CaLcurLus: Math 21C, Fall 2010
Sample Final Questions: Solutions

1. Do the following sequences {a,} converge or diverge as n — oo? If a
sequence converges, find its limit. Justify your answers.

B 2n? + 3n3

(a) an = 2n3 + 302

Solution.
e (a) Dividing the numerator and denominator by n?, we have

2/n+3 3
p = —— — = as n — 00
2+3/n 2

so the sequence converges to 3/2.

e (b) We have
a, = cos(nm) = (—1)"

so the sequence diverges since its terms oscillates between 1 and —1.

e (c) We have

so the sequence converges to zero.



2. Do the following series converge or diverge? State clearly which test you
use.

(b) Z n47—lk7
=, (=5)

CIDIE
. lnn

n
1 1 1 1 1 1 1
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Solution.
o We write each series as ) ¢,.

e (a) We have
n+4 1

lim ¢, = lim )
n—00 n—oo 61, — 17 6

Since this limit is nonzero, the series diverges by the nth term test.

0<c¢, = n < EZL_
nt+7 nt  n3/2

Therefore the series converges by the comparison test, since the p-series
with p = 3/2 > 1 converges.

e (b) We have




e (c) We have

Cn—s—l

_ ‘ (—5)"2/(2n + 2)! ‘
(=5)"*1/(2n)!
5(2n)!
(2n +2)!
)
2n+1)2n+2)

It follows that
Cn+1

Cn

lim

n—oo

=0.

Since this limit exists and is less than 1, the series converges absolutely
by the ratio test, and therefore it converges.

e (d) Since Inn > 1 for n > 3, we have

Inn 1
Cp=—>— for n > 3.
n n
Since the harmonic series > 1/n diverges, the series diverges by the

comparison test.

e (e) We have
1

cnl = —
eal = =
so the series converges absolutely, since the p-series with p = 4 con-
verges. Therefore the series converges since any absolutely convergent

series is convergent.

e (f) Either note that
cn=e"—e"=¢e"(1—¢)

diverges to —oo as n — 00, so the series diverges by the nth term test.
Or note that the series is a telescoping series of the form ¢, = b, —b,,11
with b, = € and the limit of b,, as n — oo does not exist, so the series
is a divergent telescoping series.



3. Determine the interval of convergence (including the endpoints) for the
following power series. State explicitly for what values of x the series con-
verges absolutely, converges conditionally, and diverges. Specify the radius
of convergence R and the center of the interval of convergence a.

Z #(m — 1)

Solution.

e Applying the ratio test, we have

-1 n+12n+1 -1 n+1 1 2 -1
) (@ -1 /(n+ 1] _ . 20fz—1]
n—o0 (=1)r2n(x —1)"/n n—oo  n+1
. 20z —1]
= lim ——
= 2|z — 1],

so the series converges absolutely if 2| — 1| < 1, or

| 1|<1 1< <3
T — = - << .
2’ 2 2

The power series diverges outside this interval of absolute convergence,
where |z — 1] > 1/2.

e The radius of convergence is R = 1/2 and the center of the interval of
convergence is a = 1.

e At the end point x = 3/2 where x — 1 = 1/2, the series becomes

o) 1)
Z(n)'

n=1

This is an alternating harmonic series, which converges by the alter-
nating series test. It does not converge absolutely since the harmonic
series diverges, so the power series converges conditionally at x = 3/2.



e At the end point x = 1/2 where x — 1 = —1/2, the series becomes

1
2

This is a divergent harmonic series, so the power series diverges at
x=1/2.



4. Write the Taylor polynomial P»(x) at x = 0 of order 2 for the function
f(x) =1In(1+ x).

Use Taylor’s theorem with remainder to give a numerical estimate of the
maximum error in approximating In(1.1) by P»(0.1) .

Solution.
e We have
1 1 2
/ — " - = " _

The first few Taylor coefficients of f are therefore
14 0 1
C():f(O):O, Clzf,(O):l, CQZf():——.
2! 2

Thus, the Taylor polynomial of f at x = 0 of order 2 is
1
Py(z) = co+ 1z + 2’ =z — 5:172.

e By Taylor’s theorem with remainder,

In(1 4 0.1) = Py(0.1) + Ry

where (0 (0.1)°
c :
Ry = 0172 = ———
2= 5 (0 3(1+ )3
for some 0 < ¢ < 0.1. Since ¢ > 0, we have
0.1)3
0< Ry < ( 3)

and therefore

Py(0.1) < In(1.1) < Py(0.1) + 10

e Remark. Since P(0.1) = 0.095 it follows that
0.095 < In(1.1) < 0.095334.

The actual value to six decimal places is

In(1.1) = 0.095310.



5. (a) Find the value(s) of ¢ for which the vectors

ﬁ:c;+f+cg, U 25—3;’+d§.

are orthogonal.
(b) Find the value(s) of ¢ for which the vectors

G=ci+j+ck, T=2—-37+ck, @ =i+ 6k.
lie in the same plane.

Solution.
e (a) The vectors are orthogonal if their dot product is zero, or if
i-v=c-24+1-(=3)+c-c=c"+2c—3=(c+3)(c—1)=0.
Hence, the vectors are orthogonal if

c=-3orc=1.

e (b) The vectors lie in the same plane if their scalar triple product is

zero, or if

c 1 ¢

u-(Uxw)=12 =3 ¢

1 0 6
. -3 c B 2 c n 2 =3
10 6 16[7°1 0
=c(=18—=0)—(12—¢)+¢(0+3)

= —14¢c — 12.

Hence, the vectors lie in the same plane if



6. Find a parametric equation for the line in which the planes
3r —6y —4z=15and 6x +y — 22 =5
intersect.

Solution.
e Normal vectors to the planes are
i =3i— 6] — 4k, iy =6i+ ] — 2k.

(The components of the normal vectors are the coefficients of the cor-
responding coordinates in the Cartesian equations of the planes.)

e A direction vector of the line of intersection is

ﬁ:ﬁ1><7_7:2

- — —

i 7k
=3 —6 —4

6 1 -2
AT E N F A A
01 2" e =276 1

—(12+4)i— (—6+24) 7+ (3+36)k
= 167 — 18] + 39k.
e To find a point on the intersection of the planes, suppose that z = 0.

Then
3r — 6y = 15, 6x+1y=2>5

whose solution is x = 15/13, y = —25/13.

e The parametric equation of the line is

15— 25- - - -
L _15- 25 67— 187 )
r 132 13j+t< 67 87 + 39k
or
_b + 16t _B 18t = 39t
B I A T R A



7. Suppose that
f(z,y) = ¢* cosmy

and

x:uz—vz, y:u2+v2.

Using the chain rule, compute the values of

of  of
ou’ Ov

at the point (u,v) = (1,1).
Solution.

e According to the chain rule

of _ofdx ofoy  0f Ofdr  0f0dy
ou Oxdu Oyou’ v Oxdv  Oyov

e We have

8_f = e’ cosT 8_f = —me¥sinm
and 9 9 9 9
x x Y Y
— =2 — =2 = =2 —= = 2.
ou Y B v ou “ B !
o At (u,v) = (1,1) we have (z,y) = (0,2) and
g:eocos%r:l, ﬁ:—7reosin27T:0,
ox dy
ox ox oy dy
oo o 9 H_o9 Y_o
ou 7 Ov ’ ou T Ov
e It follows that
of of
1240222 L =1.(-2)+0.2=-2.
9 +0 , 9 (—2)+0



8. Let

flz,y,2) =In (5132 + 9% — 1) +y+62.
In what direction @ is f(z,y, z) increasing most rapidly at the point (1, 1,0)?
Give your answer as a unit vector . What is the directional derivative of f
in the direction u?

Solution.
e We have
2z = 2y - -
A4 = — — 1 6k.
f@,y,2) (x2+y2— 1) i+ <x2+y2_1 + >J +
Thus

Vf(1,1,0) = 27 + 37 + 6k.

e The function f is most rapidly increasing in the direction

;—;’ = % (2Z+ 37 + 6E> :

U=

e The directional derivative of f in the direction « is

afr\ B
(), = =7
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9. Find the equation of the tangent plane to the surface
Yz = 2
at the point (1,1,2).
Solution.
e The normal vector to the surface f(x,y,z) = 2 with f(z,y,2) = zyz is
Vfi(r,y,z) = yzi +x2] + xyE.
Thus the normal vector at (z,y,z) = (1, 1,2) is

i=Vf(1,1,2) =2+ 2] + k.

e The equation of the tangent plane to the surface at the point (1,1,2)

with position vector
ro =1+ 7+ 2k

and normal 77 is
That is,
2@ —-1)+2(y—1)+(2—2)=0

or
20 4+ 2y + z = 6.

11



10. Find all critical points of the function
f(z,y) = 2* — 82% + 3y — 6y.
and classify them as maximums, minimums, or saddle-point.
Solution.
e At a critical point
fo=42® — 162 =0, f,=6y—6=0.
If follows that y = 1 and x = 0, £2 so the critical points of f are

(1:’ y) = (07 1)7 (27 1)’ (_2’ 1)‘

o We have
foe = 122° — 16, fyy = 6, fey = 0.

Hence
frafyy — foy = (=16)(6) <0 at (z,y) = (0,1)
so f(z,y) has a saddle point at (0, 1), and

Joxfyy — Q?y = (32)(6) > 0, at (z,y) = (£2,1).

Since f,, > 0, f(z,y) has minima at (£2,1).

12



11. Let
D= {(z,y): 2 +¢y* <1}

be the unit disc and
flz,y) =2 =22 +y* + 2y + 1.
Find the global maximum and minimum of
f:D—R
At what points (x,y) in D does f attain its maximum and minimum?
Solution.
e The function is differentiable everywhere. A critical point (z, y) satisfies
fe=20x—-2=0, 2u+2=0
which implies that (x,y) = (1, —1). This point does not lie inside D, so

f has no critical points inside D and it must attain its global maximum
and minimum on the boundary of D.

e On the boundary x? + y? = 1, we can write
xr =cosf, y=sin6
where 0 < 0 < 27 is the polar angle of (z,y). Then

f(cos®,sinf) = cos®§—2cos+sin?§4+2sinf+1 = 2—2cos f+2sin b,

e Since f(cos#,sinf) is a differentiable function of ¢, the maximum and
minimum of f on the boundary are attained at a critical point where

d
70 (cosf,sinf) = 2sinf + 2cos = 0.

It follows that
tanf = —1,

so 0 =3m/4orf="Tr/4
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The second derivative of f along the boundary is

2
(cos@,sinf) = 2cosf — 2sin b

20
We have
3T 1 . 3T 1 T 1 . im 1
COSZ:—E, st:E, COSZ:E, szz_ﬁ
SO 2 »
%<0 at 0 = 3m/4, %>O at § = T /4.

Thus, f has a maximum value at § = 37 /4 and a minimum value at

0 ="Tr/4.

Evaluating the corresponding values of (z,y) and f, we find that f has

a global maximum on D at

1 1
(r,y) = (—E, E) where f(z,y) =2+ 2V/2,

and a global minimum on D at

1 1
(x,y) = (E, —E> where  f(z,y) =2 — 2V/2.
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12. Suppose that the material for the top and bottom of a rectangular box
costs a dollars per square meter and the material for the four sides costs b
dollars per square meter. Use the method of Lagrange multipliers to find the
dimensions of a box of volume V' cubic meters that minimizes the cost of the
materials used to construct it. What is the minimal cost?

Solution.

Let x, y be the lengths of the horizontal sides of the box and z the
height of the box.

The cost of the material for the box is
C(z,y, z) = 2axy + 2bxz + 2byz.
The volume of the box is zyz.

Thus, we want to
minimize C(x,y, 2)

subject to the constraint that

g(:l?, Y, Z) =0
where

9(z,y,2) = zyz = V.

We have

VC = (2ay + 2b2)7 + (2az + 2bz) ] + (2bx + 2by) k,
Vg = yzf%— :L“zj'%— wﬂg

By the method of Lagrange multipliers, the equations for a critical
point are VC' = AVg and g = 0, or
2ay 4+ 2bz = \yz, 2ax 4 2bz = A\vz, 2bx + 2by = vy, zyz=1V.

It follows from the first two equations that x = y, as one would expect
by symmetry, and from the last equation that

Vv
Y=

x2

15



Hence, assuming that x > 0, we find that

2
2ax+b—z/:&, 4b = \x
x x

and, eliminating \, we get

26V

200 = ——.

It follows that

A 2/3
reu=(G) v = ()T

Remark. Note that a/b is a dimensionless ratio of costs per unit
area and V/3 is a length, so these results have the correct dimensions
(meters). If a = b, then x = y = z, which corresponds to the fact
that the cube is the rectangular solid with minimal surface area that
encloses a given volume. If a > b then the box is taller than it is wide
to reduce the amount of the more expensive material required for the
top and bottom, while if a < b then the box is shorter than it is wide
to reduce the amount of material required for the sides.
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