ADVANCED CALCULUS Math 25, Fall 2015 Sample Midterm Questions

1. If $f: X \to Y$ is a function and $A \subset X$, then we define $f(A) \subset Y$ by

$$f(A) = \{ y \in Y : y = f(x) \text{ for some } x \in X \}.$$

- (a) If $A, B \subset X$, prove that $f(A \cup B) = f(A) \cup f(B)$.
- (b) Is $f(A \cap B) = f(A) \cap f(B)$?

2. Let P(n,r) denote the *r*th element in the *n*th row of Pascal's triangle:

n = 0:					1				
n = 1:				1		1			
n = 2:			1		2		1		
n = 3:		1		3		3		1	
n = 4:	1		4		6		4		1

where $0 \le r \le n$ e.g., P(4, 2) = 6. Then P(n, 0) = P(n, n) = 1 and

$$P(n+1,r) = P(n,r-1) + P(n,r)$$

for $1 \leq r \leq n$. Prove by induction that

$$P(n,r) = \frac{n!}{r!(n-r)!}.$$

3. (a) If $A, B \subset \mathbb{R}$ are nonempty sets that are bounded from above, prove that $\sup(A \cup B) = \max \{\sup A, \sup B\}$.

(b) Is $\sup(A \cap B) = \min \{\sup A, \sup B\}$?

4. (a) State the definition of the convergence of a sequence (x_n) of real numbers to a limit x.

(b) For $n \in \mathbb{N}$, let

$$x_n = \frac{n\cos n + 3\sin n}{n^2 + n - 10}.$$

Prove from the definition that $x_n \to 0$ as $n \to \infty$.

5. Suppose that (a_n) , (b_n) are bounded sequences of real numbers. Prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

Give an example of sequences where we have strict inequality in this equation.

6. Suppose that $A \subset \mathbb{R}$ is a nonempty set of real numbers that is bounded from above. Let $a \in A$ be an element of A and $b \in \mathbb{R}$ an upper bound of A. Construct two sequences (a_n) , (b_n) of real numbers with $a_n \in A$ and b_n an upper bound of A as follows.

- 1. $a_1 = a$ and $b_1 = b$.
- 2. Given a_n and b_n , let $c_n = (a_n + b_n)/2$. (a) If c_n is an upper bound of A, then let $a_{n+1} = a_n$ and $b_{n+1} = c_n$. (b) If c_n is not an upper bound of A, then choose $a_{n+1} \in A$ such that $c_n \leq a_{n+1} \leq b_n$ and let $b_{n+1} = b_n$.

Prove that the sequences (a_n) , (b_n) converge and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \sup A.$$

HINT. Note that $b_{n+1} - a_{n+1} \le (b_n - a_n)/2$.