
Appendix

5.A. The Schwartz space and the Fourier transform

May the Schwartz be with you!1

In this section, we summarize some results about Schwartz functions, tempered
distributions, and the Fourier transform. For complete proofs, see [13, 15].

5.A.1. The Schwartz space. Since we will study the Fourier transform, we
consider complex-valued functions here.

Definition 5.15. The Schwartz space S(Rn) is the topological vector space of
functions f : Rn → C such that f ∈ C∞(Rn) and

xα∂βf(x)→ 0 as |x| → ∞

for every pair of multi-indices α, β ∈ Nn0 . For α, β ∈ Nn0 and f ∈ S(Rn) let

(5.10) ‖f‖α,β = sup
Rn

∣∣xα∂βf ∣∣ .
A sequence of functions {fk : k ∈ N} converges to a function f in S(Rn) if

‖fn − f‖α,β → 0 as k →∞

for every α, β ∈ Nn0 .

That is, the Schwartz space consists of smooth functions whose derivatives
(including the function itself) decay at infinity faster than any power; we say, for
short, that Schwartz functions are rapidly decreasing. When there is no ambiguity,
we will write S(Rn) as S.

Example 5.16. The function f(x) = e−|x|
2

belongs to S(Rn). More generally,

if p is any polynomial, then g(x) = p(x) e−|x|
2

belongs to S.

Example 5.17. The function

f(x) =
1

(1 + |x|2)k

does not belongs to S for any k ∈ N since |x|2kf(x) does not decay to zero as
|x| → ∞.

Example 5.18. The function f : R→ R defined by

f(x) = e−x
2

sin
(
ex

2
)

does not belong to S(R) since f ′(x) does not decay to zero as |x| → ∞.

The space D(Rn) of smooth complex-valued functions with compact support
is contained in the Schwartz space S(Rn). If fk → f in D (in the sense of Defini-
tion 3.7), then fk → f in S, so D is continuously imbedded in S. Furthermore, if
f ∈ S, and η ∈ C∞c (Rn) is a cutoff function with ηk(x) = η(x/k), then ηkf → f in
S as k →∞, so D is dense in S.

1Spaceballs
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The topology of S is defined by the countable family of semi-norms ‖ · ‖α,β
given in (5.10). This topology is not derived from a norm, but it is metrizable; for
example, we can use as a metric

d(f, g) =
∑

α,β∈Nn0

cα,β‖f − g‖α,β
1 + ‖f − g‖α,β

where the cα,β > 0 are any positive constants such that
∑
α,β∈Nn0

cα,β converges.

Moreover, S is complete with respect to this metric. A complete, metrizable topo-
logical vector space whose topology may be defined by a countable family of semi-
norms is called a Fréchet space. Thus, S is a Fréchet space.

If we want to make explicit that a limit exists with respect to the Schwartz
topology, we write

f = S-lim
k→∞

fk,

and call f the S-limit of {fk}.
If fk → f as k →∞ in S, then ∂αfk → ∂αf for any multi-index α ∈ Nn0 . Thus,

the differentiation operator ∂α : S → S is a continuous linear map on S.

5.A.2. Tempered distributions. Tempered distributions are distributions
(c.f. Section 3.3) that act continuously on Schwartz functions. Roughly speaking,
we can think of tempered distributions as distributions that grow no faster than a
polynomial at infinity.2

Definition 5.19. A tempered distribution T on Rn is a continuous linear
functional T : S(Rn)→ C. The topological vector space of tempered distributions
is denoted by S ′(Rn) or S ′. If 〈T, f〉 denotes the value of T ∈ S ′ acting on f ∈ S,
then a sequence {Tk} converges to T in S ′, written Tk ⇀ T , if

〈Tk, f〉 → 〈T, f〉 for every f ∈ S.

Since D ⊂ S is densely and continuously imbedded, we have S ′ ⊂ D′. Moreover,
a distribution T ∈ D′ extends uniquely to a tempered distribution T ∈ S ′ if and
only if it is continuous on D with respect to the topology on S.

Every function f ∈ L1
loc defines a regular distribution Tf ∈ D′ by

〈Tf , φ〉 =

∫
fφ dx for all φ ∈ D.

If |f | ≤ p is bounded by some polynomial p, then Tf extends to a tempered dis-
tribution Tf ∈ S ′, but this is not the case for functions f that grow too rapidly at
infinity.

Example 5.20. The locally integrable function f(x) = e|x|
2

defines a regular
distribution Tf ∈ D′ but this distribution does not extend to a tempered distribu-
tion.

Example 5.21. If f(x) = ex cos (ex), then Tf ∈ D′(R) extends to a tempered
distribution even though the values of f(x) grow exponentially as x → ∞. This

2The name ‘tempered distribution’ is short for ‘distribution of temperate growth,’ meaning
growth that is at most polynomial.
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tempered distribution is the distributional derivative Tf = (Tg)
′ of the regular

distribution Tg where f = g′ and g(x) = sin(ex):

〈f, φ〉 = −〈g, φ′〉 = −
∫

sin(ex)φ(x) dx for all φ ∈ S.

The distribution Tf is decreasing in a weak sense at infinity because of the rapid
oscillations of f .

Example 5.22. The series ∑
n∈N

δ(n)(x− n)

where δ(n) is the nth derivative of the δ-function converges to a distribution in
D′(R), but it does not converge in S ′(R) or define a tempered distribution.

We define the derivative of tempered distributions in the same way as for dis-
tributions. If α ∈ Nn0 is a multi-index, then

〈∂αT, φ〉 = (−1)|α|〈T, ∂αφ〉.

We say that a C∞-function f is slowly growing if the function and all of its deriva-
tives are of polynomial growth, meaning that for every α ∈ Nn0 there exists a
constant Cα and an integer Nα such that

|∂αf(x)| ≤ Cα
(
1 + |x|2

)Nα
.

If f is C∞ and slowly growing, then fφ ∈ S whenever φ ∈ S, and multiplication by
f is a continuous map on S. Thus for T ∈ S ′, we may define the product fT ∈ S ′
by

〈fT, φ〉 = 〈T, fφ〉.

5.A.3. The Fourier transform on S. The Schwartz space is a natural one
to use for the Fourier transform. Differentiation and multiplication exchange rôles
under the Fourier transform and therefore so do the properties of smoothness and
rapid decrease. As a result, the Fourier transform is an automorphism of the
Schwartz space. By duality, the Fourier transform is also an automorphism of the
space of tempered distributions.

Definition 5.23. The Fourier transform of a function f ∈ S(Rn) is the func-

tion f̂ : Rn → C defined by

(5.11) f̂(k) =
1

(2π)n

∫
f(x)e−ik·x dx.

The inverse Fourier transform of f is the function f̌ : Rn → C defined by

f̌(x) =

∫
f(k)eik·x dk.

We generally use x to denote the variable on which a function f depends and
k to denote the variable on which its Fourier transform depends.

Example 5.24. For σ > 0, the Fourier transform of the Gaussian

f(x) =
1

(2πσ2)n/2
e−|x|

2/2σ2
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is the Gaussian

f̂(k) =
1

(2π)n
e−σ

2|k|2/2

The Fourier transform maps differentiation to multiplication by a monomial
and multiplication by a monomial to differentiation. As a result, f ∈ S if and only

if f̂ ∈ S, and fn → f in S if and only if f̂n → f̂ in S.

Theorem 5.25. The Fourier transform F : S → S defined by F : f 7→ f̂ is a
continuous, one-to-one map of S onto itself. The inverse F−1 : S → S is given by
F−1 : f 7→ f̌ . If f ∈ S, then

F [∂αf ] = (ik)αf̂ , F
[
(−ix)βf

]
= ∂β f̂ .

The Fourier transform maps the convolution product of two functions to the
pointwise product of their transforms.

Theorem 5.26. If f, g ∈ S, then the convolution h = f ∗ g ∈ S, and

ĥ = (2π)nf̂ ĝ.

If f, g ∈ S, then ∫
fg dx = (2π)n

∫
f̂ ĝ dk.

In particular, ∫
|f |2 dx = (2π)n

∫
|f̂ |2 dk.

5.A.4. The Fourier transform on S ′. The main reason to introduce tem-
pered distributions is that their Fourier transform is also a tempered distribution.
If φ, ψ ∈ S, then by Fubini’s theorem∫

φψ̂ dx =

∫
φ(x)

[
1

(2π)n

∫
ψ(y)e−ix·y dy

]
dx

=

∫ [
1

(2π)n

∫
φ(x)e−ix·y dx

]
ψ(y) dy

=

∫
φ̂ψ dx.

This motivates the following definition for the Fourier transform of a tempered
distribution which is compatible with the one for Schwartz functions.

Definition 5.27. If T ∈ S ′, then the Fourier transform T̂ ∈ S ′ is the distribu-
tion defined by

〈T̂ , φ〉 = 〈T, φ̂〉 for all φ ∈ S.
The inverse Fourier transform Ť ∈ S ′ is the distribution defined by

〈Ť , φ〉 = 〈T, φ̌〉 for all φ ∈ S.

We also write T̂ = FT and Ť = F−1T . The linearity and continuity of the
Fourier transform on S implies that T̂ is a linear, continuous map on S, so the
Fourier transform of a tempered distribution is a tempered distribution. The in-
vertibility of the Fourier transform on S implies that F : S ′ → S ′ is invertible with
inverse F−1 : S ′ → S ′.
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Example 5.28. If δ is the delta-function supported at 0, 〈δ, φ〉 = φ(0), then

〈δ̂, φ〉 = 〈δ, φ̂〉 = φ̂(0) =
1

(2π)n

∫
φ(x) dx =

〈
1

(2π)n
, φ

〉
.

Thus, the Fourier transform of the δ-function is the constant function (2π)−n. This
result is consistent with Example 5.24. We have for the Gaussian δ-sequence that

1

(2πσ2)n/2
e−|x|

2/2σ2

⇀ δ in S ′ as σ → 0.

The corresponding Fourier transform of this limit is

1

(2π)n
e−σ

2|k|2/2 ⇀
1

(2π)n
in S ′ as σ → 0.

If T ∈ S ′, it follows directly from the definitions and the properties of Schwartz
functions that

〈∂̂αT , φ〉 = 〈∂αT , φ̂〉 = (−1)|α|〈T, ∂αφ̂〉 = 〈T, (̂ik)αφ〉 = 〈T̂ , (ik)αφ〉 = 〈(ik)αT̂ , φ〉,

with a similar result for the inverse transform. Thus,

∂̂αT = (ik)αT̂ , ̂(−ix)βT = ∂βT̂ .

The Fourier transform does not define a map of the test function space D
into itself, since the Fourier transform of a compactly supported function does not,
in general, have compact support. Thus, the Fourier transform of a distribution
T ∈ D′ is not, in general, a distribution T̂ ∈ D′; this explains why we define the
Fourier transform for the smaller class of tempered distributions.

The Fourier transform maps the space D onto a space Z of real-analytic func-
tions,3 and one can define the Fourier transform of a general distribution T ∈ D′ as
an ultradistribution T̂ ∈ Z ′ acting on Z. We will not consider this theory further
here.

5.A.5. The Fourier transform on L1. If f ∈ L1(Rn), then∣∣∣∣∫ f(x)e−ik·x dx

∣∣∣∣ ≤ ∫ |f | dx,
so we may define the Fourier transform f̂ directly by the absolutely convergent
integral in (5.11). Moreover, ∣∣∣f̂(k)

∣∣∣ ≤ 1

(2π)n

∫
|f | dx.

It follows by approximation of f by Schwartz functions that f̂ is a uniform limit of

Schwartz functions, and therefore f̂ ∈ C0 is a continuous function that approaches
zero at infinity. We therefore get the following Riemann-Lebesgue lemma.

3A function φ : R→ C belongs to Z(R) if and only if it extends to an entire function φ : C→ C
with the property that, writing z = x+iy, there exists a > 0 and for each k = 0, 1, 2, . . . a constant
Ck such that ∣∣∣zkφ(z)∣∣∣ ≤ Cke

a|y|.
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Theorem 5.29. The Fourier transform is a bounded linear map F : L1(Rn)→
C0(Rn) and ∥∥∥f̂∥∥∥

L∞
≤ 1

(2π)n
‖f‖L1 .

The range of the Fourier transform on L1 is not all of C0, however, and it is
difficult to characterize.

5.A.6. The Fourier transform on L2. The next theorem, called Parseval’s
theorem, states that the Fourier transform preserves the L2-inner product and
norm, up to factors of 2π. It follows that we may extend the Fourier transform by
density and continuity from S to an isomorphism on L2 with the same properties.
Explicitly, if f ∈ L2, we choose any sequence of functions fk ∈ S such that fk
converges to f in L2 as k → ∞. Then we define f̂ to be the L2-limit of the f̂k.
Note that it is necessary to use a somewhat indirect approach to define the Fourier
transform on L2, since the Fourier integral in (5.11) does not converge if f ∈ L2\L1.

Theorem 5.30. The Fourier transform F : L2(Rn)→ L2(Rn) is a one-to-one,
onto bounded linear map. If f, g ∈ L2(Rn), then∫

fg dx = (2π)n
∫
f̂ ĝ dk.

In particular, ∫
|f |2 dx = (2π)n

∫
|f̂ |2 dk.

5.A.7. The Fourier transform on Lp. The boundedness of the Fourier
transform F : Lp → Lp

′
for 1 < p < 2 follows from its boundedness for F :

L1 → L∞ and F : L2 → L2 by use of the following Riesz-Thorin interpolation
theorem.

Theorem 5.31. Let Ω be a measure space and 1 ≤ p0, p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞.
Suppose that

T : Lp0(Ω) + Lp1(Ω)→ Lq0(Ω) + Lq1(Ω)

is a linear map such that T : Lpi(Ω)→ Lqi(Ω) for i = 0, 1 and

‖Tf‖Lq0 ≤M0 ‖f‖Lp0 , ‖Tf‖Lq1 ≤M1 ‖f‖Lp1
for some constants M0, M1. If 0 < θ < 1 and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
,

then T : Lp(Ω)→ Lq(Ω) maps Lp(Ω) into Lq(Ω) and

‖Tf‖Lq ≤M
1−θ
0 Mθ

1 ‖f‖Lp
In this theorem, Lp0(Ω)+Lp1(Ω) denotes the vector space of all complex-valued

functions of the form f = f0 + f1 where f0 ∈ Lp0(Ω) and f1 ∈ Lp1(Ω).
An immediate consequence of this theorem and the L1-L2 estimates for the

Fourier transform is the following Hausdorff-Young theorem.

Theorem 5.32. Suppose that 1 ≤ p ≤ 2. The Fourier transform is a bounded
linear map F : Lp(Rn)→ Lp

′
(Rn) and

‖Ff‖Lp′ ≤
1

(2π)n
‖f‖Lp .



138

If 1 ≤ p < 2, the range of the Fourier transform on Lp is not all of Lp
′
, and there

exist functions f ∈ Lp′ whose inverse Fourier transform is a tempered distribution
that is not regular. Correspondingly, if p > 2 the range of F : Lp → S ′ contains
non-regular distributions. For example, 1 ∈ L∞ and F(1) = δ.

5.A.8. The Sobolev spaces Hs(Rn). A function belongs to L2 if and only
if its Fourier transform belongs to L2 and the Fourier transform preserves the L2-
norm. As a result, the Fourier transform provides a simple way to define L2-Sobolev
spaces on Rn, including ones of fractional and negative order. This approach does
not generalize to Lp-Sobolev spaces with p 6= 2, since it is not easy to characterize
when a function belongs to Lp in terms of its Fourier transform.

We define a function 〈·〉 : Rn → R by

〈x〉 =
(
1 + |x|2

)1/2
.

This function grows linearly at infinity, like |x|, but is bounded away from zero.
(There should be no confusion with the use of angular brackets to denote a duality
pairing.)

Definition 5.33. For s ∈ R, the Sobolev space Hs(Rn) consists of all tempered

distributions f ∈ S ′(Rn) whose Fourier transform f̂ is a regular distribution such
that ∫

〈k〉2s
∣∣∣f̂(k)

∣∣∣2 dk <∞.
The inner product and norm of f, g ∈ Hs are defined by

(f, g)Hs =

∫
〈k〉2sf̂(k)ĝ(k) dk, ‖f‖Hs =

(∫
〈k〉2s

∣∣∣f̂(k)
∣∣∣2 dk)1/2

.

These Sobolev spaces form a decreasing scale of Hilbert spaces with Hs con-
tinuously imbedded in Hr for s > r.

We may give a spatial description of Hs in terms of the operator Λ : S ′ → S ′
with symbol 〈k〉 defined by

Λ = (I −∆)
1/2

, (̂Λf)(k) = 〈k〉f̂(k).

Then f ∈ Hs if and only if Λsf ∈ L2. Roughly speaking, f ∈ Hs if f has s weak
derivatives (or integrals if s < 0) that belong to L2.

Example 5.34. If δ ∈ S ′(Rn), then δ̂ = (2π)−n and∫
〈k〉2sδ̂2 dk =

1

(2π)2n

∫
〈k〉2s dk

converges if 2s < −n. Thus, δ ∈ Hs(Rn) if s < −n/2. More generally, every
compactly supported distribution belongs to Hs for some s ∈ R.

Example 5.35. The Fourier transform of 1 ∈ S ′, given by 1̂ = δ, is not a
regular distribution. Thus, 1 /∈ Hs for any s ∈ R.

We let
H∞ =

⋂
s∈R

Hs, H−∞ =
⋃
s∈R

Hs.

Then S ⊂ H∞ ⊂ H−∞ ⊂ S ′ and by the Sobolev imbedding theorem H∞ ⊂ C∞.


