Problem Set 1
Math 218A, Fall 2009

1. Suppose that $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ are multi-indices. We say that $\alpha \leq \beta$ if $\alpha_{i} \leq \beta_{i}$ for $1 \leq i \leq n$, and define

$$
\binom{\alpha}{\beta}=\frac{\alpha!}{(\alpha-\beta)!\beta!}
$$

Prove the generalized Leibnitz rule

$$
\partial^{\alpha}(u v)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\alpha-\beta} u \partial^{\beta} v
$$

2. A function $u \in C^{2}(\Omega)$ is subharmonic in a domain Ω if $-\Delta u \leq 0$, and superharmonic if $-\Delta u \geq 0$. Prove that if a subharmonic function attains its maximum at any point of Ω, then it is a constant function. Suppose that

$$
u, v, w \in C^{2}(\Omega) \cap C(\bar{\Omega})
$$

where u is subharmonic, v is harmonic, and w is superharmonic. If $u \leq v \leq w$ on $\partial \Omega$, prove that $u \leq v \leq w$ on $\bar{\Omega}$.
3. Find the Green's function for Laplace's equation in the unit ball in \mathbb{R}^{n}, and write out the Green's function representation of the solution of

$$
\begin{aligned}
& -\Delta u=f \quad|x|<1 \\
& u=0 \quad|x|=1
\end{aligned}
$$

Hint. Method of images.
4. Suppose that $\left\{u_{n}\right\}$ is a decreasing sequence of harmonic functions defined in a domain Ω such that $\left\{u_{n}(x)\right\}$ converges for some point $x \in \Omega$. Prove that the sequence converges uniformly on every closed, bounded subset of Ω, and that the limit is harmonic. Hint. Harnack's inequality.

