Problem set 3

Math 218A, Fall 2009

1. Determine with proof whether or not the following functions are weakly differentiable in \mathbb{R}, and find the weak derivative if it exists:

$$
f(x)=|\sin x|, \quad g(x)=x \log |x|, \quad h(x)=x \sin \frac{1}{x} .
$$

2. Let $\Omega=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ be the open unit ball in \mathbb{R}^{n} where $n \geq 2$. Prove that

$$
u(x)=\log \log \left(1+\frac{1}{|x|}\right)
$$

belongs to $W^{1, n}(\Omega)$, although it is unbounded. (This shows that the imbedding theorem for $1<p<n$ fails when $p=n, p^{*}=\infty$.)
3. Suppose that $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ is weakly differentiable and $D u=0$. Prove that u is a constant.
4. Suppose that $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with Fourier transform

$$
\hat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int f(x) e^{-i \xi \cdot x} d x
$$

(a) Prove that the weak derivative $\partial^{\alpha} f$ exists and belongs to $L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $\xi^{\alpha} \hat{f} \in L^{2}\left(\mathbb{R}^{n}\right)$.
(b) Prove that $f \in H^{k}\left(\mathbb{R}^{n}\right)$ for $k \in \mathbb{N}$ if and only if

$$
\int\left(1+|\xi|^{2}\right)^{k}|\hat{f}(\xi)|^{2} d \xi<\infty
$$

(c) Prove that if $f \in H^{k}\left(\mathbb{R}^{n}\right)$ for $k>n / 2$, then $f \in C_{0}\left(\mathbb{R}^{n}\right)$ is a continuous function that decays to zero at infinity. Hint. If $s>n$ then

$$
\int_{\mathbb{R}^{n}} \frac{1}{\left(1+|\xi|^{2}\right)^{s / 2}} d \xi<\infty
$$

You can use standard properties of the Fourier transform on smooth functions and on L^{2}, such as Parseval's theorem and the Riemann-Lebesgue lemma.

