
Advanced Calculus

Math 25, Fall 2015

Sample Midterm 2: Solutions

1. For each of the following series, determine (with proof) if it converges
absolutely, converges conditionally, or diverges.

(a)

∞
∑

n=1

1

n+
√
n
; (b)

∞
∑

n=1

(−1)n+1

n+
√
n
; (c)

∞
∑

n=1

(−1)n+1n

n +
√
n

;

(d)
∞
∑

n=1

(

1√
n
− 1√

n + 1

)

; (e)
∞
∑

n=1

(−1)n+1

√
n(n + 1)

;

Solution.

• (a) Since
√
n ≤ n for n ≥ 1, we have

1

n +
√
n
≥ 1

2n
,

and the series diverges to ∞ by comparison with the harmonic series.

• (b) If an = 1/(n+
√
n), then (an) is a decreasing sequences with an → 0

as n → ∞, so the alternating series test implies that the series con-
verges. From (a), the series does not converge absolutely, so it is con-
ditionally convergent.

• (c) We have

lim
n→∞

n

n+
√
n
= 1,

so the terms in the series do not have zero limit (in fact, the limit of
the terms with alternating signs does not exist) and the series diverges.

• (d) This series is a telescoping series, and

N
∑

n=1

(

1√
n
− 1√

n+ 1

)

= 1− 1√
N + 1

→ 1 as N → ∞,

so the series converges (to 1). Since the terms are positive, the series
is absolutely convergent.
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• (e) We have
∣

∣

∣

∣

(−1)n+1

√
n(n+ 1)

∣

∣

∣

∣

<
1

n3/2
,

so the series converges absolutely by comparison with a convergent p-
series with p = 3/2 > 1.
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2. Say if the following statements are true or false and justify your answer.

(a) If every convergent subsequence of a sequence has the same limit, then
the sequence converges.

(b) If a sequence has a divergent subsequence, then the sequence diverges.

(c) If
∑

an and
∑

(−1)n+1an converge, then
∑

an converges absolutely.

Solution.

• (a) False. For example, in the case of the series (xn)

1, 0, 2, 0, 3, 0, 4, 0, 5, 0, . . .

with alternating increasing numbers n ∈ N and zeros,

x2n−1 = n, x2n = 0,

the only convergent subsequences are the ones whose terms are even-
tually equal to 0 (all other subsequences are unbounded), so they have
the same limit, but the sequence does not converge.

• (b) True. If a sequence converges, then every subsequence converges (to
the same limit as the original sequence). The contrapositive statement
says that if some subsequence diverges, then the sequence diverges.

• (c) False. For example, consider the series

1 + 0− 1

2
+ 0 +

1

3
+ 0− 1

4
+ 0 +

1

5
+ . . . ,

consisting of the alternating harmonic series with zero’s inserted be-
tween every term. Explicitly,

a2n−1 =
(−1)n+1

n
, a2n = 0.

Then (−1)n+1an = an for every n ∈ N, since (−1)n+1 = 1 if n is odd and
an = 0 if n is even. Therefore both

∑

an and
∑

(−1)n+1an converge
because the alternating harmonic series converges, but the series does
not converge absolutely since the harmonic series diverges.
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3. (a) State the definition of a Cauchy sequence.

(b) Suppose that (xn) is a sequence such that

|xn − xn+1| ≤
1

2n
for every n ∈ N.

Prove that (xn) converges.

(c) Suppose that (xn) is a sequence such that

|xn − xn+1| ≤
1

n
for every n ∈ N.

Does it follow that (xn) converges?

Solution.

• (a) A sequence (xn) is Cauchy if for every ǫ > 0 there exists N ∈ N

such that m,n > N implies that |xm − xn| < ǫ.

• (b) For n > m, we have the telescoping sum

xn − xm = (xn − xn−1) + (xn−1 − xn−2) + · · ·+ (xm+1 − xm)

=

n
∑

k=m+1

(xk − xk−1) .

It follows that

|xn − xm| ≤
n

∑

k=m+1

|xk − xk−1| ≤
n

∑

k=m+1

1

2k
.

Let ǫ > 0. The geometric series
∑

1/2n converges, so by the Cauchy
condition for series there exists N ∈ N such that n > m > N implies
that

n
∑

k=m+1

1

2k
< ǫ.

It follows that m,n > N implies that |xm − xn| < ǫ, so the sequence
(xn) is a Cauchy sequence and therefore it converges.
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• (c) It does not follow that (xn) converges. The previous proof fails
because the harmonic series

∑

1/n diverges. To give an explicit coun-
terexample, let

xn =
n

∑

k=1

1

k
.

Then

|xn − xn+1| =
1

n+ 1
<

1

n

but (xn) diverges to ∞ as n → ∞.
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4. Prove the following statements. (You can use any standard properties or
inequalities satisfied by cosx and sin x.)

(a) If
∑

xn converges then
∑

cosxn diverges.

(b) If
∑

xn converges absolutely then
∑

sin xn converges.

Solution.

• (a) If
∑

xn converges, then xn → 0 as n → ∞, so cosxn → 1 as
n → ∞. Since the terms in the series

∑

cosxn have non-zero limit, the
series diverges.

• (b) We have the inequality | sinx| ≤ |x| for every x ∈ R, so
∑

sin xn

converges (absolutely) by comparison with the series
∑

|xn|, which
converges since

∑

xn converges absolutely.
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5. (a) State the Bolzano-Weierstrass theorem.

(b) The nested interval property says that if (In) is a nested sequence of non-
empty, closed, bounded intervals In = [an, bn] with In+1 ⊂ In, then

⋂

∞

n=1
In is

nonempty. Use the Bolzano-Weierstrass theorem to prove the nested interval
property.

Solution.

• (a) Bolzano-Weierstrass theorem: Every bounded sequence of real num-
bers has a convergent subsequence.

• (b) For each n ∈ N, choose xn ∈ In. Since xn ∈ I1 for every n ∈ N, the
sequence (xn) is bounded, and it follows from the Bolzano-Weierstrass
theorem that it has a convergent subsequence (xnk

). If xnk
→ x as

k → ∞, then we claim that x ∈
⋂

∞

n=1
In, so the intersection is non-

empty.

• To prove the claim, note that for every N ∈ N, we have xnk
∈ IN

for all sufficiently large k ∈ N (such that nk ≥ N). It follows that
aN ≤ xnk

≤ bN . Taking the limit of this inequality as k → ∞ and
using the monotonicity property of limits, we get that aN ≤ x ≤ bN .
Thus, x ∈ IN for every N ∈ N.
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