <∞ and the essential supremum for p =∞.

Corollary 5.4. If u : [0,∞) → S(Rn) is the solution of (5.2) constructed in
Theorem 5.3, then for t > 0

‖u(t)‖L2 ≤ ‖f‖L2 , ‖u(t)‖L∞ ≤
1

(4πt)n/2
‖f‖L1 .

Proof. By Parseval’s inequality and (5.7),

‖u(t)‖L2 = (2π)n‖û(t)‖L2 ≤ (2π)n‖f̂‖L2 = ‖f‖L2 ,

which gives the first inequality. From (5.4),

|u(x, t)| ≤
(

sup
x∈Rn

|Γ(x, t)|
)∫

Rn

|f(y)| dy,

and from (5.5)

|Γ(x, t)| = 1

(4πt)n/2
.

The second inequality then follows. �

Using Theorem 5.31, it follows by interpolation between (p, p′) = (2, 2) and
(p, p′) = (∞, 1), that for 2 ≤ p ≤ ∞

‖u(t)‖Lp ≤ 1

(4πt)n(1/2−1/p)
‖f‖Lp′ .

The requirement that u(t) ∈ S imposes a condition on the behavior of the
solution at infinity. A solution of the initial value problem for the heat equation
is not unique without the imposition of some kind of growth condition at infinity.
A physical interpretation of this nonuniqueness it is that heat can diffuse from
infinity into a region of initially zero temperature if the solution grows sufficiently
quickly. Mathematically, the nonuniqueness is a consequence of the the fact that the
initial condition is imposed on a characteristic surface t = 0 of the heat equation,
meaning that the heat equation does not determine the second-order normal (time)
derivative utt on t = 0 in terms of the second-order tangential (spatial) derivatives
u,Du,D2u.

We cannot solve the heat equation backward in time to obtain a solution u :
[−T, 0]→ S for general final data f ∈ S, even if T > 0 is small. The same argument
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as the one in the proof of Theorem 5.3 implies that any such solution would be given
by (5.7). If, for example, we take f ∈ S such that

f̂(k) = e−
√

1+|k|2

then the corresponding solution

û(k, t) = e−t|k|
2−
√

1+|k|2

grows exponentially as |k| → ∞ for every t < 0, and therefore u(t) does not belong
to S (or even S ′). Physically, this means that the temperature distribution f cannot
arise by thermal diffusion from any previous temperature distribution in S (or, in
fact, in S ′).

Equivalently, making the time-reversal t 7→ −t, we see that Schwartz-valued
solutions of the initial value problem for the backward heat equation

ut = −∆u t > 0, u(x, 0) = f(x)

need not exist, so that this problem is not well-posed in S. It is possible to obtain a
well-posed initial value problem for the backward heat equation by restricting the
initial data, for example to a suitable Gevrey space of C∞-functions whose spatial
derivatives decay at a sufficiently fast rate as their order tends to infinity, but these
restrictions are typically too strong to be useful in applications.

5.1.2. Sobolev solutions. For any initial data f ∈ S, the solutions con-
structed above satisfy an estimate of the form ‖u(t)‖L2 ≤ ‖f‖L2 and we may
therefore extend them by continuity and density to arbitrary initial data f ∈ L2.
More generally, similar estimates hold in any Sobolev space Hs (see Section 5.A.8),
which allows us to define generalized solutions for f ∈ Hs.

Proposition 5.5. Suppose that u : [0,∞) → S is the solution of (5.2) con-
structed in Theorem 5.3. Then for any s ∈ R

‖u(t)‖Hs ≤ ‖f‖Hs .

Proof. Using (5.7) and Parseval’s identity, we find that

‖u(t)‖Hs = (2π)n
∥∥∥〈k〉se−t|k|2 f̂∥∥∥

L2
≤ (2π)n

∥∥∥〈k〉sf̂∥∥∥
L2

= ‖f‖Hs .

�

For T > 0 and s ∈ R, let C([0, T ];Hs) denote the Banach space of continuous
functions u : [0, T ]→ Hs equipped with the norm

‖u‖C([0,T ];Hs) = sup
t∈[0,T ]

‖u(t)‖Hs .

Definition 5.6. Suppose that T > 0, s ∈ R and f ∈ Hs. A function u :
[0, T ]→ Hs is a generalized solution of (5.2) if there exists a sequence of solutions
un : [0, T ]→ S such that un → u in C([0, T ];Hs) as n→∞.

Theorem 5.7. Suppose that T > 0, s ∈ R and f ∈ Hs(Rn). Then there is a
unique generalized solution u ∈ C([0, T ];Hs) of (5.2). The solution is given by

û(k, t) = e−t|k|
2

f̂(k).
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Proof. Fix T > 0. Since S is dense in Hs, there is a sequence of functions
fn ∈ S such that fn → f in Hs. Let un ∈ C([0, T ];S) be the solution of (5.2) with
initial data fn. Then, by linearity, un−um is the solution with initial data fn−fm,
and Proposition 5.5 implies that

sup
t∈[0,T ]

‖un(t)− um(t)‖Hs ≤ ‖fn − fm‖Hs .

Hence, {un} is a Cauchy sequence in C([0, T ];Hs) and therefore there exists a
generalized solution u ∈ C([0, T ];Hs) such that un → u as n→∞.

Suppose that f, g ∈ Hs and u, v ∈ C([0, T ];Hs) are generalized solutions with
u(0) = f , v(0) = g. If un, vn ∈ C([0, T ];S) are approximate solutions with un(0) =
fn, vn(0) = gn, then

‖u(t)− v(t)‖Hs ≤ ‖u(t)− un(t)‖Hs + ‖un(t)− vn(t)‖Hs + ‖vn(t)− v(t)‖Hs

≤ ‖u(t)− un(t)‖Hs + ‖fn − gn‖Hs + ‖vn(t)− v(t)‖Hs

Taking the limit of this inequality as n→∞, we find that

‖u(t)− v(t)‖Hs ≤ ‖f − g‖Hs .

In particular, if f = g then u = v, so a generalized solution is unique.
Finally, we have

ûn(k, t) = e−t|k|
2

f̂n(k).

Taking the limit of this expression in C([0, T ];Hs), we get the solution for û. �

Since a unique generalized solution is defined on any time interval [0, T ], there
is a unique generalized solution u ∈ Cloc([0,∞);Hs). We may obtain additional
regularity of generalized solutions in time by use of the equation; roughly speaking,
we can trade two space-derivatives for one time-derivative.

Proposition 5.8. If u ∈ C([0, T ];Hs) is a generalized solution of (5.2), then
u ∈ C1([0, T ];Hs−2) and ut = ∆u in C1([0, T ];Hs−2).

Proof. Suppose that un ∈ C([0, T ];S) and un → u in C([0, T ];Hs). Then
un ∈ C1([0, T ];S) and unt = ∆un, so {unt} is Cauchy in C([0, T ];Hs−2) since
{un} is Cauchy in Hs and ∆ : Hs → Hs−2 is bounded. Hence there exists v ∈
C([0, T ];Hs−2) such that unt → v in C([0, T ];Hs−2). It follows that

u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2)

with ut = v. Moreover, taking the limit of unt = ∆un we find that ut = ∆u in
C([0, T ];Hs−2). �

In contrast with the case of ODEs, the time derivative of the solution lies in a
different space than the solution itself: u takes values in Hs, but ut takes values
in Hs−2. This feature is typical for PDEs when — as is usually the case — one
considers solutions which take values in Banach spaces whose norms depend on
only finitely many derivatives. It did not arise for Schwartz-valued solutions, since
differentiation is a continuous operation on S.

The above proposition did not use any special properties of the heat equation,
and solutions have much greater regularity as a result of the spatially smoothing
effect of the evolution; in fact,

u ∈ C([0,∞);Hs) ∩ C∞((0,∞);H∞).
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5.1.3. The heat-equation semigroup. The solution of an n×n linear first-
order system of ODEs for ~u(t) ∈ Rn,

~ut = A~u,

may be written as

~u(t) = etA~u(0) −∞ < t <∞
where etA : Rn → Rn is the matrix exponential of tA. The solution operators
T (t) = etA form a uniformly continuous one-parameter group. We may consider
the heat equation and other linear evolution equations from a similar perspective.
There are, however, significant new issues that arise as a result of the fact that the
Laplacian and other spatial differential operators are unbounded maps of a Banach
space into itself.

Consider the heat equation

ut = ∆u, u(x, 0) = f(x)

and suppose, for definiteness, that f ∈ L2(Rn). We could equally well consider
initial data that lies in other Banach or Hilbert spaces, such as L1 or Hs. From
Theorem 5.7, with s = 0, there is a unique generalized solution u : [0,∞)→ L2 of
the heat equation. For each t ≥ 0 we may therefore define a bounded linear map
T (t) : L2 → L2 by T (t) : f 7→ u(t). Thus, T (t) is the flow or solution operator for
the heat equation that maps the initial data at time 0 to the solution at time t. In
particular, T (0) = I is the identity.

Since the PDE does not depend explicitly on time, we have

(5.8) T (s+ t) = T (s)T (t) for all s, t ≥ 0,

so the operators {T (t) : t ≥ 0} form a one-parameter semigroup. They do not
form a group because T (−t) is undefined for t < 0 and the operators T (t) are not
invertible. This irreversibilty does not arise in the case of ODEs.

The semigroup property in (5.8) is obvious from the explicit Fourier represen-
tation (5.7) since

e−(s+t)|k|2 = e−s|k|
2

e−t|k|
2

.

It is less obvious from the spatial representation (5.4), but follows from the fact
that

Γs+t = Γs ∗ Γt

where the ∗ denotes the spatial convolution and Γt(x) = Γ(x, t).
This semigroup is strongly continuous, meaning that for each f ∈ L2, the map

t 7→ T (t)f from [0,∞) into L2 is continuous; equivalently T (t+h)→ T (t) as h→ 0
(or h → 0+ if t = 0) with respect to the strong operator topology. It is not true,
however, that T (t + h) → T (t) as h → 0 uniformly with respect to the operator
norm, as is the case for ODEs.

We also use the notation

T (t) = et∆

and interpret T (t) as the operator exponential of t∆. Equation (5.8) then becomes
the usual exponential formula

e(s+t)∆ = es∆et∆.

It is remarkable that although the Laplacian is an unbounded linear operator

∆ : H2 ⊂ L2 → L2
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on L2, the forward-in-time solution operators T (t) = et∆ that it generates are
bounded.

In this discussion, we began with the heat equation and the Laplacian and
derived the corresponding semigroup. We can instead begin with a semigroup and
determine the operator that generates it. A key question is then to characterize the
operators that generate a semigroup. We will briefly describe some basic results of
semigroup theory without proof. For a detailed discussion see, for example, [4].

Definition 5.9. Let X be a Banach space. A one-parameter, strongly contin-
uous (or C0) semigroup on X is a family {T (t) : t ≥ 0} of bounded linear operators
T (t) : X → X such that

(1) T (0) = I;
(2) T (s)T (t) = T (s+ t) for all s, t ≥ 0;
(3) For every f ∈ X, T (t)f → f strongly in X as t→ 0+.

The semigroup is said to be a contraction semigroup if ‖T (t)‖ ≤ 1 for all t ≥ 0,
where ‖ · ‖ denotes the operator norm.

Explicitly, (3) means that

‖T (t)f − f‖X → 0 as t→ 0+.

If this condition holds, then the semigroup property implies that T (t+h)f → T (t)f
in X as h→ 0 for every t > 0, not only for t = 0.

The heat equation semigroup on X = L2(Rn) is an example of a contraction
semigroup. The term ‘contraction’ is not used here in a strict sense. The wave
equation and Schrödinger equation also generate contraction semigroups (and, in
fact, groups since their evolution is time-reversible). Thus, the norm of the solution
of a contraction semigroup is not required to be strictly decreasing in time and it
may, for example, remain constant.

Definition 5.10. Suppose that {T (t) : t ≥ 0} is a strongly continuous semi-
group on a Banach space X. The generator A of the semigroup is the linear operator
in X with domain D(A),

A : D(A) ⊂ X → X,

defined as follows:

(1) f ∈ D(A) if and only if the limit

lim
h→0+

T (h)f − f
h

exists with respect to the strong (norm) topology of X;
(2) if f ∈ D(A), then

Af = lim
h→0+

T (h)f − f
h

.

Definition 5.11. An operator A : D(A) ⊂ X → X in a Banach space X is
closed if whenever {fn} is a sequence of points in D(A) such that fn → f and
Afn → g in X as n→∞, then f ∈ D(A) and Af = g.

A bounded operator with dense domain D(A) is closed if and only if D(A) = X
are closed. Differential operators defined in terms of weak derivatives give typical
examples of unbounded closed operators.
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Theorem 5.12. If A is the generator of a strongly continuous semigroup {T (t)}
on a Banach space X, then A is closed and its domain D(A) is dense in X.

The semigroup T (t) may be recovered from its generator in various ways, many
of which generalize ways of defining the standard exponential function in a manner
that is appropriate for an operator that is unbounded.

Finally, we state some conditions for an operator to generate a semigroup.

Definition 5.13. Suppose that A : D(A) ⊂ X → X is a closed linear operator
in a Banach space X and D(A) is dense in X. A complex number λ ∈ C is in the
resolvent set of A if λI − A : D(A) ⊂ X → X is one-to-one and onto and with
bounded inverse

(5.9) R(λ,A) = (λI −A)
−1

: X → X.

called the resolvent of A.

The Hille-Yoshida theorem, provides a necessary and sufficient condition for an
operator A to generate a strongly continuous semigroup

Theorem 5.14. A linear operator A : D(A) ⊂ X → X is the generator of a
strongly continuous semigroup {T (t); t ≥ 0} in X if and only if there exist constants
M ≥ 1 and a ∈ R such that the following conditions are satisfied:

(1) the domain D(A) is dense in X and A is closed;
(2) every λ ∈ R such that λ > a belongs to the resolvent set of A;
(3) if λ > a and n ∈ N, then

‖R(λ,A)n‖ ≤ M

(λ− a)n

where the resolvent R(λ,A) is defined in (5.9).

In that case,
‖T (t)‖ ≤Meat for all t ≥ 0.

The Lummer-Phillips theorem provides a more easily checked condition (that
A is ‘m-dissipative’) for A to generate a contraction semigroup on a Hilbert space.


