
Calculus: Math 21C, Fall 2010
Summary of basic results for Midterm 2.

1. Power series

Convergence of power series. A power series centered at x = a is a series
of the form

∞∑
n=0

cn(x− a)n. (1)

Every power series has a radius of convergence 0 ≤ R ≤ ∞ such that the
series converges absolutely if |x − a| < R and diverges if |x − a| > R. The
series may or may not converge at the endpoints of the interval of convergence
where |x− a| = R.

Ratio test. The power series (1) converges absolutely for all x such that

lim
n→∞

∣∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ < 1

if the limit exists. The radius of convergence R is given by

1

R
= lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣
if the limit exists (with the natural conventions for R = 0 and R = ∞).

Differentiation and integration of power series. If a function

f(x) =
∞∑
n=0

cn(x− a)n

is the sum of a power series with nonzero radius of convergence R > 0, then
f(x) has derivatives of all orders inside the interval of convergence |x−a| < R.
Its derivative f ′ is given by differentiating the power series of f term-by-term,

f ′(x) =
∞∑
n=0

ncn(x− a)n−1,

and this power series has the same radius of convergence as the power series
for f . Power series for higher-order derivatives of f are obtained by the
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repeated application of this result. Similarly, the integral of f is given by
term-by-term integration of the power series of f∫

f(x) dx =
∞∑
n=0

cn
n+ 1

(x− a)n+1 + C,

and this power series has the same radius of convergence as the power series
for f .

Multiplication of power series. If f(x), g(x) have power series expansions

f(x) =
∞∑
n=0

an(x− a)n, g(x) =
∞∑
n=0

bn(x− a)n,

which both converge in |x − a| < R, then h(x) = f(x)g(x) has the power
series expansion

h(x) =
∞∑
n=0

cn(x− a)n, cn =
n∑

k=0

akbn−k,

which converges in |x−a| < R. Writing out the first few terms explicitly, we
have [

a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + . . .
]

·
[
b0 + b1(x− a) + b2(x− a)2 + b3(x− a)3 + . . .

]
= a0b0 + (a0b1 + a1b0) (x− a) + (a0b2 + a1b1 + a2b0) (x− a)2

+ (a0b3 + a1b2 + a2b1 + a3b0) (x− a)3 + . . . .

Taylor series. If a function f(x) has a power series expansion

f(x) =
∞∑
n=0

cn(x− a)n

with nonzero radius of convergence, then

cn =
f (n)(a)

n!
.
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If a function f is defined in an open interval containing a and has derivatives
of all orders at a, then f (n)(a)/n! is called the nth Taylor coefficient of f at
a and the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n

is called the Taylor series of f at a. (A Taylor series at 0 is also called a
Maclaurin series.)

Taylor’s theorem with remainder. If a function f(x) has (n + 1)-
derivatives in an open interval containing a, then for any x in that interval

f(x) = Pn(x) +Rn(x)

where

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

is the Taylor polynomial of f of order n and

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x. The Taylor series of f converges to f at x if

lim
n→∞

Rn(x) = 0.

Estimate of remainder. If ∣∣f (n+1)(c)
∣∣ ≤ M

for all a < c < x (or all x < c < a) then

|Rn(x)| ≤
M |x− a|n+1

(n+ 1)!
.
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2. Examples of Taylor series

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn + . . . (−∞ < x < ∞)

cosx = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n

(2n)!
x2n + . . . (−∞ < x < ∞)

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n

(2n+ 1)!
x2n+1 + . . . (−∞ < x < ∞)

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + . . . (−1 < x < 1)

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n+1

n
xn + . . . (−1 < x < 1)

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3

+ · · ·+ m(m− 1) . . . (m− n+ 1)

n!
xn + . . . (−1 < x < 1).

3. Vectors

Definition. An n-dimensional vector u⃗ = ⟨u1, u2, . . . , un⟩ is an n-tuple of
real numbers {u1, u2, . . . , un}. The zero vector is the vector 0⃗ = ⟨0, 0, . . . , 0⟩.
The addition of vectors

u⃗ = ⟨u1, u2, . . . , un⟩, v⃗ = ⟨v1, v2, . . . , vn⟩

is defined by adding their components

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, . . . , un + vn⟩.

The addition of vectors corresponds geometrically to the parallelogram law.
The multiplication of a vector u⃗ by a scalar (i.e. a real number) k is defined
by

ku⃗ = ⟨ku1, ku2, . . . , kun⟩.

Vectors u⃗, v⃗ are parallel if u⃗ = kv⃗ for some scalar k or one of them is zero.
The length, or magnitude, of a vector u⃗ is

|u⃗| =
√

u2
1 + u2

2 + · · ·+ u2
n.
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The direction of a nonzero vector u⃗ is the unit vector u⃗/|u⃗|.

Standard basis vectors. For two-dimensional vectors, we introduce the
standard basis vectors

i⃗ = ⟨1, 0⟩, j⃗ = ⟨0, 1⟩,

and then
⟨u1, u2⟩ = u1⃗i+ u2j⃗.

For three-dimensional vectors, we introduce the standard basis vectors

i⃗ = ⟨1, 0, 0⟩, j⃗ = ⟨0, 1, 0⟩, k⃗ = ⟨0, 0, 1⟩,

and then
⟨u1, u2, u3⟩ = u1⃗i+ u2j⃗ + u3k⃗.

Below, we consider three-dimensional vectors for definiteness.

Position vectors. The position vector from a point P (x1, y1, z1) to a point
Q(x2, y2, z2) is

P⃗Q = (x2 − x1)⃗i+ (y2 − y1)⃗j + (z2 − z1)k⃗.

The position vector of a point P (x, y, z) relative to the origin O(0, 0, 0) is

O⃗P = x⃗i+ yj⃗ + zk⃗.

We have P⃗Q+ Q⃗R = P⃗R and Q⃗P = −P⃗Q.

Dot product. The dot product of two vectors

u⃗ = u1⃗i+ u2j⃗ + u3k⃗, v⃗ = v1⃗i+ v2j⃗ + v3k⃗

is the scalar
u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Geometrical interpretation of the dot product. The dot product gives
lengths and angles. The length |u⃗| of a vector u⃗ is given by

|u⃗|2 = u⃗ · u⃗ = (u1)
2 + (u2)

2 + (u3)
2.
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If 0 ≤ θ ≤ π is the angle between u⃗ and v⃗ then

u⃗ · v⃗ = |u⃗| |v⃗| cos θ.

Two vectors u⃗, v⃗ are orthogonal (perpendicular) if and only if u⃗ · v⃗ = 0.

Projections. The (orthogonal) projection of a vector u⃗ in the direction of
a nonzero vector v⃗ is the vector

projv⃗ u⃗ =
u⃗ · v⃗
|v⃗|2

v⃗.

We can write

u⃗ = u⃗∥ + u⃗⊥, u⃗∥ = projv⃗ u⃗, u⃗⊥ = u⃗− projv⃗u⃗

where u⃗∥ is parallel to v⃗ and u⃗⊥ is orthogonal to v⃗.

Cross product. The cross product of two three-dimensional vectors

u⃗ = u1⃗i+ u2j⃗ + u3k⃗, v⃗ = v1⃗i+ v2j⃗ + v3k⃗

is the vector

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ = (u2v3 − u3v2) i⃗+ (u3v1 − u1v3) j⃗ + (u1v2 − u2v1) k⃗.

Note that v⃗ × u⃗ = −(u⃗× v⃗), so the order of the vectors is important.

Geometrical interpretation of the cross product. The cross product
gives areas and normal vectors. The cross product u⃗ × v⃗ of vectors u⃗, v⃗ is
the vector such that:

1. u⃗× v⃗ is orthogonal to u⃗ and v⃗;

2. |u⃗× v⃗| = |u⃗| |v⃗| sin θ where 0 ≤ θ ≤ π is the angle between u⃗ and v⃗;

3. {u⃗, v⃗, u⃗× v⃗} in that order is a right-handed system of vectors.
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Note that

|u⃗× v⃗| = area of parallelogram spanned by u⃗, v⃗.

Scalar triple product. The scalar triple product (or box product) of three,
three-dimensional vectors

u⃗ = u1⃗i+ u2j⃗ + u3k⃗, v⃗ = v1⃗i+ v2j⃗ + v3k⃗, w⃗ = w1⃗i+ w2j⃗ + w3k⃗

is the scalar

u⃗ · (v⃗ × w⃗) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
It has the property that

u⃗ · (v⃗ × w⃗) = v⃗ · (w⃗ × u⃗) = w⃗ · (u⃗× v⃗) .

Geometrical interpretation of the scalar triple product. The scalar
triple product gives volumes. If {u⃗, v⃗, w⃗} are three-dimensional vectors, then

u⃗ · (v⃗ × w⃗) = oriented volume of the parallelepiped spanned by {u⃗, v⃗, w⃗},

meaning that it is equal to the positive volume if {u⃗, v⃗, w⃗} is right-handed
and minus the volume if {u⃗, v⃗, w⃗} is left-handed. Three vectors lie in the
same plane if and only if their scalar triple product is zero.

Parametric equation of a line. The line through a point P0(x0, y0, z0)

with position vector r⃗0 = O⃗P0 in the direction of a nonzero vector u⃗ is given
parametrically by

r⃗(t) = r⃗0 + tu⃗

where r⃗(t) = O⃗P (t) is the position vector of a point P (t) on the line with

parameter value −∞ < t < ∞. If u⃗ = a⃗i+ b⃗j+ ck⃗, and P (t) has coordinates
(x, y, z), then the coordinate form of the equation is

x = x0 + at, y = y0 + bt, z = z0 + ct.

Equation of a plane. The equation for a plane with nonzero normal vector
n⃗ through a point P0(x0, y0, z0) with position vector r⃗0 = O⃗P0 is

n⃗ · (r⃗ − r⃗0) = 0.
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If n⃗ = a⃗i+ b⃗j + ck⃗, then the Cartesian equation of the plane is

a (x− x0) + b (y − y0) + c (z − z0) = 0

or ax+ by + cz = d where d = ax0 + by0 + cz0.

4. Partial derivatives

Definition. If f(x, y) is a function of two variables, then the partial deriva-
tives fx, fy of f with respect to x, y respectively are defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
, fy(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

provided that the limits exist. To compute fx, differentiate f(x, y) with
respect to x treating y as a constant; to compute fy, differentiate f(x, y)
with respect to y treating x as a constant. Partial derivatives of functions of
three or more variables are defined analogously.

Higher order partial derivatives. If a function f(x, y) has first-order
partial derivatives, then we define its second-order partial derivatives by dif-
ferentiating twice:

fxx(x, y) = lim
h→0

fx(x+ h, y)− fx(x, y)

h
,

fxy(x, y) = lim
h→0

fx(x, y + h)− fx(x, y)

h
,

fyx(x, y) = lim
h→0

fy(x+ h, y)− fy(x, y)

h
,

fyy(x, y) = lim
h→0

fy(x, y + h)− fy(x, y)

h

provided these limits exist. Third and higher order partial derivatives are
defined analogously.

Equality of mixed partial derivatives. If the partial derivatives fx, fy,
fxy, fyx of a function f(x, y) exist and are continuous throughout an open
region, then fxy = fyx.
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