
Calculus: Math 21C, Fall 2010
Solutions to Sample Questions: Midterm 2

1. Determine the interval of convergence (including the endpoints) for the
following power series. State explicitly for what values of x the series con-
verges absolutely, converges conditionally, and diverges. In each case, specify
the radius of convergence R and the center of the interval of convergence a.

(a)
∞∑
n=1

(−1)n2n

n
(x− 1)n; (b)

∞∑
n=0

1

3n + 1
x2n; (c)

∞∑
n=0

1

n25n
(2x+ 1)n.

Solution.

• We give two different (but related) methods for finding the solution.
Either one is fine.

• Method I. Write the power series as
∑∞

n=0 an.

• (a) We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+12n+1(x− 1)n+1/(n+ 1)

(−1)n2n(x− 1)n/n

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x− 1)n

n+ 1

∣∣∣∣
= 2|x− 1| lim

n→∞

n

n+ 1

= 2|x− 1| lim
n→∞

1

1 + 1/n

= 2|x− 1|.

By the ratio test, the series converges absolutely when

2|x− 1| < 1

or |x− 1| < 1/2.

• Therefore, a = 1 and R = 1/2. The series converges absolutely if
1/2 < x < 3/2 and diverges if −∞ < x < 1/2 or 3/2 < x <∞.
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• At the endpoint x = 3/2 of the interval of convergence, the series
becomes

∞∑
n=1

(−1)n

n
.

This is the alternating harmonic series. It converges by the alternating
series test but does not converge absolutely since the harmonic series
diverges. Therefore, the series converges conditionally at x = 3/2.

• At the endpoint x = 1/2 of the interval of convergence, the series
becomes

−
∞∑
n=1

1

n
,

which a harmonic series. Therefore, the series diverges at x = 1/2.

• (b) We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣x2(n+1)/(3n+1 + 1)

x2n/(3n + 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣x2(3n + 1)

3n+1 + 1

∣∣∣∣
= x2 lim

n→∞

3n + 1

3n+1 + 1

= x2 lim
n→∞

1 + 1/3n

3 + 1/3n

=
x2

3
.

By the ratio test, the series converges absolutely when

x2

3
< 1

or |x| <
√

3.

• Therefore, a = 0 and R =
√

3. The series converges absolutely if
|x| <

√
3 and diverges if |x| >

√
3.
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• At the endpoints x = ±
√

3 of the interval of convergence, the series
becomes

∞∑
n=0

3n

3n + 1
.

Since

lim
n→∞

3n

3n + 1
= 1,

this series diverges by the nth term test.

• (c) We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(2x+ 1)n+1/[(n+ 1)25n+1]

(2x+ 1)n/[n25n]

∣∣∣∣
= lim

n→∞

∣∣∣∣(2x+ 1)n2

5(n+ 1)2

∣∣∣∣
=
|2x+ 1|

5
lim
n→∞

n2

(n+ 1)2

=
|2x+ 1|

5
lim
n→∞

1

(1 + 1/n)2

=
|2x+ 1|

5
.

By the ratio test, the series converges absolutely when

|2x+ 1|
5

< 1

or |x+ 1/2| < 5/2.

• Therefore, a = −1/2 and R = 5/2. The series converges absolutely if
−3 < x < 2 and diverges if −∞ < x < −3 or 2 < x <∞.

• At the endpoints x = −3, x = 2 of the interval of convergence, the
series become

∞∑
n=1

(−1)n

n2
,

∞∑
n=1

1

n2
.

These are absolutely convergent p-series, so the series converges abso-
lutely at x = −3, 2.
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• Method II. Write the series as
∑∞

n=0 cn(x− a)n and use the ratio-test
formula for the radius of convergence R:

1

R
= lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣
provided that this limit exists. (The rest of the solution is the same as
before.)

• (a) We have a = 1 and

cn =
(−1)n2n

n
for n ≥ 1. Hence

1

R
= lim

n→∞

∣∣∣∣(−1)n+12n+1/(n+ 1)

(−1)n2n/n

∣∣∣∣ = 2

so R = 1/2.

• (b) We have a = 0. Writing u = x2 the series becomes

∞∑
n=0

1

3n + 1
un

The radius of convergence S of this series in u is given by

1

S
= lim

n→∞

∣∣∣∣1/[3n+1 + 1]

1/[3n + 1]

∣∣∣∣ =
1

3

so the series converges for |u| < 3 or |x| <
√

3, and R =
√

3.

• (c) We write the series in standard form as

∞∑
n=0

2n

n25n

(
x+

1

2

)n

.

Thus, a = −1/2 and

1

R
= lim

n→∞

∣∣∣∣2n+1/[(n+ 1)25n+1]

2n/[n25n]

∣∣∣∣ =
2

5

so R = 5/2.
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2. Let
~u = 2~i−~j + 3~k, ~v = −~i+ 2~j + 2~k.

Compute: (a) |~u|; (b) |~v|; (c) the angle θ between ~u, ~v (you can express it
as an inverse trigonometric function); (d) the projection proj~v~u of ~u in the
direction of ~v.

Solution.

• (a) |~u| =
√

22 + (−1)2 + 32 =
√

14.

• (b) |~v| =
√

(−1)2 + 22 + 22 = 3.

• (c) We have

cos θ =
~u · ~v
|~u| |~v|

,

and
~u · ~v = 2 · (−1) + (−1) · 2 + 3 · 2 = 2.

Hence cos θ = 2/(3
√

14) and

θ = cos−1
(

2

3
√

14

)
.

• (d) We have

proj~v ~u =
~u · ~v
|~v|2

~v.

Hence

proj~v ~u =
2

9

(
−~i+ 2~j + 2~k

)
= −2

9
~i+

4

9
~j +

4

9
~k.
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3. (a) Find the area of the triangle with vertices P (−2, 2, 0), Q(0, 1,−1) and
R(−1, 2,−2).

(b) Find a parametric equation for the line in which the planes 3x−6y−4z =
15 and 6x+ y − 2z = 5 intersect.

Solution.

• (a) The area A of the triangle is half the area of the parallelogram
spanned by the vectors given by any two sides of the triangle, and the
area of the parallelogram is the magnitude of the cross product of the
vectors. Hence,

A =
1

2

∣∣∣ ~PQ× ~PR
∣∣∣ .

(The use of any other pair of vectors would be fine and give the same
answer.)

• We have

~PQ = (0− (−2))~i+ (1− 2)~j + (−1− 0)~k = 2~i−~j − ~k,
~PR = (−1− (−2))~i+ (2− 2)~j + (−2− 0)~k =~i− 2~k,

and

~PQ× ~PR =

∣∣∣∣∣∣
~i ~j ~k
2 −1 −1
1 0 −2

∣∣∣∣∣∣ = 2~i+ 3~j + ~k.

Hence,

A =
1

2

√
22 + 32 + 12 =

√
14

2
.

• (b) Normal vectors to the planes are

~n1 = 3~i− 6~j − 4~k, ~n2 = 6~i+~j − 2~k.

(We read off the components of the normal vector from the coefficients
of x, y, z in the Cartesian equation.) A direction vector of the line is
therefore

~u = ~n1 × ~n2 =

∣∣∣∣∣∣
~i ~j ~k
3 −6 −4
6 1 −2

∣∣∣∣∣∣ = 16~i− 18~j + 39~k.
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• To find a point on the line, we look for the coordinates (x0, y0, 0) of the
point on the intersection of the planes with z = 0, say. (This isn’t the
only way to find a point on the line — any point on the line will do.)
Then

3x0 − 6y0 = 15, 6x0 + y0 = 5.

The solution of this linear system is x0 = 15/13, y0 = −25/13. Thus
the position vector of a point on the line is

~r0 =
15

13
~i− 25

13
~j

then the vector form of a parametric equation for the line is

~r(t) =
15

13
~i− 25

13
~j + t

(
16~i− 18~j + 39~k

)
.

• The coordinate form of the parametric equation is

x =
15

13
+ 16t, y = −25

13
− 18t, z = 39t.
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4. Let
f(x, y) = exy ln(y).

Compute the partial derivatives fx, fy, fxx, fxy and fyy. (You do NOT need
to simplify your answers.)

Solution.

• The first-order derivatives are

fx = yexy ln y,

fy = xexy ln y +
exy

y
.

• The second-order derivatives are

fxx =
∂

∂x
(yexy ln y) = y2exy ln y,

fxy =
∂

∂y
(yexy ln y) = exy ln y + xyexy ln y +

yexy

y
,

fyy =
∂

∂y

(
xexy ln y +

exy

y

)
= x2exy ln y +

xexy

y
+
xexy

y
− exy

y2
.

• Alternatively, by the equality of mixed partial derivatives fxy = fyx,
we could compute fxy from

fxy =
∂

∂x

(
xexy ln y +

exy

y

)
= exy ln y + xyexy ln y +

yexy

y
.
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5.(a) Find the Taylor polynomial P4(x) of order 4 centered at x = 0 for the
function f(x) = e−x

2
.

(b) Use Taylor’s theorem with remainder to estimate the maximum error
|f(x)− P4(x)| for 0 ≤ x ≤ 1.

(c) Use the results of (a) and (b) to obtain an approximate value for the
integral ∫ 1

0

e−x
2

dx

and estimate the maximum error in your approximate value for the integral.

Solution.

• (a) We have the Taylor series

ex = 1 + x+
1

2
x2 +

1

6
x3 + . . . .

Replacing x by −x2, we get

e−x
2

= 1− x2 +
1

2
x4 − 1

6
x6 + . . . .

Thus,

P4(x) = 1− x2 +
1

2
x4.

This is also the Taylor polynomial P5(x) of order 5 for f , since the
coefficient of x5 is zero.

• Alternatively, we can find P4(x) by computing the first four derivatives
of f(x) at x = 0

f ′(x) = −2xe−x
2

,

f ′′(x) = (−2x)(−2x)e−x
2 − 2e−x

2

=
(
4x2 − 2

)
e−x

2

,

f ′′′(x) = (−2x)
(
4x2 − 2

)
e−x

2

+ 8xe−x
2

=
(
−8x3 + 12x

)
e−x

2

,

f (4)(x) = (−2x)
(
−8x3 + 12x

)
e−x

2

+
(
−24x2 + 12

)
e−x

2

=
(
16x4 − 48x2 + 12

)
e−x

2

,
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and using the formula for Taylor coefficients,

c0 = f(0) = 1,

c1 = f ′(0) = 0,

c2 =
f ′′(0)

2!
=
−2

2
= −1,

c3 =
f ′′′(0)

3!
= 0,

c4 =
f (4)(0)

4!
=

12

24
=

1

2
,

but this involves a lot more algebra than the previous method.

• (b) By Taylor’s theorem with remainder, if 0 ≤ x ≤ 1, then

e−x
2

= P4(x) +R4(x)

where

R4(x) =
f (5)(c)x5

5!
for some 0 < c < x.

• Since 0 ≤ x ≤ 1, we have 0 < c < 1. If∣∣f (5)(c)
∣∣ ≤M

for 0 < c < 1, it follows that for 0 ≤ x ≤ 1∣∣∣e−x2 − P4(x)
∣∣∣ = |R4(x)| ≤ Mx5

5!
.

• Unfortunately, it looks like we have to calculate the fifth-order deriva-
tive of f to find an estimate for M and the algebra becomes much
more complicated than I expected, so the details are omitted (and not
required). A simpler way to estimate the error (based on integrating
the whole Taylor series term-by-term instead of using the remainder)
is described at the end.

• (c) We have approximately that∫ 1

0

e−x
2

dx ≈
∫ 1

0

P4(x) dx,
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and ∫ 1

0

P4(x) dx =

∫ 1

0

(
1− x2 +

1

2
x4
)
dx

=

[
x− 1

3
x3 +

1

10
x5
]1
0

= 1− 1

3
+

1

10

=
23

30
.

• We can estimate the error in this approximate value of the integral in
terms of the constant M from (b) as follows:∣∣∣∣∫ 1

0

e−x
2

dx− 23

30

∣∣∣∣ =

∣∣∣∣∫ 1

0

e−x
2

dx−
∫ 1

0

P4(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

[
e−x

2 − P4(x)
]
dx

∣∣∣∣
≤
∫ 1

0

∣∣∣e−x2 − P4(x)
∣∣∣ dx

≤
∫ 1

0

Mx5

5!
dx

≤ M

6!
.

• To get an explicit estimate for the error by a simpler method, note that
by replacing x in the Taylor series for ex by −x2, we get

e−x
2

=
∞∑
n=0

(−1)n

n!
x2n

where this series converges for all x (because the Taylor series for ex

converges for all x). Since we can integrate Taylor series term by term
within their interval of convergence, we have∫ 1

0

e−x
2

dx =
∞∑
n=0

(−1)n

n!

∫ 1

0

x2n dx =
∞∑
n=0

(−1)n

n!(2n+ 1)
.

11



Thus, we have an exact expression for the integral as the sum of an
infinite series:∫ 1

0

e−x
2

dx = 1− 1

1 · 3
+

1

2! · 5
− 1

3! · 7
+

1

4! · 9
− · · ·+ (−1)n

n!(2n+ 1)
+ . . . .

This is an alternating series whose partial sums are alternately larger
and smaller than the sum of the series, so

1− 1

1 · 3
+

1

2! · 5
− 1

3! · 7
≤
∫ 1

0

e−x
2

dx ≤ 1− 1

1 · 3
+

1

2! · 5
,

or
26

35
≤
∫ 1

0

e−x
2

dx ≤ 23

30
.

• To four significant figures, the numerical values of the integrals are∫ 1

0

P4(x) dx = 0.7667,

∫ 1

0

e−x
2

dx = 0.7468.

The actual value is less that the approximate value, and 26/35 ≈
0.7429, so the lower bound on the approximation is also correct. (The
lower bound gives a more accurate approximation because we obtained
it by using more terms in the series than the upper bound.)

• The integral of e−x
2

cannot be expressed in terms of elementary func-
tions, but it can be expressed in terms of the error function erf as∫ 1

0

e−x
2

dx =

√
π

2
erf(1).
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6. Suppose that the functions f(x), g(x) have the Taylor series expansions
at zero, up to second degree terms, given by

f(x) = a0 + a1x+ a2x
2 + . . . , g(x) = b0 + b1x+ b2x

2 + . . .

(a) According to Taylor’s theorem, how are a0, a1, a2 given in terms of f and
its derivatives and b0, b1, b2 in terms of g and its derivative?

(b) Find the Taylor series for h(x) = f(x)g(x) at zero, up to second degree
terms, by multiplying the Taylor series for f(x) and g(x).

(c) Use the product rule to compute h′(x), h′′(x) in terms of the derivatives
of f(x), g(x). Show that the use of these expressions in Taylor’s theorem for
h(x) gives the same series as the one you found in (b).

Solution.

• (a) By Taylor’s theorem

a0 = f(0), a1 = f ′(0), a2 =
f ′′(0)

2!
, . . . ,

b0 = g(0), b1 = g′(0), b2 =
g′′(0)

2!
, . . . .

• (b) Multiplying the Taylor series of f and g, we get

h(x) =
(
a0 + a1x+ a2x

2 + . . .
) (
b0 + b1x+ b2x

2 + . . .
)

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + . . . .

Thus,
h(x) = c0 + c1x+ c2x

2 + . . .

where

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, . . . .

• (c) By the product rule, we have

h′ = fg′ + f ′g, h′′ = fg′′ + 2f ′g′ + f ′′g.
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The first few Taylor coefficients of h at 0 are therefore

c0 = h(0)

= f(0)g(0)

= a0b0,

c1 = h′(0)

= f(0)g′(0) + f ′(0)g(0)

= a0b1 + a1b0,

c2 =
h′′(0)

2!

=
1

2
[f(0)g′′(0) + 2f ′(0)g′(0) + f ′′(0)g(0)]

= f(0)
g′′(0)

2!
+ f ′(0)g′(0) +

f ′′(0)

2!
g(0)

= a0b2 + a1b1 + a2b0.

These expressions agree with what we found by multiplication of the
Taylor series.
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