
Calculus
Math 21C, Fall 2010

Solutions to Sample Questions: Midterm I

1. Do the following sequences {an} converge or diverge as n → ∞? Give
reasons for your answer. If a sequence converges, find its limit.

(a) an =
cosn

n
; (b) an =

√
n

lnn
; (c) an =

√
n2 + 1− n.

Solution.

• (a) We have

− 1

n
≤ cosn

n
≤ 1

n
.

Since

− 1

n
→ 0,

1

n
→ 0 as n → ∞,

the ‘sandwich’ theorem implies that cosn/n → 0 as n → ∞. So this
sequence converges to 0.

• (b) Since
√
x → ∞ and lnx → ∞ as x → ∞, l’Hôspital’s rule implies

that

lim
n→∞

√
n

lnn
= lim

x→∞

√
x

lnx

= lim
x→∞

1/(2
√
x)

1/x

= lim
x→∞

√
x

2
= ∞.

So this sequence diverges to ∞.
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• (c) We have

lim
n→∞

(√
n2 + 1− n

)
= lim

n→∞

(√
n2 + 1− n

) (√
n2 + 1 + n

)
√
n2 + 1 + n

= lim
n→∞

(n2 + 1)− n2

√
n2 + 1 + n

= lim
n→∞

1√
n2 + 1 + n

= lim
n→∞

1

n

(
1√

1 + 1/n2 + 1

)
= 0

So this sequence converges to 0.
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2. Do the following series converge absolutely, converge conditionally, or
diverge? Give reasons for your answer.

(a)
∞∑
n=1

(−1)n+1

√
n

; (b)
∞∑
n=1

sinn

n2
; (c)

∞∑
n=1

(−1)n sinn

Solution.

• (a) The series of absolute values,

∞∑
n=1

1√
n

is a p-series with p = 1/2, which diverges since p < 1. Thus, the series
is not absolutely convergent. Since un = 1/

√
n is a decreasing positive

sequence with un → 0 as n → ∞, the alternating series test implies
that the series converges. So the series is conditionally convergent.

• (b) The series of absolute values

∞∑
n=1

| sinn|
n2

converges by the comparison test, since

0 ≤ | sinn|
n2

≤ 1

n2

and
∞∑
n=1

1

n2

is a convergent p-series (with p = 2 > 1). So the series is absolutely
convergent.

• (c) The limit
lim
n→∞

(−1)n sinn

does not exist (since, for example, we can find arbitrarily large even
integers m, n such that sinm > 1/2 and sinn < −1/2). So the series
diverges by the nth term test.
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3. Determine whether each of the following series converges or diverges and
explain your answer:

(a)
∞∑
n=1

n+ 4

6n− 17
; (b)

∞∑
n=1

(
−4

5

)n

; (c)
∞∑
n=2

√
n

n4 + 7
;

(d)
∞∑
n=1

5n+1

(2n)!
; (e)

∞∑
n=3

1

n ln2 n
; (f)

∞∑
n=3

(−1)n+1

n+ 2
√
n
;

(g)
1

14
+

1

24
− 1

34
+

1

44
+

1

54
− 1

64
+

1

74
− 1

94
+ · · · ;

(h)
∞∑
n=1

(n!)2

(2n)!
; (i)

∞∑
n=1

[tan(n)− tan(n+ 1)] .

Solution. Write each series as
∑

an.

• (a) We have

lim
n→∞

an = lim
n→∞

n+ 4

6n− 17
= lim

n→∞

1 + 4/n

6− 17/n
=

1

6
.

Since the limit of the terms an is nonzero, the series diverges by the
nth term test.

• (b) This series is a geometric series with ratio r = −4/5. Since |r| < 1,
the series converges. In fact, we have

∞∑
n=1

(
−4

5

)n

= −4

5

∞∑
n=0

(
−4

5

)n

= −4

5

(
1

1− (−4/5)

)
= −4

5
· 5
9
= −4

9
.

• (c) We use the limit comparison test and compare with the p-series

∞∑
n=2

bn, bn =
1

n3/2
.
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This series converges since p = 3/2 > 1. Moreover,

lim
n→∞

an
bn

= lim
n→∞

√
n/(n4 + 7)

1/n3/2

= lim
n→∞

n3/2
√
n√

n4 + 7

= lim
n→∞

1√
1 + 7/n4

= 1.

Since this limit is finite and
∑

bn converges, the limit comparison test
implies that the series converges.

• (d) We use the ratio test. We have

lim
n→∞

an+1

an
= lim

n→∞

5n+2/(2n+ 2)!

5n+1/(2n)!

= lim
n→∞

5(2n)!

(2n+ 2)!

= lim
n→∞

5

(2n+ 1) · (2n+ 2)

= 0.

Since this limit is less than 1, the ratio test implies that the series
converges.

• (e) We use the integral test. Since 1/(x ln2 x) is a continuous, positive,
decreasing function for x ≥ 2, the series converges or diverges with the
integral ∫ ∞

2

1

x ln2 x
dx.

Making the substitution u = lnx, with du = dx/x, we find that∫ ∞

2

1

x ln2 x
dx =

∫ ∞

ln 2

du

u2

=

[
−1

u

]∞
ln 2

=
1

ln 2
.
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Since this integral converges, the series converges.

• (f) The sequence

un =
1

n+ 2
√
n

is a positive, decreasing sequence such that un → 0 as n → ∞. There-
fore, the series

∑
(−1)n+1un converges by the alternating series test.

• (g) We have

|an| =
1

n4
,

so
∑

|an| is a convergent p-series (with p = 4 > 1). Therefore the series∑
an converges absolutely, and it converges.

• (h) We use the ratio test. We have

lim
n→∞

an+1

an
= lim

n→∞

((n+ 1)!)2 / (2(n+ 1))!

(n!)2/(2n)!

= lim
n→∞

((n+ 1)!)2 (2n)!

(n!)2 (2n+ 2)!

= lim
n→∞

(n+ 1)2

(2n+ 1) · (2n+ 2)

= lim
n→∞

(1 + 1/n)2

(2 + 1/n) · (2 + 2/n)

=
1

4
.

Since this limit is less than 1, the series converges by the ratio test.

• (i) This series is a telescoping series. The nth partial sum is

sn =
n∑

k=1

[tan(k)− tan(k + 1)]

= [tan(1)− tan(2)] + [tan(2)− tan(3)]

+ [tan(3)− tan(4)] + · · ·+ [tan(n)− tan(n+ 1)]

= tan(1)− tan(n+ 1).
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Since
lim
n→∞

tan(n+ 1)

does not exist, the series does not converge.
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4. Are the following equalities true or false? Justify your answer.

(a) 1− 1

22
+

1

32
− 1

42
+

1

52
− 1

62
+

1

72
+ . . .

= 1 +
1

32
− 1

22
+

1

52
+

1

72
− 1

42
+

1

92
+

1

112
− 1

62
+ . . . ;

(b) 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
+ . . .

= 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . ;

Solution.

• (a) The series

∞∑
n=1

(−1)n+1

n2
= 1− 1

22
+

1

32
− 1

42
+

1

52
− 1

62
+

1

72
+ . . .

converges absolutely since
∞∑
n=1

1

n2

is a convergent p-series (with p = 2 > 1). Therefore any rearrangement
of the series converges to the same sum, and the equality is true.

• (b) The series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
+ . . .

converges by the alternating series test, but it does not converge abso-
lutely since

∞∑
n=1

1

n

is the divergent harmonic series. Therefore a rearrangement of the
series need not, in general, converge; moreover, if a rearrangement does
converge, it need not converge to the same sum. So the sums in (b)
need not be equal.
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• This leaves open the question of whether or not the particular rear-
rangements given in (b) converge to the same sum. The sums are, in
fact, not equal, but it requires a trickier argument to show this. We
give the details for completeness. The following discussion is optional
and goes beyond what will be asked in the midterm.

• Let

s2n = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2n− 1
− 1

2n
,

r2n = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . .

· · ·+ 1

4n− 3
+

1

4n− 1
− 1

2n

denote suitable partial sums of the arrangements in (b). Then, looking
at the terms included in s2n and r2n, we see that

r2n = s2n + en (1)

where

en =
1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

4n− 3
+

1

4n− 1
. (2)

There are n terms in this expression for en and each term is less than
or equal to 1/(2n+ 1) and greater than or equal to 1/(4n− 1). Thus,

s2n + n ·
(

1

4n− 1

)
≤ r2n ≤ s2n + n ·

(
1

2n+ 1

)
. (3)

• Let

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . ,

R = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . .

The series for S converges by the alternating series test. By considering
the partial sums of the series for R one can show in a similar way to
the proof of the alternating series test that the series for R converges.
Then we have

S = lim
n→∞

s2n, R = lim
n→∞

r2n.
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Taking the limit of (3) as n → ∞, we get

S + lim
n→∞

(
n

4n− 1

)
≤ R ≤ S + lim

n→∞

(
n

2n+ 1

)
or

S +
1

4
≤ R ≤ S +

1

2
. (4)

Thus, the two rearrangements cannot converge to the same sum.

• We can find R exactly in terms of S by observing that

1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

4n− 1

=
1

2n

(
1

1 + (1/2n)
+

1

1 + (3/2n)
+ · · ·+ 1

2− (1/2n)

)
is a Riemann sum for the integral

1

2

∫ 2

1

1

x
dx.

Therefore, if en is given by (2), we have

lim
n→∞

en = lim
n→∞

(
1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

4n− 3
+

1

4n− 1

)
=

1

2

∫ 2

1

1

x
dx

=
1

2
ln 2.

(5)

Taking the limit of (1) as n → ∞ and using (5), we get

R = S +
1

2
ln 2.

Note that ln 2/2 ≈ 0.397 lies between 1/4 and 1/2 as required by (4).

• In fact, the sum of the alternating harmonic series is S = ln 2, so we
get the results

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = ln 2,

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · · = 3

2
ln 2.
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5. State the definition for a sequence {an} to converge to a limit L. If

an =
n2 + 1

n2
for n = 1, 2, 3, . . .

prove from the definition that

lim
n→∞

an = 1.

Solution.

• The definition of
lim
n→∞

an = L

is that for every ϵ > 0 there exists a number N such that

|an − L| < ϵ whenever n > N.

• Let ϵ > 0. Choose N = 1/
√
ϵ. Then if n > N ,

|an − 1| =
∣∣∣∣n2 + 1

n2
− 1

∣∣∣∣
=

∣∣∣∣ 1n2

∣∣∣∣
<

1

N2

< ϵ.

Hence,

lim
n→∞

n2 + 1

n2
= 1.
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Additional question. Does the series

∞∑
n=2

1

(lnn)lnn

converge or diverge? Justify your answer.

Solution.

• The series converges.

• To show this, we rewrite the terms in the series in a more convenient
form. For any x > 0, we have x = elnx, so

lnn = eln lnn.

It follows that

(lnn)lnn =
(
eln lnn

)lnn
= elnn·ln lnn =

(
elnn

)ln lnn
= nln lnn.

Since ln lnn → ∞ as n → ∞, albeit very slowly, there exists N > 0
such that ln lnn ≥ 2 for all n > N . (In fact, we can take N = ee

2
.)

Then for n > N we have

0 ≤ 1

(lnn)lnn
=

1

nln lnn
≤ 1

n2
.

Since
∑

1
n2 is a convergent p-series, the positive series

∑
1

(lnn)lnn con-
verges by the comparison test.
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