
Advanced Calculus

Math 25, Fall 2015

Sample Midterm Questions: Solutions

1. If f : X → Y is a function and A ⊂ X , then we define f(A) ⊂ Y by

f(A) = {y ∈ Y : y = f(x) for some x ∈ X} .

(a) If A,B ⊂ X , prove that f(A ∪B) = f(A) ∪ f(B).

(b) Is f(A ∩ B) = f(A) ∩ f(B)?

Solution.

• (a) If x ∈ A∪B, then x ∈ A or x ∈ B, so f(x) ∈ f(A) or f(x) ∈ f(B),
meaning that f(x) ∈ f(A) ∪ f(B). It follows that f(A ∪ B) ⊂ f(A) ∪
f(B).

• If y ∈ f(A) ∪ f(B), then y ∈ f(A) or y ∈ f(B), so y = f(x) where
x ∈ A or x ∈ B, meaning that x ∈ A∪B and y ∈ f(A∪B). It follows
that f(A) ∪ f(B) ⊂ f(A ∪B) and therefore f(A ∪B) = f(A) ∪ f(B).

• (b) This equality need not hold if f is not one-to-one. As a counter-
example, let X = {a, b} and Y = {c} and define f : X → Y by
f(a) = f(b) = c. If A = {a} and B = {b}, then A ∩ B = ∅, so
f(A ∩B) = ∅, but f(A) ∩ f(B) = {c} 6= ∅.

Remark. It is always the case that f(A ∩ B) ⊂ f(A) ∩ f(B). Also,

f−1(A ∪ B) = f−1(A) ∪ f−1(B), f−1(A ∩B) = f−1(A) ∩ f−1(B).
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2. Let P (n, r) denote the rth element in the nth row of Pascal’s triangle:
n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

where 0 ≤ r ≤ n e.g., P (4, 2) = 6. Then

P (n, 0) = P (n, n) = 1,

P (n+ 1, r) = P (n, r − 1) + P (n, r) for 1 ≤ r ≤ n.
(1)

Prove by induction that

P (n, r) =
n!

r!(n− r)!
. (2)

Solution.

• Equation (2) holds for 1 ≤ r ≤ n− 1 if n = 2, since P (2, 1) = 2!/1!1!.

• Suppose that (2) holds for 1 ≤ r ≤ n − 1 for some n ≥ 2. Then (1)
implies that for 2 ≤ r ≤ n− 1 we have

P (n+ 1, r) =
n!

(r − 1)!(n− r + 1)!
+

n!

r!(n− r)!

=
n!

(r − 1)!(n− r)!

(

1

n− r + 1
+

1

r

)

=
n!

(r − 1)!(n− r)!

[

n− r + 1 + r

r(n− r + 1)

]

=
(n+ 1)!

r!(n + 1− r)!
.
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Also, if r = 1, n, we get from (1) that

P (n+ 1, 1) = 1 +
n!

1!(n− 1)!

= n+ 1

=
(n+ 1)

1!n!
,

P (n+ 1, n) =
n!

(n− 1)!1!
+ 1

= n+ 1

=
(n+ 1)!

n!1!
,

so (2) holds for n + 1 with 1 ≤ r ≤ n. The result now follows by
induction.

3



3. (a) If A,B ⊂ R are nonempty sets that are bounded from above, prove
that sup(A ∪ B) = max {supA, supB}.

(b) Is sup(A ∩B) = min {supA, supB}?

Solution.

• (a) Let M = max {supA, supB}. If c ∈ A ∪ B, then c ∈ A or c ∈ B,
so c ≤ supA or c ≤ supB. In either case, c ≤ M , so M is an upper
bound of A ∪B.

• If M ′ < M , then M ′ < supA or M ′ < supB, and there exists a ∈ A
such that a > M ′ or b ∈ B such that b > M ′. In either case, there
exists c ∈ A ∪ B such that c > M ′, so M ′ is not an upper bound of
A ∪ B. It follows that M is the least upper bound of A ∪ B, which
proves the result.

• (b) This is false. For example, if A = {0, 2} and B = {0, 3}, then
supA = 2 and supB = 3, so min {supA, supB} = 2. On the other
hand, A ∩B = {0} so sup(A ∩B) = 0.
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4. (a) State the definition of the convergence of a sequence (xn) of real
numbers to a limit x.

(b) For n ∈ N, let

xn =
n cosn+ 3 sinn

n2 + n− 10
.

Prove from the definition that xn → 0 as n → ∞.

Solution.

• (a) xn → x as n → ∞ if for every ǫ > 0 there exists N ∈ N such that
n > N implies that |xn − x| < ǫ.

• (b) Given ǫ > 0, choose N = max{10, 2/ǫ}. Then if n > N , we have

∣

∣

∣

∣

n cosn+ 3 sinn

n2 + n− 10

∣

∣

∣

∣

≤
n + 3

|n2 + n− 10|
(since | cosn|, | sinn| ≤ 1)

<
2n

n2
(since n > 10)

< ǫ (since n > 2/ǫ),

which proves the result.

Remark. This value of N is not the optimal one, but we only have to show
that there is some N that satisfies the definition.
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5. Suppose that (an), (bn) are bounded sequences of real numbers. Prove
that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Give an example of sequences where we have strict inequality in this equation.

Solution.

• Let

yn = sup{ak : k ≥ n},

zn = sup{bk : k ≥ n},

wn = sup{ak + bk : k ≥ n}.

Then wn ≤ yn+zn, since yn+zn is an upper bound of {ak+bk : k ≥ n}.
The definition of the lim sup and the monotonicity and linearity of
limits then implies that

lim sup
n→∞

(an + bn) = lim
n→∞

wn

≤ lim
n→∞

(yn + zn)

≤ lim
n→∞

yn + lim
n→∞

zn

≤ lim sup
n→∞

an + lim sup
n→∞

bn.

• Let an = (−1)n and bn = (−1)n+1. Then

lim sup
n→∞

an = lim sup
n→∞

bn = 1,

but an + bn = 0 and
lim sup
n→∞

(an + bn) = 0.
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6. Suppose that A ⊂ R is a nonempty set of real numbers that is bounded
from above. Let a ∈ A be an element of A and b ∈ R an upper bound of A.
Construct two sequences (an), (bn) of real numbers with an ∈ A and bn an
upper bound of A as follows.

1. a1 = a and b1 = b.

2. Given an and bn, let cn = (an+ bn)/2. (a) If cn is an upper bound of A,
then let an+1 = an and bn+1 = cn. (b) If cn is not an upper bound of
A, then choose an+1 ∈ A such that cn ≤ an+1 ≤ bn and let bn+1 = bn.

Prove that the sequences (an), (bn) converge and

lim
n→∞

an = lim
n→∞

bn = supA.

Solution.

• By construction, an ∈ A and bn is an upper bound of A, so an ≤ bn.
It follows that an ≤ cn ≤ bn, and in both cases (a) and (b) we get
an+1 ≥ an and bn+1 ≤ bn. Thus, (an) is an increasing sequence that is
bounded above by b and (bn) is a decreasing sequence that is bounded
below by a.

• The convergence theorem for monotone sequences implies that the lim-
its

lim
n→∞

an = m, lim
n→∞

bn = M

both exist.

• In case (a), we have

0 ≤ bn+1 − an+1 = cn − an =
bn − an

2
,

and in case (b), we have

0 ≤ bn+1 − an+1 = bn − an+1 ≤ bn − cn =
bn − an

2
,

so in either case

0 ≤ bn+1 − an+1 ≤
bn − an

2
.
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• Taking the limit of this equation as n → ∞, we get that

0 ≤ M −m ≤
M −m

2
,

which implies that M −m = 0.

• Finally, we show that the common limit m = M of these sequences is
equal to supA.

• First, if x ∈ A, then x ≤ bn for every n ∈ N, since bn is an upper bound
of A, so

x ≤ lim
n→∞

bn = M,

meaning that M is an upper bound of A.

• Second, if ǫ > 0, then there exists n ∈ N such that M − ǫ < an ≤ M ,
since (an) is an increasing sequence that converges to M . Since an ∈ A,
it follows that M − ǫ is not an upper bound of A, and therefore M =
supA.

Remark. The assumption that every monotone increasing sequence of real
numbers that is bounded from above has a limit provides an alternative
formulation of the completeness axiom for R. The preceding argument shows
that this assumption implies that every set that is bounded from above has
a supremum; we proved the reverse implication in class.
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