ADVANCED CALCULUS
Math 25, Fall 2015
Sample Midterm Questions: Solutions

1. If f: X — Y is a function and A C X, then we define f(A) C Y by
flA)={yeY :y= f(z) for some x € X}.

(a) If A, B C X, prove that f(AU B) = f(A)U f(B).

(b) Is f(AN B) = f(A) N f(B)?

Solution.

o (a)Ifr e AUB,thenz € Aorz € B,so f(x) € f(A) or f(x) € f(B),
meaning that f(z) € f(A) U f(B). It follows that f(AU B) C f(A)U
f(B).

o Ify e f(A)U f(B), then y € f(A) or y € f(B), soy = f(z) where
x € Aor x € B, meaning that x € AUB and y € f(AU B). It follows
that f(A)U f(B) C f(AU B) and therefore f(AU B) = f(A) U f(B).

e (b) This equality need not hold if f is not one-to-one. As a counter-
example, let X = {a,b} and Y = {c} and define f : X — Y by
fla) = f(b) = ¢c. If A = {a} and B = {b}, then AN B = 0, so
f(ANB) =0, but f(A)N f(B) = {c} # 0.

Remark. It is always the case that f(AN B) C f(A) N f(B). Also,

JHAUB) = (A USHB),  [TH(ANB)=[(A)N[(B).



2. Let P(n,r) denote the rth element in the nth row of Pascal’s triangle:

n = 0O: 1

n=1: 1 1
n=2: 1 2 1
n=3J: 1 3 3 1

n=4: 1 4 6 4 1
where 0 <7 <ne.g., P(4,2) =6. Then

P(n,0) = P(n,n) =1,
P(n+1,7) = P(n,r — 1)+ P(n,r) for 1 <r <n.

(1)

Prove by induction that

Solution.
e Equation (2) holds for 1 <r <n—1if n =2, since P(2,1) = 2!/1!1L.

e Suppose that (2) holds for 1 < r < n — 1 for some n > 2. Then (1)
implies that for 2 <r <n — 1 we have

n! n!

P(n—i—l,?“): (T_1>!(n_r+1)!+r!(n—7“)!

- (r—1)7(!n—r)! (n—71"+1+%)

B n! [n—r—i—l%—r}
S (r=D!n—=n)|r(n—r+1)
_ (n+1)!

Crlln+1—r)



Also, if r = 1,n, we get from (1) that

n!
Un—1)!
=n+1

(n+1)

1n! 7’
n!

(n—1)1!

=n+1

(n+1)!
n!l! 7

Pn+1,1)=1+

Pn+1,n)= +1

so (2) holds for n + 1 with 1 < r < n. The result now follows by
induction.



3. (a) If A, B C R are nonempty sets that are bounded from above, prove
that sup(A U B) = max {sup A, sup B}.
(b) Is sup(A N B) = min {sup A, sup B}?

Solution.

e (a) Let M = max{sup A,supB}. If c€ AU B, then ¢ € A or ¢ € B,
so ¢ < supA or ¢ < sup B. In either case, ¢ < M, so M is an upper
bound of AU B.

o If M’ < M, then M’ < sup A or M' < sup B, and there exists a € A
such that a > M’ or b € B such that b > M’. In either case, there
exists ¢ € AU B such that ¢ > M’, so M’ is not an upper bound of
AU B. It follows that M is the least upper bound of A U B, which
proves the result.

e (b) This is false. For example, if A = {0,2} and B = {0, 3}, then
sup A = 2 and sup B = 3, so min {sup A4,sup B} = 2. On the other
hand, AN B = {0} so sup(AN B) =0.



4. (a) State the definition of the convergence of a sequence (z,) of real
numbers to a limit .

(b) For n € N, let
B ncosn + 3sinn

n?+n—10
Prove from the definition that x, — 0 as n — oc.

T

Solution.

e (a) x, = x as n — oo if for every € > 0 there exists N € N such that
n > N implies that |z, — x| < e.

e (b) Given € > 0, choose N = max{10,2/e}. Then if n > N, we have

ncosn + 3sinn n+3 (si | || sinn| < 1)
since |cosnl, |sinn
n?+n—10 In? +n — 10| ’ -
2n .
<3 (since n > 10)
<e€ (since n > 2/€),

which proves the result.

Remark. This value of N is not the optimal one, but we only have to show
that there is some N that satisfies the definition.



5. Suppose that (a,), (b,) are bounded sequences of real numbers. Prove
that
lim sup(a, + b,) < limsup a,, + lim sup b,.

n—oo n—oo n—oo

Give an example of sequences where we have strict inequality in this equation.

Solution.

o Let

Yn = sup{ag : k > n},
zp = sup{by, : k > n},
wy, = sup{ag + by : k > n}.

Then w,, < y,,+ 2,, since y,, + 2, is an upper bound of {a, +by : k > n}.
The definition of the limsup and the monotonicity and linearity of
limits then implies that

limsup(a, + b,) = lim w,
n—00 n—00

< lim (Y, + 2,)
n—o0
< lim y, + lim z,
n—o0 n—o0
< limsup a,, + limsup b,,.
n—o0 n—o0

e Let a, = (—1)" and b, = (—1)"**. Then

limsupa, = limsupb, =1,
n—oo n—oo
but a, + b, =0 and
lim sup(a,, + b,) = 0.

n—oo



6. Suppose that A C R is a nonempty set of real numbers that is bounded
from above. Let a € A be an element of A and b € R an upper bound of A.
Construct two sequences (a,), (b,) of real numbers with a,, € A and b, an
upper bound of A as follows.

1. a; = a and b; = b.

2. Given a,, and b,, let ¢, = (a, +b,)/2. (a) If ¢, is an upper bound of A,
then let a,,1 = a, and b, 1 = ¢,. (b) If ¢, is not an upper bound of
A, then choose a,,1 € A such that ¢, < a,.1 <b, and let b, = b,.

Prove that the sequences (a,), (b,) converge and

lim a, = lim b, = sup A.
n—oo n—oo

Solution.

e By construction, a, € A and b, is an upper bound of A, so a, < b,.
It follows that a, < ¢, < b,, and in both cases (a) and (b) we get
Uny1 > ap and b, 1 < b,. Thus, (a,) is an increasing sequence that is
bounded above by b and (b,) is a decreasing sequence that is bounded

below by a.
e The convergence theorem for monotone sequences implies that the lim-
its
lim a, = m, lim b, =M
n— o0 n— o0
both exist.

e In case (a), we have

b, —a
0 <bpt1— Gpp1 = Cp — an = - 2 ”7
and in case (b), we have
b, —a
Ogbn-l—l_an-l—l:bn_an—l—l Sbn_cn: " 9 n,
so in either case
bn — Qan
O S bn—i—l - an—l—l S 2 .



e Taking the limit of this equation as n — oo, we get that

M—-—m

Y

0<M-m<

which implies that M —m = 0.

e Finally, we show that the common limit m = M of these sequences is
equal to sup A.

e First, if x € A, then x < b, for every n € N, since b, is an upper bound
of A, so
r < lim b, = M,

n—oo

meaning that M is an upper bound of A.

e Second, if € > 0, then there exists n € N such that M — e < a,, < M,
since (ay,,) is an increasing sequence that converges to M. Since a,, € A,
it follows that M — € is not an upper bound of A, and therefore M =
sup A.

Remark. The assumption that every monotone increasing sequence of real
numbers that is bounded from above has a limit provides an alternative
formulation of the completeness axiom for R. The preceding argument shows
that this assumption implies that every set that is bounded from above has
a supremum; we proved the reverse implication in class.



