
Advanced Calculus

Math 25, Fall 2015

Midterm 1: Solutions

1. [20%] Give examples of the following. (No explanation or proof is required
for this question).

(a) An onto function f : N → N that is not one-to-one.

(b) A sequence of bounded sets An ⊂ R such that Am ∩ An = ∅ for m 6= n
and

⋃

∞

n=1
An = R.

(c) A bounded set A ⊂ R of rational numbers such that inf A ∈ A and
supA /∈ A.

(d) A bounded sequence (xn) of real numbers such that xn = 0 for infinitely
many n ∈ N, lim infn→∞ xn = −1, and lim sup

n→∞
xn = 1.

Solution.

• (a) For example,

f(n) =

{

(n + 1)/2 if n is odd,

n/2 if n is even,

so f(1) = f(2) = 1, f(3) = f(4) = 2, f(5) = f(6) = 3, and so on.

• (b) For example, take An to be the union of half-open intervals

An = (−n,−n + 1] ∪ [n− 1, n),

so

A1 = (−1, 1), A2 = (−2,−1] ∪ [1, 2), A3 = (−3,−2] ∪ [2, 3),

and so on.

• (c) For example,

A =

{

1−
1

n
: n ∈ N

}

.

Then inf A = 0 ∈ A and supA = 1 /∈ A.
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• (d) For example, the sequence of alternating 0’s, 1’s and −1’s:

0, 1,−1, 0, 1,−1, 0, 1,−1, . . . .

Explicitly,

xn =











−1 if n ≡ 0 (mod 3),

0 if n ≡ 1 (mod 3),

1 if n ≡ 2 (mod 3).
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2. [20%] Suppose that x > 0. Prove by induction that

1 + nx ≤ (1 + x)n for every n ∈ N. (1)

Solution.

• Equation (1) is true for n = 1, since then 1 + nx = (1 + x)n.

• Suppose (1) is true for some n ∈ N. Then multiplying (1) by 1+x > 0,
we get that

(1 + nx)(1 + x) ≤ (1 + x)n+1,

or
1 + (n+ 1)x+ x2 ≤ (1 + x)n+1.

Since x2 > 0, we have

1 + (n + 1)x < 1 + (n+ 1)x+ x2 ≤ (1 + x)n+1,

and the result follows by induction. (In fact, we have strict inequality
for x > 0 and n ≥ 2).

Remark. Equation (1) is called Bernoulli’s inequality. We proved it in class
from the binomial theorem; the induction proof is perhaps a bit simpler.
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3. [20%] Prove that if M is an upper bound of a set A ⊂ R and M ∈ A,
then M = supA.

Solution.

• Since M is an upper bound of A, we just have to prove that it’s a least
upper bound. But if M ′ < M , then M ′ is not an upper bound of A
since M ∈ A, so M = supA.
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4. [20%] (a) State the definition of the convergence of a sequence (xn) of real
numbers to a limit x.

(b) For n ∈ N, let

xn =
(1 + n)2

1 + n2
.

Prove from the definition that xn → 1 as n → ∞.

Solution.

• (a) limn→∞ xn = x if for every ǫ > 0 there exists N ∈ N such that

n > N implies that |xn − x| < ǫ.

(b) Let ǫ > 0 and choose N > 2/ǫ. Then if n > N , we have

∣

∣

∣

∣

(1 + n)2

1 + n2
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + 2n+ n2

1 + n2
− 1

∣

∣

∣

∣

=
2n

1 + n2

<
2

n

<
2

N
< ǫ,

which proves the result.
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5. [20%] Define a sequence (xn) by x1 = x2 = 1 and

xn+1 =
1

2
xn +

2

3
xn−1 for n ≥ 2. (2)

Prove that (xn) cannot converge to a finite limit as n → ∞.

Solution.

• First, we prove that xn ≥ 1 for every n ∈ N. We take as our induction
hypothesis that

xk ≥ 1 for all 1 ≤ k ≤ n.

This is true for n = 2 since x1 = x2 = 1. Assume that it is true for
some n ≥ 2. Then

xn+1 =
1

2
xn +

2

3
xn−1 ≥

1

2
+

2

3
> 1,

so the result follows by (strong) induction.

• Suppose for contradiction that xn → x as n → ∞. Then, since xn ≥ 1,
the order property of limits implies that x ≥ 1. Moreover, taking the
limit of (2) as n → ∞, we get from the algebraic properties of limits
that

x =
1

2
x+

2

3
x =

7

6
x,

which implies that x = 0. It follows that (xn) cannot converge.
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