PROBLEM SET 1 Math 218A, Fall 2009

1. Suppose that $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n), \beta = (\beta_1, \beta_2, \dots, \beta_n)$ are multi-indices. We say that $\alpha \leq \beta$ if $\alpha_i \leq \beta_i$ for $1 \leq i \leq n$, and define

$$\binom{\alpha}{\beta} = \frac{\alpha!}{(\alpha - \beta)!\beta!}$$

Prove the generalized Leibnitz rule

$$\partial^{\alpha}(uv) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \partial^{\alpha-\beta} u \, \partial^{\beta} v.$$

2. A function $u \in C^2(\Omega)$ is subharmonic in a domain Ω if $-\Delta u \leq 0$, and superharmonic if $-\Delta u \geq 0$. Prove that if a subharmonic function attains its maximum at any point of Ω , then it is a constant function. Suppose that

$$u, v, w \in C^2(\Omega) \cap C(\overline{\Omega}),$$

where u is subharmonic, v is harmonic, and w is superharmonic. If $u \leq v \leq w$ on $\partial \Omega$, prove that $u \leq v \leq w$ on $\overline{\Omega}$.

3. Find the Green's function for Laplace's equation in the unit ball in \mathbb{R}^n , and write out the Green's function representation of the solution of

$$-\Delta u = f \qquad |x| < 1,$$
$$u = 0 \qquad |x| = 1.$$

HINT. Method of images.

4. Suppose that $\{u_n\}$ is a decreasing sequence of harmonic functions defined in a domain Ω such that $\{u_n(x)\}$ converges for some point $x \in \Omega$. Prove that the sequence converges uniformly on every closed, bounded subset of Ω , and that the limit is harmonic. HINT. Harnack's inequality.