ADVANCED CALCULUS Math 25, Fall 2015 Sample Midterm Questions: Solutions

1. If $f: X \to Y$ is a function and $A \subset X$, then we define $f(A) \subset Y$ by

 $f(A) = \{ y \in Y : y = f(x) \text{ for some } x \in X \}.$

(a) If A, B ⊂ X, prove that f(A ∪ B) = f(A) ∪ f(B).
(b) Is f(A ∩ B) = f(A) ∩ f(B)?

Solution.

- (a) If $x \in A \cup B$, then $x \in A$ or $x \in B$, so $f(x) \in f(A)$ or $f(x) \in f(B)$, meaning that $f(x) \in f(A) \cup f(B)$. It follows that $f(A \cup B) \subset f(A) \cup f(B)$.
- If $y \in f(A) \cup f(B)$, then $y \in f(A)$ or $y \in f(B)$, so y = f(x) where $x \in A$ or $x \in B$, meaning that $x \in A \cup B$ and $y \in f(A \cup B)$. It follows that $f(A) \cup f(B) \subset f(A \cup B)$ and therefore $f(A \cup B) = f(A) \cup f(B)$.
- (b) This equality need not hold if f is not one-to-one. As a counterexample, let $X = \{a, b\}$ and $Y = \{c\}$ and define $f : X \to Y$ by f(a) = f(b) = c. If $A = \{a\}$ and $B = \{b\}$, then $A \cap B = \emptyset$, so $f(A \cap B) = \emptyset$, but $f(A) \cap f(B) = \{c\} \neq \emptyset$.

Remark. It is always the case that $f(A \cap B) \subset f(A) \cap f(B)$. Also,

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), \qquad f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

2. Let P(n,r) denote the *r*th element in the *n*th row of Pascal's triangle:

n = 0:					1				
n = 1:				1		1			
n = 2:			1		2		1		
n = 3:		1		3		3		1	
n = 4:	1		4		6		4		1

where $0 \le r \le n$ e.g., P(4, 2) = 6. Then

$$P(n,0) = P(n,n) = 1,$$

$$P(n+1,r) = P(n,r-1) + P(n,r) \quad \text{for } 1 \le r \le n.$$
(1)

Prove by induction that

$$P(n,r) = \frac{n!}{r!(n-r)!}.$$
(2)

Solution.

- Equation (2) holds for $1 \le r \le n-1$ if n = 2, since P(2, 1) = 2!/1!1!.
- Suppose that (2) holds for $1 \le r \le n-1$ for some $n \ge 2$. Then (1) implies that for $2 \le r \le n-1$ we have

$$P(n+1,r) = \frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{r!(n-r)!}$$
$$= \frac{n!}{(r-1)!(n-r)!} \left(\frac{1}{n-r+1} + \frac{1}{r}\right)$$
$$= \frac{n!}{(r-1)!(n-r)!} \left[\frac{n-r+1+r}{r(n-r+1)}\right]$$
$$= \frac{(n+1)!}{r!(n+1-r)!}.$$

Also, if r = 1, n, we get from (1) that

$$P(n+1,1) = 1 + \frac{n!}{1!(n-1)!}$$

= $n+1$
= $\frac{(n+1)}{1!n!}$,
$$P(n+1,n) = \frac{n!}{(n-1)!1!} + 1$$

= $n+1$
= $\frac{(n+1)!}{n!1!}$,

so (2) holds for n + 1 with $1 \le r \le n$. The result now follows by induction.

3. (a) If A, B ⊂ ℝ are nonempty sets that are bounded from above, prove that sup(A ∪ B) = max {sup A, sup B}.
(b) Is sup(A ∩ B) = min {sup A, sup B}?

Solution.

- (a) Let $M = \max \{ \sup A, \sup B \}$. If $c \in A \cup B$, then $c \in A$ or $c \in B$, so $c \leq \sup A$ or $c \leq \sup B$. In either case, $c \leq M$, so M is an upper bound of $A \cup B$.
- If M' < M, then $M' < \sup A$ or $M' < \sup B$, and there exists $a \in A$ such that a > M' or $b \in B$ such that b > M'. In either case, there exists $c \in A \cup B$ such that c > M', so M' is not an upper bound of $A \cup B$. It follows that M is the least upper bound of $A \cup B$, which proves the result.
- (b) This is false. For example, if $A = \{0, 2\}$ and $B = \{0, 3\}$, then $\sup A = 2$ and $\sup B = 3$, so $\min \{\sup A, \sup B\} = 2$. On the other hand, $A \cap B = \{0\}$ so $\sup(A \cap B) = 0$.

4. (a) State the definition of the convergence of a sequence (x_n) of real numbers to a limit x.

(b) For $n \in \mathbb{N}$, let

$$x_n = \frac{n\cos n + 3\sin n}{n^2 + n - 10}$$

Prove from the definition that $x_n \to 0$ as $n \to \infty$.

Solution.

- (a) $x_n \to x$ as $n \to \infty$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that n > N implies that $|x_n x| < \epsilon$.
- (b) Given $\epsilon > 0$, choose $N = \max\{10, 2/\epsilon\}$. Then if n > N, we have

$$\left|\frac{n\cos n + 3\sin n}{n^2 + n - 10}\right| \le \frac{n+3}{|n^2 + n - 10|} \qquad (\text{since } |\cos n|, |\sin n| \le 1)$$
$$< \frac{2n}{n^2} \qquad (\text{since } n > 10)$$
$$< \epsilon \qquad (\text{since } n > 2/\epsilon),$$

which proves the result.

Remark. This value of N is not the optimal one, but we only have to show that there is some N that satisfies the definition.

5. Suppose that (a_n) , (b_n) are bounded sequences of real numbers. Prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

Give an example of sequences where we have strict inequality in this equation.

Solution.

• Let

$$y_n = \sup\{a_k : k \ge n\},$$

$$z_n = \sup\{b_k : k \ge n\},$$

$$w_n = \sup\{a_k + b_k : k \ge n\}.$$

Then $w_n \leq y_n + z_n$, since $y_n + z_n$ is an upper bound of $\{a_k + b_k : k \geq n\}$. The definition of the lim sup and the monotonicity and linearity of limits then implies that

$$\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} w_n$$

$$\leq \lim_{n \to \infty} (y_n + z_n)$$

$$\leq \lim_{n \to \infty} y_n + \lim_{n \to \infty} z_n$$

$$\leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

• Let $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$. Then

$$\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 1,$$

but $a_n + b_n = 0$ and

$$\limsup_{n \to \infty} (a_n + b_n) = 0$$

6. Suppose that $A \subset \mathbb{R}$ is a nonempty set of real numbers that is bounded from above. Let $a \in A$ be an element of A and $b \in \mathbb{R}$ an upper bound of A. Construct two sequences (a_n) , (b_n) of real numbers with $a_n \in A$ and b_n an upper bound of A as follows.

- 1. $a_1 = a$ and $b_1 = b$.
- 2. Given a_n and b_n , let $c_n = (a_n + b_n)/2$. (a) If c_n is an upper bound of A, then let $a_{n+1} = a_n$ and $b_{n+1} = c_n$. (b) If c_n is not an upper bound of A, then choose $a_{n+1} \in A$ such that $c_n \leq a_{n+1} \leq b_n$ and let $b_{n+1} = b_n$.

Prove that the sequences (a_n) , (b_n) converge and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \sup A.$$

Solution.

- By construction, $a_n \in A$ and b_n is an upper bound of A, so $a_n \leq b_n$. It follows that $a_n \leq c_n \leq b_n$, and in both cases (a) and (b) we get $a_{n+1} \geq a_n$ and $b_{n+1} \leq b_n$. Thus, (a_n) is an increasing sequence that is bounded above by b and (b_n) is a decreasing sequence that is bounded below by a.
- The convergence theorem for monotone sequences implies that the limits

$$\lim_{n \to \infty} a_n = m, \qquad \lim_{n \to \infty} b_n = M$$

both exist.

• In case (a), we have

$$0 \le b_{n+1} - a_{n+1} = c_n - a_n = \frac{b_n - a_n}{2},$$

and in case (b), we have

$$0 \le b_{n+1} - a_{n+1} = b_n - a_{n+1} \le b_n - c_n = \frac{b_n - a_n}{2},$$

so in either case

$$0 \le b_{n+1} - a_{n+1} \le \frac{b_n - a_n}{2}.$$

• Taking the limit of this equation as $n \to \infty$, we get that

$$0 \le M - m \le \frac{M - m}{2},$$

which implies that M - m = 0.

- Finally, we show that the common limit m = M of these sequences is equal to $\sup A$.
- First, if $x \in A$, then $x \leq b_n$ for every $n \in \mathbb{N}$, since b_n is an upper bound of A, so

$$x \le \lim_{n \to \infty} b_n = M,$$

meaning that M is an upper bound of A.

• Second, if $\epsilon > 0$, then there exists $n \in \mathbb{N}$ such that $M - \epsilon < a_n \leq M$, since (a_n) is an increasing sequence that converges to M. Since $a_n \in A$, it follows that $M - \epsilon$ is not an upper bound of A, and therefore $M = \sup A$.

Remark. The assumption that every monotone increasing sequence of real numbers that is bounded from above has a limit provides an alternative formulation of the completeness axiom for \mathbb{R} . The preceding argument shows that this assumption implies that every set that is bounded from above has a supremum; we proved the reverse implication in class.