ADVANCED CALCULUS Math 25, Fall 2015 Sample Final Questions

1. Say if the following statements are true or false. If false, give a counterexample, if true give a brief explanation why (a complete proof is not required).

- (a) If a < b + 1/n for every $n \in \mathbb{N}$, then a < b.
- (b) If $a \leq b + 1/n$ for every $n \in \mathbb{N}$, then $a \leq b$.
- (c) $\limsup_{n \to \infty} (a_n + b_n) = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$.
- (d) The sequence $(\cos n + \sin n)$ has a convergent subsequence.
- (e) If $a_n \ge 0$ and $\sum a_n$ converges, then $\sum \sin a_n$ converges.
- (f) If $F \subset \mathbb{R}$ is closed, then $\overline{F^{\circ}} = F$.

2. Suppose that $0 \le a \le 1$. Prove by induction that

$$(1+a)^n \le 1 + (2^n - 1)a$$
 for every $n \in \mathbb{N}$.

3. Let $A \subset \mathbb{R}$ be nonempty and bounded from above. Define

$$-A = \{ b \in \mathbb{R} : b = -a \text{ where } a \in A \}$$
$$B = \{ b \in \mathbb{R} : b \text{ is an upper bound for } A \}.$$

Show that $\inf(-A) = -\sup A$ and $\inf B = \sup A$.

4. (a) State the definition of the convergence of a sequence (x_n) of real numbers to a limit $L \in \mathbb{R}$.

(b) Prove from the definition that

$$\lim_{n \to \infty} \frac{3n+2}{7n-5} = \frac{3}{7}.$$

4. Suppose that a sequence $(a_n)_{n=1}^{\infty}$ of real numbers does not converge to $L \in \mathbb{R}$. Prove that there exists $\epsilon_0 > 0$ and a subsequence $(a_{n_k})_{k=1}^{\infty}$ such that $|a_{n_k} - L| \ge \epsilon_0$ for every $k \in \mathbb{N}$.

5. (a) If (a_n) is a sequence of real numbers, state the definition of $a_n \to \infty$ as $n \to \infty$.

(b) Suppose that (a_n) , (b_n) are two sequences of real numbers such that $a_n \to \infty$ and $b_n \to L$ as $n \to \infty$, where $0 < L < \infty$. Prove that $a_n b_n \to \infty$ as $n \to \infty$. Does this result remain true if L = 0?

6. (a) Suppose that $\{K_1, K_2, \ldots, K_n\}$ is a finite collection of compact sets $K_i \subset \mathbb{R}$, and let

$$K = \bigcup_{i=1}^{n} K_i$$

Prove that K is compact. If $\{K_i : i \in \mathbb{N}\}$ is a countably infinite collection of compact sets, is $K = \bigcup_{i=1}^{\infty} K_i$ necessarily compact?

7. (a) Use the addition formula for cosines

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

to show that

$$\sin n = \frac{\cos(n-1/2) - \cos(n+1/2)}{2\sin(1/2)}$$

(b) Show that

$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$

converges.

HINT. You can use Abels's test: If the partial sums $A_N = \sum_{n=1}^N a_n$ form a bounded sequence, $b_1 \ge b_2 \ge b_3 \ge \cdots \ge 0$, and $b_n \to 0$ as $n \to \infty$, then $\sum_{n=1}^{\infty} a_n b_n$ converges.

8. Let $A \subset \mathbb{R}$ and $\epsilon > 0$. Prove that the set

$$B = \{ x \in \mathbb{R} : |x - y| < \epsilon \text{ for some } y \in A \}$$

is open.