
Advanced Calculus

Math 25, Fall 2015

Sample Final Questions: Solutions

1. Say if the following statements are true or false. If false, give a counter-
example, if true give a brief explanation why (a complete proof is not re-
quired).

(a) If a < b+ 1/n for every n ∈ N, then a < b.

(b) If a ≤ b+ 1/n for every n ∈ N, then a ≤ b.

(c) lim sup
n→∞

(an + bn) = lim sup
n→∞

an + lim sup
n→∞

bn.

(d) The sequence (cosn + sinn) has a convergent subsequence.

(e) If an ≥ 0 and
∑

an converges, then
∑

sin an converges.

(f) If F ⊂ R is closed, then F ◦ = F .

Solution.

• (a) False. If a = b, then a < b+ 1/n for every n ∈ N.

• (b) True. Proof of the contrapositive statement: If a > b, then a−b > 0
and, by the Archimedean principle, there exists n ∈ N such that 1/n <
a− b, so a > b+ 1/n.

• (c) False. For example, if an = (−1)n+1 and bn = (−1)n, then an+bn =
0 and

lim sup
n→∞

an = lim sup
n→∞

bn = 1, lim sup
n→∞

(an + bn) = 0.

• (d) True. The sequence is bounded since

| cosn + sinn| ≤ | cosn|+ | sinn| ≤ 2,

so the Bolzano-Weierstrass theorem implies that it has a convergent
subsequence.

• (e) True. Since | sin x| ≤ |x|, we have | sin an| ≤ an, so
∑

sin an con-
verges (absolutely) by comparison with the convergent series

∑

an.

• (f) False. For example, the set F = {0} is closed, but F ◦ = ∅ and
F ◦ = ∅ 6= F .
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2. Suppose that 0 ≤ a ≤ 1. Prove by induction that

(1 + a)n ≤ 1 + (2n − 1)a for every n ∈ N.

Solution.

• The result is true for n = 1, when (1 + a)n = 1 + (2n − 1)a.

• Assume the result is true for some n ∈ N. Then

(1 + a)n+1 = (1 + a)n(1 + a)

≤ [1 + (2n − 1)a](1 + a)

≤ 1 + (2n − 1)a+ a + (2n − 1)a2.

Since 0 ≤ a ≤ 1, we have a2 ≤ a, and therefore

(1 + a)n+1 ≤ 1 + (2n − 1)a+ a+ (2n − 1)a

≤ 1 + (2n+1 − 1)a,

so the result holds for n+1. The result therefore holds for every n ∈ N

by induction.
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3. Let A ⊂ R be nonempty and bounded from above. Define

−A = {b ∈ R : b = −a where a ∈ A}

B = {b ∈ R : b is an upper bound for A}.

Show that inf(−A) = − supA and inf B = supA.

Solution.

• Let M = supA. Then M is an upper bound of A and a ≤ M for every
a ∈ A. It follows that −a ≥ −M , which shows that −M is a lower
bound of −A.

• If m > −M , then −m < M , so (since M is a least upper bound of A)
the exists a ∈ A such that a > −m. Then −a < m, so m is not a lower
bound of −A. It follows that −M is a greatest lower bound of −A,
which proves that inf(−A) = − supA.

• If b is an upper bound of A, then b ≥ M , since M = supA is the least
upper bound, so M is a lower bound of B. Moreover, M ∈ B since M
is an upper bound of A. It follows that if M ′ > M , then M ′ is not a
lower bound of B, so M is the greatest lower bound of B, which proves
that inf B = supA. (In fact, since supA ∈ B, it is the minimum of B.)
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4. (a) State the definition of the convergence of a sequence (xn) of real
numbers to a limit L ∈ R.

(b) Prove from the definition that

lim
n→∞

3n+ 2

7n− 5
=

3

7
.

Solution.

• (a) For every ǫ > 0 there exists N ∈ N such that n > N implies that
|xn − L| < ǫ.

• (b) Given ǫ > 0, choose N ∈ N such that

N ≥
29

49ǫ
.

If n > N , then

∣

∣

∣

∣

3n+ 2

7n− 5
−

3

7

∣

∣

∣

∣

=

∣

∣

∣

∣

29

7(7n− 5)

∣

∣

∣

∣

<
29

49n

<
29

49N
< ǫ,

which proves the convergence.
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4. Suppose that a sequence (an)
∞

n=1 of real numbers does not converge to
L ∈ R. Prove that there exists ǫ0 > 0 and a subsequence (ank

)∞
k=1

such that
|ank

− L| ≥ ǫ0 for every k ∈ N.

Solution.

• If (an) does not converge to L, then there exists ǫ0 > 0 such that for
every N ∈ N there exists n > N with |an − L| ≥ ǫ0. This condition is
the negation of the definition for (an) to converge to L.

• Taking N = 1 in this condition, we get that there exists n1 ∈ N such
that |an1

− L| ≥ ǫ0. Then, taking N = n1, we get that there exists
n2 > n1 such that |an2

−L| ≥ ǫ0. Continuing in this way, given nk ∈ N,
we get nk+1 > nk such that |ank+1

− L| ≥ ǫ0, and then (ank
)∞
k=1

is the
required subsequence.
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5. (a) If (an) is a sequence of real numbers, state the definition of an → ∞
as n → ∞.

(b) Suppose that (an), (bn) are two sequences of real numbers such that
an → ∞ and bn → L as n → ∞, where 0 < L < ∞. Prove that anbn → ∞
as n → ∞. Does this result remain true if L = 0?

Solution.

• (a) For every M ∈ R there exists N ∈ N such that n > N implies that
an > M .

• (b) Let M > 0 be given (we can assume M is positive without loss of
generality). Since an → ∞ and L > 0, there exists N1 ∈ N such that
n > N1 implies that

an >
2M

L
.

Also, since bn → L and L > 0, there exists N2 ∈ N such that n > N2

implies that |bn − L| < L/2, so

bn = bn − L+ L >
L

2
.

Setting N = max{N1, N2}, we find that for n > N

anbn >
2M

L
·
L

2
= M,

which proves that anbn → ∞ as n → ∞.

• The result does not remain true if L = 0. For example, if an = n and
bn = 1/n, then an → ∞, bn → 0, and anbn → 1.
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6. (a) Suppose that {K1, K2, . . . , Kn} is a finite collection of compact sets
Ki ⊂ R, and let

K =
n
⋃

i=1

Ki

Prove that K is compact.

(b) If {Ki : i ∈ N} is a countably infinite collection of compact sets, is
K =

⋃

∞

i=1
Ki necessarily compact?

Solution.

• (a) A subset of R is compact if and only if it is closed and bounded.
A finite union of closed sets is closed and a finite union of bounded
sets is bounded (if |x| ≤ Mi for every x ∈ Ki, then |x| ≤ M for every
x ∈

⋃

n

i=1
Ki where M = max{M1,M2, . . . ,Mn}). It follows that the

finite union of compact sets is compact.

• (b) Countably infinite unions of closed sets need not be closed, and
countably infinite unions of bounded sets need not be bounded, so
countably infinite unions of compact sets need not be compact.

• For example,

Kn =

[

1

n
, 1−

1

n

]

, Ln = [−n, n]

are compact sets, but

∞
⋃

n=1

Kn = (0, 1),

∞
⋃

n=1

Ln = R

are not.
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7. (a) Use the addition formula for cosines

cos(A+B) = cosA cosB − sinA sinB

to show that

sinn =
cos(n− 1/2)− cos(n+ 1/2)

2 sin(1/2)

(b) Show that
∞
∑

n=1

sinn

n

converges.

Hint. You can use Abels’s test: If the partial sums AN =
∑

N

n=1
an form a

bounded sequence, b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, and bn → 0 as n → ∞, then
∑

∞

n=1
anbn converges.

Solution.

• (a) Using the addition formula, we have

cos(n− 1/2)− cos(n+ 1/2) = cos n cos(1/2) + sin n sin(1/2)

− [cosn cos(1/2)− sinn sin(1/2)]

= 2 sinn sin(1/2),

and the result follows after we divide by 2 sin(1/2).

• (b) Let an = sin n and bn = 1/n. Then (bn) is a decreasing sequence
that converges to 0 and

AN =
N
∑

n=1

sinn

=
1

2 sin(1/2)

N
∑

n=1

[cos(n− 1/2)− cos(n+ 1/2)]

=
1

2 sin(1/2)
[cos(1/2)− cos(N + 1/2)]

is a telescoping sum. We have

|AN | ≤
1

2 sin(1/2)
[| cos(1/2)|+ | cos(N + 1/2)|] <

1

sin(1/2)
,

so the sequence (AN) is bounded and Abel’s test implies that
∑

sinn/n
converges.
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8. Let A ⊂ R and ǫ > 0. Prove that the set

B = {x ∈ R : |x− y| < ǫ for some y ∈ A}

is open.

Solution.

• Suppose x ∈ B, and choose y ∈ A such that |x− y| < ǫ. Let

δ = ǫ− |x− y| > 0.

If |x′ − x| < δ, then by the triangle inequality

|x′ − y| = |x′ − x+ x− y|

≤ |x′ − x|+ |x− y|

< δ + |x− y|

< ǫ.

It follows that x′ ∈ B, so (x − δ, x + δ) ⊂ B, which proves that B is
open.

9


