Problem Set 2

Math 218A, Fall 2009

1. Suppose that Ω is a connected, bounded open set with C^{1}-boundary that satisfies the interior sphere condition at every point of its boundary. Use a maximum principle argument to prove that a solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ of the Neumann problem

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

is unique up to an arbitrary additive constant.
2. Suppose that Ω is a bounded open set and $0<\alpha \leq 1$. If $u: \Omega \rightarrow \mathbb{R}$, let

$$
\begin{aligned}
& |u|_{0}=\sup _{\Omega}|u|, \quad|u|_{1}=\sup _{\Omega}|D u|, \\
& {[u]_{1, \alpha}=\sup _{\substack{x, y \in \Omega \\
x \neq y}} \frac{|D u(x)-D u(y)|}{|x-y|^{\alpha}} .}
\end{aligned}
$$

Prove the following interpolation inequality: For any $\epsilon>0$ there exists a constant C_{ϵ} such that

$$
|u|_{1} \leq C_{\epsilon}|u|_{0}+\epsilon[u]_{1, \alpha} \quad \text { for all } u \in C^{1, \alpha}(\bar{\Omega})
$$

Hint. Assume the inequality is false and use a compactness argument to derive a contradiction.
3. Suppose that $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $u=\Gamma * f$ be the Newtonian potential of f. If $\operatorname{spt} f \subset B_{R}(0)$, prove that

$$
\sup _{B_{R}(0)}(|u|+|D u|) \leq C R^{2} \sup |f|
$$

where C is a constant depending only on n.
4. Give an example of a function $f \in C_{c}\left(\mathbb{R}^{2}\right)$ such that there is no solution $u \in C^{2}\left(\mathbb{R}^{2}\right)$ of Poisson's equation

$$
u_{x x}+u_{y y}=f(x, y)
$$

