ADVANCED CALCULUS Math 25, Fall 2015 Sample Midterm 2: Solutions

1. For each of the following series, determine (with proof) if it converges absolutely, converges conditionally, or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$$
; (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+\sqrt{n}}$; (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n+\sqrt{n}}$;
(d) $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$; (e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}(n+1)}$;

Solution.

• (a) Since $\sqrt{n} \le n$ for $n \ge 1$, we have

$$\frac{1}{n+\sqrt{n}} \ge \frac{1}{2n},$$

and the series diverges to ∞ by comparison with the harmonic series.

- (b) If a_n = 1/(n+√n), then (a_n) is a decreasing sequences with a_n → 0 as n → ∞, so the alternating series test implies that the series converges. From (a), the series does not converge absolutely, so it is conditionally convergent.
- (c) We have

$$\lim_{n \to \infty} \frac{n}{n + \sqrt{n}} = 1,$$

so the terms in the series do not have zero limit (in fact, the limit of the terms with alternating signs does not exist) and the series diverges.

• (d) This series is a telescoping series, and

$$\sum_{n=1}^{N} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = 1 - \frac{1}{\sqrt{N+1}} \to 1 \quad \text{as } N \to \infty,$$

so the series converges (to 1). Since the terms are positive, the series is absolutely convergent.

• (e) We have

$$\left|\frac{(-1)^{n+1}}{\sqrt{n}(n+1)}\right| < \frac{1}{n^{3/2}},$$

so the series converges absolutely by comparison with a convergent *p*-series with p = 3/2 > 1.

2. Say if the following statements are true or false and justify your answer.(a) If every convergent subsequence of a sequence has the same limit, then the sequence converges.

(b) If a sequence has a divergent subsequence, then the sequence diverges.

(c) If $\sum a_n$ and $\sum (-1)^{n+1} a_n$ converge, then $\sum a_n$ converges absolutely.

Solution.

• (a) False. For example, in the case of the series (x_n)

$$1, 0, 2, 0, 3, 0, 4, 0, 5, 0, \ldots$$

with alternating increasing numbers $n \in \mathbb{N}$ and zeros,

$$x_{2n-1} = n, \qquad x_{2n} = 0,$$

the only convergent subsequences are the ones whose terms are eventually equal to 0 (all other subsequences are unbounded), so they have the same limit, but the sequence does not converge.

- (b) True. If a sequence converges, then every subsequence converges (to the same limit as the original sequence). The contrapositive statement says that if some subsequence diverges, then the sequence diverges.
- (c) False. For example, consider the series

$$1 + 0 - \frac{1}{2} + 0 + \frac{1}{3} + 0 - \frac{1}{4} + 0 + \frac{1}{5} + \dots,$$

consisting of the alternating harmonic series with zero's inserted between every term. Explicitly,

$$a_{2n-1} = \frac{(-1)^{n+1}}{n}, \qquad a_{2n} = 0.$$

Then $(-1)^{n+1}a_n = a_n$ for every $n \in \mathbb{N}$, since $(-1)^{n+1} = 1$ if n is odd and $a_n = 0$ if n is even. Therefore both $\sum a_n$ and $\sum (-1)^{n+1}a_n$ converge because the alternating harmonic series converges, but the series does not converge absolutely since the harmonic series diverges.

3. (a) State the definition of a Cauchy sequence.

(b) Suppose that (x_n) is a sequence such that

$$|x_n - x_{n+1}| \le \frac{1}{2^n}$$
 for every $n \in \mathbb{N}$.

Prove that (x_n) converges.

(c) Suppose that (x_n) is a sequence such that

$$|x_n - x_{n+1}| \le \frac{1}{n}$$
 for every $n \in \mathbb{N}$.

Does it follow that (x_n) converges?

Solution.

- (a) A sequence (x_n) is Cauchy if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that m, n > N implies that $|x_m x_n| < \epsilon$.
- (b) For n > m, we have the telescoping sum

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{m+1} - x_m)$$
$$= \sum_{k=m+1}^n (x_k - x_{k-1}).$$

It follows that

$$|x_n - x_m| \le \sum_{k=m+1}^n |x_k - x_{k-1}| \le \sum_{k=m+1}^n \frac{1}{2^k}.$$

Let $\epsilon > 0$. The geometric series $\sum 1/2^n$ converges, so by the Cauchy condition for series there exists $N \in \mathbb{N}$ such that n > m > N implies that

$$\sum_{k=m+1}^{n} \frac{1}{2^k} < \epsilon.$$

It follows that m, n > N implies that $|x_m - x_n| < \epsilon$, so the sequence (x_n) is a Cauchy sequence and therefore it converges.

• (c) It does not follow that (x_n) converges. The previous proof fails because the harmonic series $\sum 1/n$ diverges. To give an explicit counterexample, let

$$x_n = \sum_{k=1}^n \frac{1}{k}.$$

Then

$$|x_n - x_{n+1}| = \frac{1}{n+1} < \frac{1}{n}$$

but (x_n) diverges to ∞ as $n \to \infty$.

4. Prove the following statements. (You can use any standard properties or inequalities satisfied by $\cos x$ and $\sin x$.)

- (a) If $\sum x_n$ converges then $\sum \cos x_n$ diverges.
- (b) If $\sum x_n$ converges absolutely then $\sum \sin x_n$ converges.

Solution.

- (a) If $\sum x_n$ converges, then $x_n \to 0$ as $n \to \infty$, so $\cos x_n \to 1$ as $n \to \infty$. Since the terms in the series $\sum \cos x_n$ have non-zero limit, the series diverges.
- (b) We have the inequality $|\sin x| \leq |x|$ for every $x \in \mathbb{R}$, so $\sum \sin x_n$ converges (absolutely) by comparison with the series $\sum |x_n|$, which converges since $\sum x_n$ converges absolutely.

5. (a) State the Bolzano-Weierstrass theorem.

(b) The nested interval property says that if (I_n) is a nested sequence of nonempty, closed, bounded intervals $I_n = [a_n, b_n]$ with $I_{n+1} \subset I_n$, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty. Use the Bolzano-Weierstrass theorem to prove the nested interval property.

Solution.

- (a) Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a convergent subsequence.
- (b) For each $n \in \mathbb{N}$, choose $x_n \in I_n$. Since $x_n \in I_1$ for every $n \in \mathbb{N}$, the sequence (x_n) is bounded, and it follows from the Bolzano-Weierstrass theorem that it has a convergent subsequence (x_{n_k}) . If $x_{n_k} \to x$ as $k \to \infty$, then we claim that $x \in \bigcap_{n=1}^{\infty} I_n$, so the intersection is non-empty.
- To prove the claim, note that for every $N \in \mathbb{N}$, we have $x_{n_k} \in I_N$ for all sufficiently large $k \in \mathbb{N}$ (such that $n_k \geq N$). It follows that $a_N \leq x_{n_k} \leq b_N$. Taking the limit of this inequality as $k \to \infty$ and using the monotonicity property of limits, we get that $a_N \leq x \leq b_N$. Thus, $x \in I_N$ for every $N \in \mathbb{N}$.