
CALCULUS: Math 21C, Fall 2010
Final Exam: Solutions

1. [25 pts] Do the following series converge or diverge? State clearly which
test you use.

(a)
∞∑
n=1

1√
n(n+ 1)

(b)
∞∑
n=1

(−1)n√
n

(c)
∞∑
n=1

n3

2n

(d)
∞∑
n=1

cos

(
1

n

)
(e)

∞∑
n=1

[
cos

(
1

n

)
− cos

(
1

n+ 1

)]

Solution.

• (a) The series diverges by comparison with the divergent harmonic
series

∑
1/n. Either use the limit comparison test:

lim
n→∞

1/
√
n(n+ 1)

1/n
=

1√
1 + 1/n

= 1,

or the direct comparison test:

1√
n(n+ 1)

>
1√

(n+ 1)2
=

1

n+ 1
.

Note that the reverse inequality

1√
n(n+ 1)

<
1√
n2

=
1

n

doesn’t lead to any conclusion.

• (b) The series converges by the alternating series test since {1/
√
n} is

a decreasing positive sequence whose limit as n→∞ is zero.

• (c) The series converges by the ratio test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)3/2n+1

n3/2n
= lim

n→∞

(1 + 1/n)3

2
=

1

2
< 1.

Or you can use the root test and the fact that limn→∞ n
1/n = 1.

1



• (d) The limit of the terms

lim
n→∞

cos

(
1

n

)
= cos(0) = 1

is nonzero, so the series diverges by the nth term test.

• (e) The series is a telescoping series of the form
∑

(bn − bn+1) with
bn = cos(1/n). The limit of the sequence {bn} exists, so the series
converges by the telescoping series test. In fact,

∞∑
n=1

[
cos

(
1

n

)
− cos

(
1

n+ 1

)]
= cos(1)− 1.
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2. [20 pts] Determine the interval of convergence (including the endpoints)
for the following power series. State explicitly for what values of x the series
converges absolutely, converges conditionally, or diverges. Specify the radius
of convergence R and the center of the interval of convergence a.

∞∑
n=0

(−1)n3n

(n+ 1)2
(x+ 2)n.

Solution.

• Applying the ratio test, we find that the series converges absolutely if

lim
n→∞

∣∣∣∣(−1)n+13n+1(x+ 2)n+1/(n+ 2)2

(−1)n3n(x+ 2)n/(n+ 1)2

∣∣∣∣ = 3|x+ 2| lim
n→∞

(
1 + 1/n

1 + 2/n

)2

= 3|x+ 2|
< 1.

Thus, the series converges absolutely if

|x+ 2| < 1

3

and diverges if |x+ 2| > 1/3. The radius of convergence and center of
the interval of convergence are

R =
1

3
, a = −2.

• At the endpoints x = −5/3, x = −7/3 the series becomes

∞∑
n=0

(−1)n

(n+ 1)2
,

∞∑
n=0

1

(n+ 1)2

respectively. These are absolutely convergent p series (with p = 2 > 1).

• Summarizing, the power series converges absolutely if

|x+ 2| ≤ 1

3

and diverges otherwise.
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3. [20 pts] (a) Write the Taylor polynomial P2(x) at x = 0 of order 2 for the
function

f(x) = e−x.

(b) Use Taylor’s theorem with remainder to give a numerical estimate of the
maximum error in approximating e−0.1 by P2(0.1) . Is P2(0.1) an overestimate
or an underestimate of the actual value of e−0.1?

Solution.

• (a) The Taylor series for ex is

ex = 1 + x+
1

2
x2 + . . .

so replacing x by −x we find that the Taylor series for e−x is

ex = 1− x+
1

2
x2 + . . .

and

P2(x) = 1− x+
1

2
x2.

Alternatively, you can note that

f ′(x) = −e−x, f ′′(x) = e−x

and use the formula for the Taylor coefficients

c0 = f(0) = 1, c1 = f ′(0) = −1, c2 =
f ′′(0)

2!
=

1

2
.

Then

P2(x) = c0 + c1x+ c2x
2 = 1− x+

1

2
x2.

• (b) According to Taylor’s theorem with remainder,

f(0.1) = P2(0.1) +
f ′′′(c)

3!
(0.1)3

for some 0 < c < 0.1. We have f ′′′(x) = −e−x, so

e−0.1 = P2(0.1)− 1

6
e−c(0.1)3.
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• The error is negative, so P2(0.1) is an overestimate of e−0.1.

• Since c > 0, we have 0 < e−c < 1 and therefore

0 < P2(0.1)− e−0.1 < (0.1)3

6

and the maximum error is
10−3

6
.
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4. [20 pts] Suppose that

~u = 3~i−~j + 2~k, ~v = 2~i+~j − 2~k

(a) Find the angle θ between ~u and ~v. (You can express the answer as an
inverse trigonometric function.)

(b) Find the directional derivatives of the function

f(x, y, z) =
x

y + z

at the point (4, 1, 1) in the directions ~u, ~v given in (a).

Solution.

• (a) Using the dot product, we get

cos θ =
~u · ~v
|~u||~v|

=
6− 1− 4√

9 + 1 + 4
√

4 + 1 + 4
=

1

3
√

14
,

so

θ = cos−1
(

1

3
√

14

)
.

• (b) The gradient of f is

∇f(x, y, z) =
1

y + z
~i− x

(y + z)2
~j − x

(y + z)2
~k

The gradient at (4, 1, 1) is therefore

∇f(4, 1, 1) =
1

2
~i−~j − ~k.

The directional derivatives of f at (4, 1, 1) in the directions ~u, ~v are

∇f(4, 1, 1) · ~u =
3

2
+ 1− 2 =

1

2
,

∇f(4, 1, 1) · ~v = 1− 1 + 2 = 2.

6



5. [20 pts] Find a parametric equation for the line through the point (1, 2, 3)
whose direction vector is orthogonal to both ~v and ~w where

~v = 2~i+~j − 2~k, ~w =~i+ 3~j + ~k

Solution.

• A direction vector of the line is ~u = ~v × ~w or

~u =

∣∣∣∣∣∣
~i ~j ~k
2 1 −2
1 3 1

∣∣∣∣∣∣ = 7~i− 4~j + 5~k

• The parametric equation of the line is

~r = ~r0 + t~u

where ~r0 =~i+ 2~j + 3~k is the position vector of (1, 2, 3) or

x = 1 + 7t, y = 2− 4t, z = 3 + 5t.
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6. [20 pts] Find an equation for the tangent plane to the surface

x3 + y sin z = 1

at the point (1, 1, 0).

Solution.

• A normal vector ~n of the level surface x3 + y sin z = 1 is the gradient
of f(x, y, z) = x3 + y sin z. We have

∇f(x, y, z) = 3x2~i+ sin z~j + y cos z~k.

Evaluating this vector at the point (1, 1, 0), we get ~n = 3~i+ ~k.

• The equation of the plane is

~n · (~r − ~r0) = 0

where ~r0 =~i+~j is the position vector of (1, 1, 0). This gives

3 (x− 1) + z = 0

or
3x+ z = 3.
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7. [25 pts] (a) Find all critical points of the function

f(x, y) = x3 + 3xy + y3.

(b) Classify the critical points as local maximums, local minimums, or saddle-
points.

Solution.

• (a) The critical points satisfy fx = 0, fy = 0 or

3x2 + 3y = 0, 3x+ 3y2 = 0.

It follows that y = −x2 and x + x4 = 0, so x = 0 or x = −1. The
corresponding y-values are y = 0 or y = −1. The critical points are
therefore

(0, 0), (−1,−1).

• (b) The second-order partial derivatives of f are

fxx = 6x, fyy = 6y, fxy = 3,

so
fxxfyy − f 2

xy = 36xy − 9.

At (0, 0), we have fxxfyy − f 2
xy = −9 < 0, so this is a saddle point. At

(−1,−1), we have fxxfyy − f 2
xy = 27 > 0 and fxx = −6 < 0 so this is a

local maximum.
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8. [20 pts] Suppose that

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

is the closed unit square and

f(x, y) = 3x− 2y + 1.

Find the global maximum and minimum values of f : D → R. At what
points (x, y) in D does f attain its maximum and minimum?

Solution.

• The function is differentiable and∇f = 3~i−2~j is never zero, so f cannot
attain its maximum or minimum values inside D and must attain them
on the boundary.

• On the side x = 0, 0 ≤ y ≤ 1, we have f(0, y) = −2y + 1. The
derivative of this function with respect to y is nonzero, so it must
attain its maximum and minimum on the side at the endpoints y = 0,
y = 1. A similar argument applies to the other three sides where
f(1, y) = −2y + 4, f(x, 0) = 3x+ 1, f(x, 1) = 3x− 1.

• It follows that f attains its maximum and minimum values at one of
the corners of the square. Since

f(0, 0) = 1, f(1, 0) = 4, f(0, 1) = −1, f(1, 1) = 2

we see that the global maximum of f is 4, attained at (1, 0), and the
global minimum of f is −1, attained at (0, 1).
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9. [20 pts] Find the maximum and minimum values of the function

f(x, y, z) = x2 + y2 + z2

subject to the constraint
x4 + y4 + z4 = 1.

Solution.

• According to the method of Lagrange multipliers, the maximum and
minimum values are attained at points (x, y, z) such that ∇f = λ∇g
and g = 0 where

g(x, y, z) = x4 + y4 + z4 − 1.

It follows that

2x = 4λx3, 2y = 4λy3, 2z = 4λz3, x4 + y4 + z4 = 1.

• The possible values for x are x = 0 and x = ±c where

c =
1√
2λ

and similarly for y and z.

• All three of (x, y, z) are cannot be zero, since then x4 + y4 + z4 = 0 and
the constraint is not satisfied.

• If two of (x, y, z) are zero and one is equal to ±c, then

x4 + y4 + z4 = c4

so c4 = 1. It follows that c = ±1 and

x2 + y2 + z2 = c2 = 1.

• If one of (x, y, z) is zero and the other two are equal to ±c, then

x4 + y4 + z4 = 2c4

so c4 = 1/2. It follows that c = ±1/21/4 and

x2 + y2 + z2 = 2c2 =
√

2.
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• If all three of (x, y, z) are equal to ±c, then

x4 + y4 + z4 = 3c4

so c4 = 1/3. It follows that c = ±1/31/4 and

x2 + y2 + z2 = 3c2 =
√

3.

• The smallest of these values of f is 1 and the largest is
√

3. It follows
that the minimum value of f subject to the constraint g = 0 is 1, which
is attained at the points

(x, y, z) = (±1, 0, 0), (0,±1, 0), (0, 0,±1),

and the maximum value is
√

3, which is attained at the points

(x, y, z) =

(
± 1

31/4
,± 1

31/4
,± 1

31/4

)
.

Here, any combination of signs is allowed, so there are 23 = 8 such
points.
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10. [10 pts] The Fibonacci sequence {an}

1, 1, 2, 3, 5, 8, 13, 21, . . .

is defined by the recursion relation

an+2 = an+1 + an for n ≥ 1,

meaning that we add the two preceding terms to get the next term, starting
with a1 = 1, a2 = 1. Although the Fibonacci sequence diverges, the sequence
{bn} of ratios of successive terms

bn =
an+1

an

or

1, 2,
3

2
,
5

3
,
8

5
,
13

8
,
21

13
, . . .

converges. Find
b = lim

n→∞
bn.

Hint. Write down a recursion relation for the bn’s and take the limit as
n→∞. You can assume that the limit b of the sequence {bn} exists.

Solution.

• Dividing the recursion relation for an by an+1, we get

an+2

an+1

= 1 +
an
an+1

.

Writing this in terms of bn, we get that

bn+1 = 1 +
1

bn
.

Taking the limit of this equation as n→∞, we obtain

b = 1 +
1

b

It follows that b satisfies the quadratic equation

b2 − b− 1 = 0
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whose solutions are

b =
1±
√

5

2
.

Since bn ≥ 0, we must have b ≥ 0, so b is the positive solution

b =
1 +
√

5

2
≈ 1.618.

• Remark. The limit b is normally written as φ and called the ‘golden
ratio.’ It has the property that

1

φ
= φ− 1

meaning that the reciprocal of φ is φ − 1. Geometrically this means
that if you remove a square from a rectangle whose sides are in the
ratio φ, then the remaining rectangle has sides in the same ratio as the
original one; because of this property, the ancient Greeks regarded φ
as giving the most harmonious proportions.

Fibonacci (c. 1170 – 1250), or Leonardo of Pisa, was a medieval scholar
who traveled widely around the Mediterranean. He translated many
Arabic mathematical works into Latin and introduced modern Arabic
numerals in place of Roman numerals to Europe (where mathematics
had essentially died out since classical times).
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