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LECTURE 1

Introduction

The source of all great mathematics is the special case, the con-
crete example. It is frequent in mathematics that every instance
of a concept of seemingly great generality is in essence the same
as a small and concrete special case.1

We begin by describing a rather general framework for the derivation of PDEs
that describe the conservation, or balance, of some quantity.

1. Conservation laws

We consider a quantity Q that varies in space, ~x, and time, t, with density u(~x, t),
flux ~q (~x, t), and source density σ (~x, t).

For example, ifQ is the mass of a chemical species diffusing through a stationary
medium, we may take u to be the density, ~q the mass flux, and f the mass rate per
unit volume at which the species is generated.

For simplicity, we suppose that u(x, t) is scalar-valued, but exactly the same
considerations would apply to a vector-valued density (leading to a system of equa-
tions).

1.1. Integral form

The conservation of Q is expressed by the condition that, for any fixed spatial
region Ω, we have

(1.1)
d

dt

∫
Ω

u d~x = −
∫
∂Ω

~q · ~n dS +

∫
Ω

σ d~x.

Here, ∂Ω is the boundary of Ω, ~n is the unit outward normal, and dS denotes
integration with respect to surface area.

Equation (1.1) is the integral form of conservation of Q. It states that, for any
region Ω, the rate of change of the total amount of Q in Ω is equal to the rate
at which Q flows into Ω through the boundary ∂Ω plus the rate at which Q is
generated by sources inside Ω.

1.2. Differential form

Bringing the time derivative in (1.1) inside the integral over the fixed region Ω, and
using the divergence theorem, we may write (1.1) as∫

Ω

ut d~x =

∫
Ω

(−∇ · ~q + σ) d~x

1P. Halmos.
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Since this equation holds for arbitrary regions Ω, it follows that, for smooth func-
tions,

(1.2) ut = −∇ · ~q + σ.

Equation (1.2) is the differential form of conservation of Q.
When the source term σ is nonzero, (1.2) is often called, with more accuracy,

a balance law for Q, rather than a conservation law, but we won’t insist on this
distinction.

2. Constitutive equations

The conservation law (1.2) is not a closed equation for the density u. Typically,
we supplement it with constitutive equations that relate the flux ~q and the source
density σ to u and its derivatives. While the conservation law expresses a gen-
eral physical principle, constitutive equations describe the response of a particular
system being modeled.

Example 1.1. If the flux and source are pointwise functions of the density,

~q = ~f(u), σ = g(u),

then we get a first-order system of PDEs

ut +∇ · ~f(u) = g(u).

For example, in one space dimension, if g(u) = 0 and f(u) = u2/2, we get the
inviscid Burgers equation

ut +

(
1

2
u2

)
x

= 0.

This equation is a basic model equation for hyperbolic systems of conservation laws,
such as the compressible Euler equations for the flow of an inviscid compressible
fluid [47].

Example 1.2. Suppose that the flux is a linear function of the density gradient,

(1.3) ~q = −A∇u,
where A is a second-order tensor, that is a linear map between vectors. It is
represented by an n × n matrix with respect to a choice of n basis vectors. Then,
if σ = 0, we get a second order, linear PDE for u(~x, t)

(1.4) ut = ∇ · (A∇u) .

Examples of this constitutive equation include: Fourier’s law in heat conduction
(heat flux is a linear function of temperature gradient); Fick’s law (flux of solute is
a linear function of the concentration gradient); and Darcy’s law (fluid velocity in
a porous medium is a linear function of the pressure gradient). It is interesting to
note how old each of these laws is: Fourier (1822); Fick (1855); Darcy (1855).

The conductivity tensor A in (1.3) is usually symmetric and positive-definite,
in which case (1.4) is a parabolic PDE; the corresponding PDE for equilibrium
density distributions u(~x) is then an elliptic equation

∇ · (A∇u) = 0.

In general, the conductivity tensor may depend upon ~x in a nonuniform system,
and on u in non-linearly diffusive systems. While A is almost always symmetric,
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it need not be diagonal in an anisotropic system. For example, the heat flux in
a crystal lattice or in a composite medium made up of alternating thin layers of
copper and asbestos is not necessarily in the same direction as the temperature
gradient.

For a uniform, isotropic, linear system, we have A = νI where ν is a positive
constant, and then u(~x, t) satisfies the heat, or diffusion, equation

ut = ν∆u.

Equilibrium solutions satisfy Laplace’s equation

∆u = 0.

3. The KPP equation

In this section, we discuss a specific example of an equation that arises as a model
in population dynamics and genetics.

3.1. Reaction-diffusion equations

If ~q = −ν∇u and σ = f(u) in (1.2), we get a reaction-diffusion equation

ut = ν∆u+ f(u).

Spatially uniform solutions satisfy the ODE

ut = f(u),

which is the ‘reaction’ equation. In addition, diffusion couples together the solution
at different points.

Such equations arise, for example, as models of spatially nonuniform chemical
reactions, and of population dynamics in spatially distributed species.

The combined effects of spatial diffusion and nonlinear reaction can lead to the
formation of many different types of spatial patterns; the spiral waves that occur
in Belousov-Zabotinski reactions are one example.

One of the simplest reaction-diffusion equations is the KPP equation (or Fisher
equation)

(1.5) ut = νuxx + ku(a− u).

Here, ν, k, a are positive constants; as we will show, they may be set equal to 1
without loss of generality.

Equation (1.5) was introduced independently by Fisher [22], and Kolmogorov,
Petrovsky, and Piskunov [33] in 1937. It provides a simple model for the dispersion
of a spatially distributed species with population density u(x, t) or, in Fisher’s work,
for the advance of a favorable allele through a spatially distributed population.

3.2. Maximum principle

According to the maximum principle, the solution of (1.5) remains nonnegative if
the initial data u0(x) = u(x, 0) is non-negative, which is consistent with its use as
a model of population or probability.

The maximum principle holds because if u first crosses from positive to negative
values at time t0 at the point x0, and if u(x, t) has a nondegenerate minimum at x0,
then uxx(x0, t0) > 0. Hence, from (1.5), ut(x0, t0) > 0, so u cannot evolve forward
in time into the region u < 0. A more careful argument is required to deal with
degenerate minima, and with boundaries, but the conclusion is the same [18, 42].

A similar argument shows that u(x, t) ≤ 1 for all t ≥ 0 if u0(x) ≤ 1.
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Remark 1.3. A forth-order diffusion equation, such as

ut = −uxxxx + u(1− u),

does not satisfy a maximum principle, and it is possible for positive initial data to
evolve into negative values.

3.3. Logistic equation

Spatially uniform solutions of (1.5) satisfy the logistic equation

(1.6) ut = ku(a− u).

This ODE has two equilibrium solutions at u = 0, u = a.
The solution u = 0 corresponds to a complete absence of the species, and

is unstable. Small disturbances grow initially like u0e
kat. The solution u = a

corresponds to the maximum population that can be sustained by the available
resources. It is globally asymptotically stable, meaning that any solution of (1.6)
with a strictly positive initial value approaches a as t→∞.

Thus, the PDE (1.5) describes the evolution of a population that satisfies lo-
gistic dynamics at each point of space coupled with dispersal into regions of lower
population.

3.4. Nondimensionalization

Before discussing (1.5) further, we simplify the equation by rescaling the variables
to remove the constants. Let

u = Uū, x = Lx̄, t = T t̄

where U , L, T are arbitrary positive constants. Then

∂

∂x
=

1

L

∂

∂x̄
,
∂

∂t
=

1

T

∂

∂t̄
.

It follows that ū (x̄, t̄) satisfies

ūt̄ =

(
νT

L2

)
ūx̄x̄ + (kTU) ū

( a
U
− ū
)
.

Therefore, choosing

(1.7) U = a, T =
1

ka
, L =

√
ν

ka
,

and dropping the bars, we find that u(x, t) satisfies

(1.8) ut = uxx + u(1− u).

Thus, in the absence of any other parameters, none of the coefficients in (1.5) are
essential.

If we consider (1.5) on a finite domain of length `, then the problem depends
in an essential way on a dimensionless constant R, which we may write as

R =
ka`2

ν
.

We could equivalently use 1/R or
√

R, or some other expression, instead of R. From
(1.7), we have R = Td/Tr where Tr = T is a timescale for solutions of the reaction
equation (1.6) to approach the equilibrium value a, and Td = `2/ν is a timescale
for linear diffusion to significantly influence the entire length ` of the domain. The
qualitative behavior of solutions depends on R.
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When dimensionless parameters exist, we have a choice in how we define dimen-
sionless variables. For example, on a finite domain, we could nondimensionalize as
above, which would give (1.8) on a domain of length

√
R. Alternatively, we might

prefer to use the length ` of the domain to nondimensionalize lengths. In that case,
the nondimensionalized domain has length 1, and the nondimensionalized form of
(1.5) is

ut =
1

R
uxx + u (1− u) .

We get a small, or large, dimensionless diffusivity if the diffusive timescale is large,
or small, respectively, compared with the reaction time scale.

Somewhat less obviously, even on infinite domains additional lengthscales may
be introduced into a problem by initial data

u(x, 0) = u0(x).

Using the variables (1.7), we get the nondimensionalized initial condition

ū (x̄, 0) = ū0 (x̄) ,

where

ū0 (x̄) =
1

a
u0 (Lx̄) .

Thus, for example, if u0 has a typical amplitude a and varies over a typical length-
scale of `, then we may write

u0(x) = af̄
(x
`

)
where f̄ is a dimensionless function. Then

ū0 (x̄) = f̄
(√

Rx̄
)
,

and the evolution of the solution depends upon whether the initial data varies
rapidly, slowly, or on the same scale as the reaction-diffusion length scale L.

3.5. Traveling waves

One of the principal features of the KPP equation is the existence of traveling waves
which describe the invasion of an unpopulated region (or a region whose population
does not possess the favorable allele) from an adjacent populated region.

A traveling wave is a solution of the form

(1.9) u(x, t) = f(x− ct)

where c is a constant wave speed. This solution consists of a fixed spatial profile
that propagates with velocity c without changing its shape.

For definiteness we assume that c > 0. The case c < 0 can be reduced to
this one by a reflection x 7→ −x, which transforms a right-moving wave into a
left-moving wave.

Use of (1.9) in (1.8) implies that f(x) satisfies the ODE

(1.10) f ′′ + cf ′ + f(1− f) = 0.

The equilibria of this ODE are f = 0, f = 1.
Note that (1.10) describes the spatial dynamics of traveling waves, whereas (1.6)

describes the temporal dynamics of uniform solutions. Although these equations
have the same equilibrium solutions, they are different ODEs (for example, one
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is second order, and the other first order) and the stability of their equilibrium
solutions means different things.

The linearization of (1.10) at f = 0 is

f ′′ + cf ′ + f = 0.

The characteristic equation of this ODE is

λ2 + cλ+ 1 = 0

with roots

λ =
1

2

{
−c±

√
c2 − 4

}
.

Thus, the equilibrium f = 0 is a stable spiral point if 0 < c < 2, a degenerate stable
node if c = 2, and a stable node if 2 < c <∞.

The linearization of (1.10) at f = 1 is

f ′′ + cf ′ − f = 0.

The characteristic equation of this ODE is

λ2 + cλ− 1 = 0

with roots

λ =
1

2

{
−c±

√
c2 + 4

}
.

Thus, the equilibrium f = 1 is a saddlepoint.
As we will show next, for any 2 ≤ c <∞ there is a unique positive heteroclinic

orbit F (x) connecting the unstable saddle point at f = 1 to the stable equilibrium
at f = 0, meaning that

F (x)→ 1 as x→ −∞; F (x)→ 0 as x→∞.

These right-moving waves describe the invasion of the state u = 0 by the state
u = 1. Reflecting x 7→ −x, we get a corresponding family of left-moving traveling
waves with −∞ < c ≤ −2.

Since the traveling wave ODE (1.10) is autonomous, if F (x) is a solution then
so is F (x − x0) for any constant x0. This solution has the same orbit as F (x),
and corresponds to a traveling wave of the same velocity that is translated by a
constant distance x0.

There is also a traveling wave solution for 0 < c < 2 However, in that case
the solution becomes negative near 0 since f = 0 is a spiral point. This solution is
therefore not relevant to the biological application we have and mind. Moreover,
by the maximum principle, it cannot arise from nonnegative initial data.

The traveling wave most relevant to the applications considered above is, per-
haps, the positive one with the slowest speed (c = 2); this is the one that describes
the mechanism of diffusion from the populated region into the unpopulated one,
followed by logistic growth of the diffusive perturbation. The faster waves arise be-
cause of the growth of small, but nonzero, pre-existing perturbations of the unstable
state u = 0 ahead of the wavefront.

The linear instability of the state u = 0 is arguably a defect of the model. If
there were a threshold below which a small population died out, then this depen-
dence of the wave speed on the decay rate of the initial data would not arise.
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3.6. The existence of traveling waves

Let us discuss the existence of positive traveling waves in a little more detail.
If c = 5/

√
6, there is a simple explicit solution for the traveling wave [1]:

F (x) =
1(

1 + ex/
√

6
)2 .

Although there is no similar explicit solution for general values of c, we can show
the existence of traveling waves by a qualitative argument.

Writing (1.10) as a first order system of ODEs for (f, g), where g = f ′, we get

f ′ = g,

g′ = −f(1− f)− cg.
(1.11)

For c ≥ 2, we choose 0 < β ≤ 1 such that

β +
1

β
= c, β =

1

2

(
c−

√
c2 − 4

)
.

Then, on the line g = −βf with 0 < f ≤ 1, the trajectories of the system satisfy

dg

df
=
g′

f ′
= −c− f(1− f)

g
= −c+

1− f
β

< −c+
1

β
= −β.

Since f ′ < 0 for g < 0, and dg/df < −β, the trajectories of the ODE enter the
triangular region

D = {(f, g) : 0 < f < 1,−βf < g < 0} .
Moreover, since g′ < 0 on g = 0 when 0 < f < 1, and f ′ < 0 on f = 1 when

g < 0, the region D is positively invariant (meaning that any trajectory that starts
in the region remains in the region for all later times).

The linearization of the system (1.11) at the fixed point (f, g) = (1, 0) is(
f ′

g′

)
=

(
0 1
1 −c

)(
f
g

)
.

The unstable manifold of (1, 0), with corresponding eigenvalue

λ =
1

2

(
−c+

√
c2 + 4

)
> 0,

is in the direction

~r =

(
−1
−λ

)
.

The corresponding trajectory below the f -axis must remain in D, and since D
contains no other fixed points or limit cycles, it must approach the fixed point
(0, 0) as x→∞.

Thus, a nonnegative traveling wave connecting f = 1 to f = 0 exists for every
c ≥ 2.

3.7. The initial value problem

Consider the following initial value problem for the KPP equation

ut = uxx + u(1− u),

u(x, 0) = u0(x),

u(x, t)→ 1 as x→ −∞,
u(x, t)→ 0 as x→∞.
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Kolmogorov, Petrovsky and Piskunov proved that if 0 ≤ u0(x) ≤ 1 is any initial
data that is exactly equal to 1 for all sufficiently large negative x, and exactly equal
to 0 for all sufficiently large positive x, then the solution approaches the traveling
wave with c = 2 as t→∞.

This result is sensitive to a change in the spatial decay rate of the initial data
into the unstable state u = 0. Specifically, suppose that

u0(x) ∼ Ce−βx

as x → ∞, where β is some positive constant (and C is nonzero). If β ≥ 1, then
the solution approaches a traveling wave of speed 2; but if 0 < β < 1, meaning that
the initial data decays more slowly, then the solution approaches a traveling wave
of speed

c(β) = β +
1

β
.

This is the wave speed of the traveling wave solution of (1.10) that decays to f = 0
at the rate f ∼ Ce−βx.
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Figure 1. The phase plane for the KPP traveling wave, showing
the heteroclinic orbit connecting (1, 0) to (0, 0) (courtesy of Tim
Lewis).
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Figure 2. The spatial profile of the traveling wave.



LECTURE 2

Dimensional Analysis, Scaling, and Similarity

1. Systems of units

The numerical value of any quantity in a mathematical model is measured with
respect to a system of units (for example, meters in a mechanical model, or dollars
in a financial model). The units used to measure a quantity are arbitrary, and a
change in the system of units (for example, from meters to feet) cannot change the
model.

A crucial property of a quantitative system of units is that the value of a
dimensional quantity may be measured as some multiple of a basic unit. Thus, a
change in the system of units leads to a rescaling of the quantities it measures, and
the ratio of two quantities with the same units does not depend on the particular
choice of the system. The independence of a model from the system of units used to
measure the quantities that appear in it therefore corresponds to a scale-invariance
of the model.

Remark 2.1. Sometimes it is convenient to use a logarithmic scale of units instead
of a linear scale (such as the Richter scale for earthquake magnitudes, or the stellar
magnitude scale for the brightness of stars) but we can convert this to an underlying
linear scale. In other cases, qualitative scales are used (such as the Beaufort wind
force scale), but these scales (“leaves rustle” or “umbrella use becomes difficult”)
are not susceptible to a quantitative analysis (unless they are converted in some
way into a measurable linear scale). In any event, we will take connection between
changes in a system of units and rescaling as a basic premise.

A fundamental system of units is a set of independent units from which all
other units in the system can be derived. The notion of independent units can be
made precise in terms of the rank of a suitable matrix [7, 10] but we won’t give
the details here.

The choice of fundamental units in a particular class of problems is not unique,
but, given a fundamental system of units, any other derived unit may be constructed
uniquely as a product of powers of the fundamental units.

Example 2.2. In mechanical problems, a fundamental set of units is mass, length,
time, or M , L, T , respectively, for short. With this fundamental system, velocity
V = LT−1 and force F = MLT−2 are derived units. We could instead use, say,
force F , length L, and time T as a fundamental system of units, and then mass
M = FL−1T 2 is a derived unit.

Example 2.3. In problems involving heat flow, we may introduce temperature
(measured, for example, in Kelvin) as a fundamental unit. The linearity of temper-
ature is somewhat peculiar: although the ‘zeroth law’ of thermodynamics ensures
that equality of temperature is well defined, it does not say how temperatures can

11
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be ‘added.’ Nevertheless, empirical temperature scales are defined, by convention,
to be linear scales between two fixed points, while thermodynamics temperature is
an energy, which is additive.

Example 2.4. In problems involving electromagnetism, we may introduce current
as a fundamental unit (measured, for example, in Ampères in the SI system) or
charge (measured, for example, in electrostatic units in the cgs system). Unfortu-
nately, the officially endorsed SI system is often less convenient for theoretical work
than the cgs system, and both systems remain in use.

Not only is the distinction between fundamental and derived units a matter of
choice, or convention, the number of fundamental units is also somewhat arbitrary.
For example, if dimensional constants are present, we may reduce the number of
fundamental units in a given system by setting the dimensional constants equal to
fixed dimensionless values.

Example 2.5. In relativistic mechanics, if we use M , L, T as fundamental units,
then the speed of light c is a dimensional constant (c = 3× 108 ms−1 in SI-units).
Instead, we may set c = 1 and use M , T (for example) as fundamental units. This
means that we measure lengths in terms of the travel-time of light (one nanosecond
being a convenient choice for everyday lengths).

2. Scaling

Let (d1, d2, . . . , dr) denote a fundamental system of units, such as (M,L, T ) in
mechanics, and a a quantity that is measurable with respect to this system. Then
the dimension of a, denoted [a], is given by

(2.1) [a] = dα1
1 dα2

2 . . . dαrr

for suitable exponents (α1, α2, . . . , αr).
Suppose that (a1, a2, . . . , an) denotes all of the dimensional quantities appearing

in a particular model, including parameters, dependent variables, and independent
variables. We denote the dimension of ai by

(2.2) [ai] = d
α1,i

1 d
α2,i

2 . . . dαr,ir .

The invariance of the model under a change in units dj 7→ λjdj implies that it
is invariant under the scaling transformation

ai → λ
α1,i

1 λ
α2,i

2 . . . λαr,ir ai i = 1, . . . , n

for any λ1, . . . λr > 0.
Thus, if

a = f (a1, . . . , an)

is any relation between quantities in the model with the dimensions in (2.1) and
(2.2), then f must have the scaling property that

λα1
1 λα2

2 . . . λαrr f (a1, . . . , an) = f
(
λ
α1,1

1 λ
α2,1

2 . . . λαr,1r a1, . . . , λ
α1,n

1 λ
α2,n

2 . . . λαr,nr an
)
.

A particular consequence of this invariance is that any two quantities that are
equal must have the same dimension (otherwise a change in units would violate the
equality). This fact is often useful in finding the dimension of some quantity.
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Example 2.6. According to Newton’s second law,

force = rate of change of momentum with respect to time.

Thus, if F denotes the dimension of force and P the dimension of momentum,
then F = P/T . Since P = MV = ML/T , we conclude that F = ML/T 2 (or
mass× acceleration).

3. Nondimensionalization

Scale-invariance implies that we can reduce the number of quantities appearing in
a problem by introducing dimensionless quantities.

Suppose that (a1, . . . , ar) are a set of quantities whose dimensions form a fun-
damental system of units. We denote the remaining quantities in the model by
(b1, . . . , bm), where r + m = n. Then, for suitable exponents (β1,i, . . . , βr,i) deter-
mined by the dimensions of (a1, . . . , ar) and bi, the quantity

Πi =
bi

a
β1,i

1 . . . a
βr,i
r

is dimensionless, meaning that it is invariant under the scaling transformations
induced by changes in units.

A dimensionless parameter Πi can typically be interpreted as the ratio of two
quantities of the same dimension appearing in the problem (such as a ratio of
lengths, times, diffusivities, and so on). In studying a problem, it is crucial to know
the magnitude of the dimensionless parameters on which it depends, and whether
they are small, large, or roughly of the order one.

Any dimensional equation

a = f(a1, . . . , ar, b1, . . . , bm)

is, after rescaling, equivalent to the dimensionless equation

Π = f(1, . . . , 1,Π1, . . . ,Πm).

Thus, the introduction of dimensionless quantities reduces the number of variables
in the problem by the number of fundamental units. This fact is called the ‘Bucking-
ham Pi-theorem.’ Moreover, any two systems with the same values of dimensionless
parameters behave in the same way, up to a rescaling.

4. Fluid mechanics

To illustrate the ideas of dimensional analysis, we describe some applications in
fluid mechanics.

Consider the flow of a homogeneous fluid with speed U and length scale L. We
restrict our attention to incompressible flows, for which U is much smaller that the
speed of sound c0 in the fluid, meaning that the Mach number

M =
U

c0

is small. The sound speed in air at standard conditions is c0 = 340 ms−1. The
incompressibility assumption is typically reasonable when M ≤ 0.2.
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The physical properties of a viscous, incompressible fluid depend upon two
dimensional parameters, its mass density ρ0 and its (dynamic) viscosity µ. The
dimension of the density is

[ρ0] =
M

L3
.

The dimension of the viscosity, which measures the internal friction of the fluid, is
given by

(2.3) [µ] =
M

LT
.

To derive this result, we explain how the viscosity arises in the constitutive equation
of a Newtonian fluid relating the stress and the strain rate.

4.1. The stress tensor

The stress, or force per unit area, ~t exerted across a surface by fluid on one side of
the surface on fluid on the other side is given by

~t = T~n

where T is the Cauchy stress tensor and ~n is a unit vector to the surface. It is
a fundamental result in continuum mechanics, due to Cauchy, that ~t is a linear
function of ~n; thus, T is a second-order tensor [25].

The sign of ~n is chosen, by convention, so that if ~n points into fluid on one side
A of the surface, and away from fluid on the other side B, then T~n is the stress
exerted by A on B. A reversal of the sign of ~n gives the equal and opposite stress
exerted by B on A.

The stress tensor in a Newtonian fluid has the form

(2.4) T = −pI + 2µD

where p is the fluid pressure, µ is the dynamic viscosity, I is the identity tensor,
and D is the strain-rate tensor

D =
1

2

(
∇~u+∇~u>

)
.

Thus, D is the symmetric part of the velocity gradient ∇~u.
In components,

Tij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
where δij is the Kronecker-δ,

δij =

{
1 if i = j,
0 if i 6= j.

Example 2.7. Newton’s original definition of viscosity (1687) was for shear flows.
The velocity of a shear flow with strain rate σ is given by

~u = σx2~e1

where ~x = (x1, x2, x3) and ~ei is the unit vector in the ith direction. The velocity
gradient and strain-rate tensors are

∇~u =

 0 σ 0
0 0 0
0 0 0

 , D =
1

2

 0 σ 0
σ 0 0
0 0 0

 .
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The viscous stress ~tv = 2µD~n exerted by the fluid in x2 > 0 on the fluid in x2 < 0
across the surface x2 = 0, with unit normal ~n = ~e2 pointing into the region x2 > 0,
is ~tv = σµ~e1. (There is also a normal pressure force ~tp = −p~e1.) Thus, the frictional
viscous stress exerted by one layer of fluid on another is proportional the strain rate
σ and the viscosity µ.

4.2. Viscosity

The dynamic viscosity µ is a constant of proportionality that relates the strain-rate
to the viscous stress.

Stress has the dimension of force/area, so

[T] =
ML

T 2

1

L2
=

M

LT 2
.

The strain-rate has the dimension of a velocity gradient, or velocity/length, so

[D] =
L

T

1

L
=

1

T
.

Since µD has the same dimension as T, we conclude that µ has the dimension in
(2.3).

The kinematic viscosity ν of the fluid is defined by

ν =
µ

ρ0
.

It follows from (2.3) that ν has the dimension of a diffusivity,

[ν] =
L2

T
.

The kinematic viscosity is a diffusivity of momentum; viscous effects lead to the
diffusion of momentum in time T over a length scale of the order

√
νT .

The kinematic viscosity of water at standard conditions is approximately 1 mm2/s,
meaning that viscous effects diffuse fluid momentum in one second over a distance
of the order 1 mm. The kinematic viscosity of air at standard conditions is approxi-
mately 15 mm2/s; it is larger than that of water because of the lower density of air.
These values are small on every-day scales. For example, the timescale for viscous
diffusion across room of width 10 m is of the order of 6× 106 s, or about 77 days.

4.3. The Reynolds number

The dimensional parameters that characterize a fluid flow are a typical velocity U
and length L, the kinematic viscosity ν, and the fluid density ρ0. Their dimensions
are

[U ] =
L

T
, [L] = L, [ν] =

L2

T
, [ρ0] =

M

L3
.

We can form a single independent dimensionless parameter from these dimensional
parameters, the Reynolds number

(2.5) R =
UL

ν
.

As long as the assumptions of the original incompressible model apply, the behavior
of a flow with similar boundary and initial conditions depends only on its Reynolds
number.
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The inertial term in the Navier-Stokes equation has the order of magnitude

ρ0~u · ∇~u = O

(
ρ0U

2

L

)
,

while the viscous term has the order of magnitude

µ∆~u = O

(
µU

L2

)
.

The Reynolds number may therefore be interpreted as a ratio of the magnitudes of
the inertial and viscous terms.

The Reynolds number spans a large range of values in naturally occurring flows,
from 10−20 in the very slow flows of the earth’s mantle, to 10−5 for the motion of
bacteria in a fluid, to 106 for air flow past a car traveling at 60 mph, to 1010 in
some large-scale geophysical flows.

Example 2.8. Consider a sphere of radius L moving through an incompressible
fluid with constant speed U . A primary quantity of interest is the total drag force
D exerted by the fluid on the sphere. The drag is a function of the parameters on
which the problem depends, meaning that

D = f(U,L, ρ0, ν).

The drag D has the dimension of force (ML/T 2), so dimensional analysis implies
that

D = ρ0U
2L2F

(
UL

ν

)
.

Thus, the dimensionless drag

(2.6)
D

ρ0U2L2
= F (R)

is a function of the Reynolds number (2.5), and dimensional analysis reduces the
problem of finding a function f of four variables to finding a function F of one
variable.

The function F (R) has a complicated dependence on R which is difficult to
determine theoretically, especially for large values of the Reynolds number. Never-
theless, experimental measurements of the drag for a wide variety of values of U ,
L, ρ0 and ν agree well with (2.6)

4.4. The Navier-Stokes equations

The flow of an incompressible homogeneous fluid with density ρ0 and viscosity µ is
described by the incompressible Navier-Stokes equations,

ρ0 (~ut + ~u · ∇~u) +∇p = µ∆~u,

∇ · ~u = 0.
(2.7)

Here, ~u (~x, t) is the velocity of the fluid, and p (~x, t) is the pressure. The first
equation is conservation of momentum, and the second equation is conservation of
volume.

Remark 2.9. It remains an open question whether or not the three-dimensional
Navier-Stokes equations, with arbitrary smooth initial data and appropriate bound-
ary conditions, have a unique, smooth solution that is defined for all positive times.
This is one of the Clay Institute Millenium Prize Problems.
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Let U , L be a typical velocity scale and length scale of a fluid flow, and define
dimensionless variables by

~u∗ =
~u

U
, p∗ =

p

ρU2
, ~x∗ =

~x

L
, t∗ =

Ut

L
.

Using these expressions in (2.7), and dropping the stars on the dimensionless vari-
ables, we get

~ut + ~u · ∇~u+∇p =
1

R
∆~u,

∇ · ~u = 0,
(2.8)

where R is the Reynolds number defined in (2.5).

4.5. Euler equations

The nondimensionalized equation (2.8) suggests that for flows with high Reynolds
number, we may neglect the viscous term on the right hand side of the momentum
equation, and approximate the Navier-Stokes equation by the incompressible Euler
equations

~ut + ~u · ∇~u+∇p = 0,

∇ · ~u = 0.

The Euler equations are difficult to analyze because, like the Navier-Stokes
equations, they are nonlinear. Moreover, the approximation of the Navier-Stokes
equation by the Euler equations is problematic. High-Reynolds number flows de-
velop complicated small-scale structures (for instance, boundary layers and turbu-
lence) and, as a result, it is not always possible to neglect the second-order spatial
derivatives ∆~u in the viscous term in comparison with the first-order spatial deriva-
tives ~u · ∇~u in the inertial term, even though the viscous term is multiplied by a
small coefficient.

4.6. Stokes equations

At low Reynolds numbers a different nondimensionalization of the pressure, based
on the viscosity rather than the inertia, is appropriate. Using

~u∗ =
~u

U
, p∗ =

p

ρU2
, ~x∗ =

~x

L
, t∗ =

Ut

L
,

in (2.7), and dropping the stars on the dimensionless variables, we get

R (~ut + ~u · ∇~u) +∇p = ∆~u,

∇ · ~u = 0.

Setting R = 0 in these equations, we get the Stokes equations,

(2.9) ∇p = ∆~u, ∇ · ~u = 0.

These equations provide a good approximation for low Reynolds number flows (al-
though nonuniformities arise in using them on unbounded domains). They are
much simpler to analyze than the full Navier-Stokes equations because they are
linear.
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5. Stokes formula for the drag on a sphere

As an example of the solution of the Stokes equations for low Reynolds number
flows, we will derive Stokes’ formula (1851) for the drag on a sphere moving at
constant velocity through a highly viscous fluid.

It is convenient to retain dimensional variables, so we consider Stokes equations
(2.9) in dimensional form

(2.10) µ∆~u = ∇p, ∇ · ~u = 0.

We note for future use that we can eliminate the pressure from (2.10) by taking the
curl of the momentum equation, which gives

(2.11) ∆ curl ~u = 0.

Before considering axisymmetric Stokes flow past a sphere, it is useful to look
at the two-dimensional equations. Using Cartesian coordinates with ~x = (x, y) and
~u = (u, v), we may write (2.10) as 3× 3 system for (u, v, p):

µ∆u = px, µ∆v = py, ux + vy = 0.

Here, ∆ = ∂2
x + ∂2

y is the two-dimensional Laplacian. In a simply connected region,
the incompressibility condition implies that we may introduce a streamfunction
ψ(x, y) such that u = ψy and v = −ψx. The momentum equation then becomes

µ∆ψy = px, ∆ψx = −py.

The elimination of p by cross-differentiation implies that ψ satisfies the biharmonic
equation

∆2ψ = 0.

Thus, the two-dimensional Stokes equations reduce to the biharmonic equation.
Similar considerations apply to axisymmetric flows, although the details are

more complicated. We will therefore give a direct derivation of the solution for flow
past a sphere, following Landau and Lifshitz [34].

We denote the radius of the sphere by a, and adopt a reference frame moving
with the sphere. In this reference frame, the sphere is at rest and the fluid velocity

far away from the sphere approaches a constant velocity ~U . The pressure also
approaches a constant, which we may take to be zero without loss of generality.

The appropriate boundary condition for the flow of a viscous fluid past a solid,
impermeable boundary is the no-slip condition that the velocity of the fluid is
equal to the velocity of the body. Roughly speaking, this means that a viscous
fluid ‘sticks’ to a solid boundary.

Let ~x denote the position vector from the center of the sphere and r = |~x| the
distance. We want to solve the Stokes equations (2.10) for ~u(~x), p(~x) in the exterior
of the sphere a < r <∞, subject to the no-slip condition on the sphere,

(2.12) ~u(~x) = 0 at r = a,

and the uniform-flow condition at infinity,

(2.13) ~u(~x) ∼ ~U, p(~x)→ 0 as r →∞.

First, we will solve for the velocity. Since ~u is divergence free and the exterior
of a sphere is simply connected, we can write it as

(2.14) ~u (~x) = ~U + curl ~A (~x)
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where ~A is a vector-streamfunction for the deviation of the flow from the uniform
flow. We can always choose ~A to be divergence free, and we require that the

derivatives of ~A approach zero at infinity so that ~u approaches ~U .

We will show that we can obtain the solution by choosing ~A to be of the form

(2.15) ~A (~x) = ∇f(r)× ~U

for a suitable scalar valued function f(r) which we will determine. This form for
~A is dictated by linearity and symmetry considerations: since the Stokes equations

are linear, the solution must be linear in the velocity ~U ; and the solution must be

invariant under rotations about the axis parallel to ~U through the center of the

sphere, and under rotations of ~U .
Using the vector identity

curl
(
f ~F
)

= ∇f × ~F + f curl ~F ,

and the fact that ~U is constant, we may also write (2.15) as

(2.16) ~A = curl
(
f ~U
)
,

which shows, in particular, that ∇ · ~A = 0.
By use of the vector identity

(2.17) curl curl ~F = ∇
(
∇ · ~F

)
−∆~F ,

and (2.15), we find that

curl ~u = curl curl ~A = −∆ ~A = −∆
(
∇f × ~U

)
.

Using this result in (2.11), we find that

∆2
(
∇f × ~U

)
= 0.

Since ~U is constant, it follows that

∇
(
∆2f

)
× ~U = 0.

Since f depends only on r, this equation implies that ∇
(
∆2f

)
= 0, so ∆2f is

constant. Since the derivatives of ~A decay at infinity, ∆2f must also decay, so the
constant is zero, and therefore f satisfies the biharmonic equation

(2.18) ∆2f = 0.

Writing g = ∆f , which is a function of r = |~x|, and using the expression for
the three-dimensional Laplacian in spherical-polar coordinates, we get

1

r2

d

dr

(
r2 dg

dr

)
= 0.

Integrating this equation, we get g(r) = 2b/r+ c where b, c are constant of integra-
tion. Since ∆f → 0 as r →∞, we must have c = 0, so

∆f =
1

r2

d

dr

(
r2 df

dr

)
=

2b

r
.
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Integrating this equation and neglecting an additive constant, which involves no

loss of generality because ~A depends only on ∇f , we get

(2.19) f(r) = br +
c

r

where c is another constant of integration.
Using this expression for f in (2.15), then using the result in (2.14), we find

that

(2.20) ~u (~x) = ~U − b

r

[
~U +

1

r2

(
~U · ~x

)
~x

]
+

c

r3

[
3

r2

(
~U · ~x

)
~x− ~U

]
.

This velocity field satisfies the boundary condition at infinity (2.13). Imposing the
boundary condition (2.12) on the sphere, we get(

1− b

a
− c

a3

)
~U +

1

a3

(
3c

a2
− b
)(

~U · ~x
)
~x = 0 when |~x| = a.

This condition is satisfied only if the coefficient of each term vanishes, which gives

b =
3a

4
, c =

a3

4
.

Thus, from (2.19), the solution for f is

(2.21) f(r) =
3ar

4

(
1 +

a2

3r2

)
,

and, from (2.20), the solution for the velocity field is

(2.22) ~u (~x) =

(
1− 3a

4r
− a3

4r3

)
~U +

1

r2

(
3a3

4r3
− 3a

4r

)(
~U · ~x

)
~x.

Remark 2.10. A noteworthy feature of this solution is its slow decay to the uniform
flow. The difference

~U − ~u (~x) ∼ 3a

4r

[
~U +

1

r2

(
~U · ~x

)
~x

]
is of the order 1/r as r →∞. This makes the analysis of nondilute suspensions of
particles difficult, even with linearity of the Stokes equations, because the hydro-
dynamic interactions between particles have a long range.

To get the pressure, we first compute ∆~u. Using (2.16) in (2.14), and applying
the vector identity (2.17), we get

~u = ~U + curl curl
(
f ~U
)

= ~U +∇
[
∇ ·
(
f ~U
)]
− (∆f) ~U.

Taking the Laplacian of this equation, then using the identity ∇ ·
(
f ~U
)

= ~U · ∇f
and the fact that f satisfies the biharmonic equation (2.18), we get

∆~u = ∇∆
(
~U · ∇f

)
.

Use of this expression in the momentum equation in (2.10) gives

∇
[
µ∆

(
~U · ∇f

)
− p
]

= 0.
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It follows that the expression inside the gradient is constant, and from (2.13) the
constant is zero. Therefore,

p = µ∆
(
~U · ∇f

)
.

Using (2.21) in this equation, we find the explicit expression

(2.23) p = −
(

3µa

2r3

)
~U · ~x.

Thus, (2.22) and (2.23) is the solution of (2.10) subject to the boundary conditions
(2.13)–(2.12).

A primary quantity of interest is the drag force F exerted by the fluid on the
sphere. This force is given by integrating the stress over the surface ∂Ω of the
sphere:

~F =

∫
∂Ω

T~n dS.

Here, ~n is the unit outward normal to the sphere, and T is the Cauchy stress tensor,
given from (2.4) by

T = −pI + µ
(
∇~u+∇~u>

)
.

A direct calculation, whose details we omit, shows that the force is in the direction

of ~U with magnitude

(2.24) F = 6πµaU,

where U is the magnitude of ~U .
This expression for the drag on a spherical particle is found to be in excellent

agreement with experimental results if R < 0.5, where

R =
2aU

ν

is the Reynolds numbers based on the particle diameter, and ν = µ/ρ0 is the
kinematic viscosity, as before.

For example, consider a particle of radius a and density ρp falling under gravity
in a fluid of density ρ0. At the terminal velocity U , the viscous drag must balance
the gravitational buoyancy force, so

6πµaU =
4

3
πa3 (ρp − ρ0) g

where g is the acceleration due to gravity. This gives

U =
2a2g

9ν

(
ρp
ρ0
− 1

)
The corresponding Reynolds number is

R =
4a3g

9ν2

(
ρp
ρ0
− 1

)
.

For a water droplet falling through air [9], we have ρp/ρ0 ≈ 780 and ν ≈
15 mm s−1. This gives a Reynolds number of approximately 1.5 × 104 a3 where
a is measured in mm. Thus, Stokes formula is applicable when a ≤ 0.04 mm,
corresponding to droplets in a fine mist.
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6. Kolmogorov’s 1941 theory of turbulence

Finally, if we are to list the reasons for studying homogeneous
turbulence, we should add that it is a profoundly interesting
physical phenomenon which still defies satisfactory mathematical
analysis; this is, of course, the most compelling reason.1

High-Reynolds number flows typically exhibit an extremely complicated behav-
ior called turbulence. In fact, Reynolds first introduced the Reynolds number in
connection with his studies on transition to turbulence in pipe flows in 1895. The
analysis and understanding of turbulence remains a fundamental challenge. There
is, however, no precise definition of fluid turbulence, and there are many different
kinds of turbulent flows, so this challenge is likely to be one with many different
parts.

In 1941, Kolmogorov proposed a simple dimensional argument that is one of
the basic results about turbulence. To explain his argument, we begin by describing
an idealized type of turbulence called homogeneous, isotropic turbulence.

6.1. Homogeneous, isotropic turbulence

Following Batchelor [8], let us imagine an infinite extent of fluid in turbulent motion.
This means, first, that the fluid velocity depends on a large range of length scales;
we denote the smallest length scale (the ‘dissipation’ length scale) by λd and the
largest length scale (the ‘integral’ length scale) by L. And, second, that the fluid
motion is apparently random and not reproducible in detail from one experiment
to the next.

We therefore adopt a probabilistic description, and suppose that a turbulent
flow is described by a probability measure on solutions of the Navier-Stokes equa-
tions such that expected values of the fluid variables with respect to the measure
agree with appropriate averages of the turbulent flow.

This probabilistic description is sometimes interpreted as follows: we have an
‘ensemble’ of many different fluid flows — obtained, for example, by repeating
the same experiment many different times — and each member of the ensemble
corresponds to a flow chosen ‘at random’ with respect to the probability measure.

A turbulent flow is said to be homogeneous if its expected values are invariant
under spatial translations — meaning that, on average, it behaves the same way at
each point in space — and isotropic if its expected values are also independent of
spatial rotations. Similarly, the flow is stationary if its expected values are invariant
under translations in time. Of course, any particular realization of the flow varies
in space and time.

Homogeneous, isotropic, stationary turbulence is rather unphysical. Turbu-
lence is typically generated at boundaries, and the properties of the flow vary
with distance from the boundary or other large-scale features of the flow geom-
etry. Moreover, turbulence dissipates energy at a rate which appears to be nonzero
even in the limit of infinite Reynolds number. Thus, some sort of forcing (usually
at the integral length scale) that adds energy to the fluid is required to maintain
stationary turbulence. Nevertheless, appropriate experimental configurations (for
example, high-Reynolds number flow downstream of a metal grid) and numerical
configurations (for example, direct numerical simulations on a ‘box’ with periodic

1G. K. Batchelor, The Theory of Homogeneous Turbulence.
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boundary conditions and a suitable applied force) provide a good approximation to
homogeneous, isotropic turbulence.

6.2. Correlation functions and the energy spectrum

We denote expected values by angular brackets 〈·〉. In a homogeneous flow the
two-point correlation

(2.25) Q = 〈~u (~x, t) · ~u (~x+ ~r, t)〉
is a function of the spatial displacement ~r, and independent of ~x. In a stationary
flow it is independent of t. Furthermore, in an isotropic flow, Q is a function only
of the magnitude r = |~r| of the displacement vector.

Note, however, that even in isotropic flow the general correlation tensor

Q (~r) = 〈~u (~x, t)⊗ ~u (~x+ ~r, t)〉 ,
with components Qij = 〈uiuj〉, depends on the vector ~r, not just its magnitude,
because a rotation of ~r also induces a rotation of ~u.

For isotropic turbulence, one can show [8] that the two-point correlation (2.25)
has the Fourier representation

Q (r) = 2

∫ ∞
0

sin kr

kr
E(k) dk

where E(k) is a nonnegative function of the wavenumber magnitude k.
In particular, it follows that

(2.26)
1

2
〈~u (~x, t) · ~u (~x, t)〉 =

∫ ∞
0

E(k) dk.

Thus, E(k) may be interpreted as the mean kinetic energy density of the turbulent
flow as a function of the wavenumber 0 ≤ k <∞.

6.3. The five-thirds law

In fully developed turbulence, there is a wide range of length scales λd � λ � L
that are much greater than the dissipation length scale and much less than the
integral length scale. This range is called the inertial range. The corresponding
wavenumbers are k = 2π/λ, with dimension

[k] =
1

L
.

It appears reasonable to assume that the components of a turbulent flow which
vary over length scales in the inertial range do not depend on the viscosity ν of the
fluid or on the integral length scale and velocity.

Kolmogorov proposed that, in the inertial range, the flow statistics depend only
on the mean rate per unit mass ε at which the turbulent flow dissipates energy. It
would not make any difference if we used instead the mean rate of energy dissipation
per unit volume, since we would have to nondimensionalize this by the fluid density,
to get the mean energy dissipation rate per unit mass. The dimension of this rate
is is

[ε] =
ML2

T 2
· 1

T
· 1

M
=
L2

T 3
.

From (2.26), the spectral energy density has dimension

[E(k)] =
L3

T 2
.
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If the only quantities on which E(k) depends are the energy dissipation rate ε and
the wavenumber k itself, then, balancing dimensions, we must have

(2.27) E(k) = Cε2/3k−5/3,

where C is a dimensionless constant, called the Kolmogorov constant.
Thus, Kolmogorov’s 1941 (K41) theory predicts that the energy spectrum of a

turbulent flow in the inertial range has a power-law decay as a function of wavenum-
ber with exponent −5/3; this is the “five-thirds law.”

The spectral result (2.27) was, in fact, first stated by Oboukhov (1941). Kol-
mogorov gave a closely related result for spatial correlations:〈

|~u (~x+ ~r, t)− ~u (~x, t)|2
〉

= Cε2/3r2/3.

This equation suggests that the velocity of a turbulent flow has a ‘rough’ spatial
dependence in the inertial range, similar to that of a non-differentiable Hölder-
continuous function with exponent 1/3.

Onsager rediscovered this result in 1945, and in 1949 suggested that turbulent
dissipation might be described by solutions of the Euler equation that are not suf-
ficiently smooth to conserve energy [20]. The possible relationship of non-smooth,
weak solutions of the incompressible Euler equations (which are highly non-unique
and can even increase in kinetic energy without some kind of additional admis-
sibility conditions) to turbulent solutions of the Navier-Stokes equations remains
unclear.

6.4. The Kolmogorov length scale

The only length scale that can be constructed from the dissipation rate ε and the
kinematic viscosity ν, called the Kolmogorov length scale, is

η =

(
ν3

ε

)1/4

.

The K41 theory implies that the dissipation length scale is of the order η.
If the energy dissipation rate is the same at all length scales, then, neglecting

order one factors, we have

ε =
U3

L
where L, U are the integral length and velocity scales. Denoting by RL the Reynolds
number based on these scales,

RL =
UL

ν
,

it follows that
L

η
= R

3/4
L .

Thus, according to this dimensional analysis, the ratio of the largest (integral)

length scale and the smallest (dissipation) length scale grows like R
3/4
L as RL →∞.

In order to resolve the finest length scales of a three-dimensional flow with
integral-scale Reynolds number RL, we therefore need on the order of

NL = R
9/4
L

independent degrees of freedom (for example, NL Fourier coefficients of the velocity
components). The rapid growth of NL with RL limits the Reynolds numbers that
can be attained in direct numerical simulations of turbulent flows.
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6.5. Validity of the five-thirds law

Experimental observations, such as those made by Grant, Stewart and Moilliet
(1962) in a tidal channel between islands off Vancouver, agree well with the five-
thirds law for the energy spectrum, and give C ≈ 1.5 in (2.27). The results of DNS
on periodic ‘boxes’, using up to 40963 grid points, are also in reasonable agreement
with this prediction.

Although the energy spectrum predicted by the K41 theory is close to what is
observed, there is evidence that it is not exactly correct. This would imply that
there is something wrong with its original assumptions.

Kolmogorov and Oboukhov proposed a refinement of Kolmogorov’s original
theory in 1962. It is, in particular, not clear that the energy dissipation rate ε
should be assumed constant, since the energy dissipation in a turbulent flow itself
varies over multiple length scales in a complicated fashion. This phenomenon,
called ‘intermittency,’ can lead to corrections in the five-thirds law [23]. All such
turbulence theories, however, depend on some kind of initial assumptions whose
validity can only be checked by comparing their predictions with experimental or
numerical observations.

6.6. The benefits and drawbacks of dimensional arguments

As the above examples from fluid mechanics illustrate, dimensional arguments can
lead to surprisingly powerful results, even without a detailed analysis of the under-
lying equations. All that is required is a knowledge of the quantities on which the
problem being studied depends together with their dimensions. This does mean,
however, one has to know the basic laws that govern the problem, and the dimen-
sional constants they involve. Thus, contrary to the way it sometimes appears,
dimensional analysis does not give something for nothing; it can only give what is
put in from the start.

This fact cuts both ways. Many of the successes of dimensional analysis, such
as Kolmogorov’s theory of turbulence, are the result of an insight into which dimen-
sional parameters play an crucial role in a problem and which parameters can be
ignored. Such insights typical depend upon a great deal of intuition and experience,
and they may be difficult to justify or prove.2

Conversely, it may happen that some dimensional parameters that appear to
be so small they can be neglected have a significant effect, in which case scaling
laws derived on the basis of dimensional arguments that ignore them are likely to
be incorrect.

7. Self-similarity

If a problem depends on more fundamental units than the number of dimensional
parameters, then we must use the independent or dependent variables themselves
to nondimensionalize the problem. For example, we did this when we used the
wavenumber k to nondimensionalize the K41 energy spectrum E(k) in (2.27). In

2As Bridgeman ([10], p. 5) puts it in his elegant 1922 book on dimensional analysis (well worth

reading today): “The untutored savage in the bushes would probably not be able to apply the

methods of dimensional analysis to this problem and obtain results that would satisfy us.” Hope-
fully, whatever knowledge may have been lost since then in the area of dimensional analysis has

been offset by some gains in cultural sensitivity.
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that case, we obtain self-similar solutions that are invariant under the scaling trans-
formations induced by a change in the system of units. For example, in a time-
dependent problem the spatial profile of a solution at one instant of time might be
a rescaling of the spatial profile at any other time.

These self-similar solutions are often among the few solutions of nonlinear equa-
tions that can be obtained analytically, and they can provide valuable insight into
the behavior of general solutions. For example, the long-time asymptotics of solu-
tions, or the behavior of solutions at singularities, may be given by suitable self-
similar solutions.

As a first example, we use dimensional arguments to find the Green’s function
of the heat equation.

7.1. The heat equation

Consider the following IVP for the Green’s function of the heat equation in Rd:

ut = ν∆u,

u(x, 0) = Eδ(x).

Here δ is the delta-function, representing a unit point source at the origin. Formally,
we have ∫

Rd
δ(x) dx = 1, δ(x) = 0 for x 6= 0.

The dimensioned parameters in this problem are the diffusivity ν and the energy
E of the point source. The only length and times scales are those that come from
the independent variables (x, t), so the solution is self-similar.

We have [u] = θ, where θ denotes a unit of temperature. Furthermore, since∫
Rd
u(x, 0) dx = E,

we have [E] = θLd. The rotational invariance of the Laplacian, and the uniqueness
of the solution, implies that the solution must be spherically symmetric. Dimen-
sional analysis then gives

u(x, t) =
E

(νt)d/2
f

(
|x|√
νt

)
.

Using this expression for u(x, t) in the PDE, we get an ODE for f(ξ),

f ′′ +

(
ξ

2
+
d− 1

ξ

)
f ′ +

d

2
f = 0.

We can rewrite this equation as a first-order ODE for f ′ + ξ
2f ,(

f ′ +
ξ

2
f

)′
+
d− 1

ξ

(
f ′ +

ξ

2
f

)
= 0.

Solving this equation, we get

f ′ +
ξ

2
f =

b

ξd−1
,

where b is a constant of integration. Solving for f , we get

f(ξ) = ae−ξ
2/4 + be−ξ

2/4

∫
e−ξ

2

ξd−1
dξ,
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where a s another constant of integration. In order for f to be integrable, we must
set b = 0. Then

u(x, t) =
aE

(νt)d/2
exp

(
−|x|

2

4νt

)
.

Imposing the requirement that ∫
Rd
u(x, t) dx = E,

and using the standard integral∫
Rd

exp

(
−|x|

2

2c

)
dx = (2πc)

d/2
,

we find that a = (4π)−d/2, and

u(x, t) =
E

(4πνt)d/2
exp

(
−|x|

2

4νt

)
.

8. The porous medium equation

In this section, we will further illustrate the use of self-similar solutions by describing
a problem for point-source solutions of the porous medium equation, taken from
Barenblatt [7]. This solution is a one-dimensional version of the radially symmetric
self-similar solution of the porous medium equation

ut = ∇ · (u∇u)

found by Zeldovich and Kompaneets (1950) and Barenblatt (1952).
We consider the flow under gravity of an incompressible fluid in a porous

medium, such as groundwater in a rock formation. We suppose that the porous
medium sits above a horizontal impermeable stratum, and, to simplify the dis-
cussion, that the flow is two-dimensional. It is straightforward to treat three-
dimensional flows in a similar way.

Let x and z denote horizontal and vertical spatial coordinates, respectively,
where the impermeable stratum is located at z = 0. Suppose that the porous
medium is saturated with fluid for 0 ≤ z ≤ h(x, t) and dry for z > h(x, t). If the
wetting front z = h(x, t) has small slope, we may use a quasi-one dimensional ap-
proximation in which we neglect the z-velocity components of the fluid and average
x-velocity components with respect to z.

The volume of fluid (per unit length in the transverse y-direction) in a ≤ x ≤ b
is given by ∫ b

a

nh(x, t) dx

where n is the porosity of the medium. That is, n is the ratio of the open volume
in the medium that can be occupied by fluid to the total volume. Typical values of
n are 0.3–0.7 for clay, and 0.01, or less, for dense crystalline rocks. We will assume
that n is constant, in which case it will cancel from the equations.

Let u(x, t) denote the depth-averaged x-component of the fluid velocity. Con-
servation of volume for an incompressible fluid implies that for any x-interval [a, b]

d

dt

∫ b

a

nh(x, t) dx = − [nhu]
b
a .
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In differential form, we get

(2.28) ht = − (hu)x

For slow flows, we can assume that the pressure p in the fluid is equal to the
hydrostatic pressure

p = ρ0g (h− z) .
It follows that the total pressure ‘head’, defined by

p

ρ0g
+ z,

is independent of z and equal to h(x, t).
According to Darcy’s law, the volume-flux (or velocity) of a fluid in a porous

medium is proportional to the gradient of the pressure head, meaning that

(2.29) u = −khx,

where k is the permeability, or hydraulic conductivity, of the porous medium.

Remark 2.11. Henri Darcy was a French water works engineer. He published his
law in 1856 after conducting experiments on the flow of water through columns of
sand, which he carried out in the course of investigating fountains in Dijon.

The permeability k in (2.29) has the dimension of L2/(HT ), where H is the
dimension of the head h. Since we measure h in terms of vertical height, k has
the dimension of velocity. Typical values of k for consolidated rocks range from
10−9 m/day for unfractured metamorphic rocks, to 103 m/day for karstic limestone.

Using (2.29) in (2.28), we find that h(x, t) satisfies the porous medium equation

(2.30) ht = k (hhx)x .

We may alternatively write (2.30) as

ht =
1

2
k
(
h2
)
xx
.

This equation was first considered by Boussinesq (1904).
The porous medium equation is an example of a degenerate diffusion equation.

It has a nonlinear diffusivity equal to kh which vanishes when h = 0. As we will
see, this has the interesting consequence that (2.30) has solutions (corresponding to
wetting fronts) that propagate into a region with h = 0 at finite speed — behavior
one would expect of a wave equation, but not at first sight of a diffusion equation.

8.1. A point source solution

Consider a solution h(x, t) of the porous medium equation (2.30) that approaches
an initial point source:

h(x, t)→ Iδ(x), t→ 0+,

where δ(x) denotes the Dirac delta ‘function.’ Explicitly, this means that we require

h(x, t)→ 0 as t→ 0+ if x 6= 0,

lim
t→0+

∫ ∞
−∞

h(x, t) dx = I.
(2.31)
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The delta-function is a distribution, rather than a function. We will not discuss
distribution theory here (see [44] for an introduction and [27] for a detailed ac-
count). Instead, we will define the delta-function formally as a ‘function’ δ with
the properties that

δ(x) = 0 for x 6= 0,∫ ∞
−∞

f(x)δ(x) dx = f(0)

for any continuous function f .
The solution of the porous medium with the initial data (2.31) describes the

development of of wetting front due to an instantaneous ‘flooding’ at the origin by
a volume of water I. It provides the long time asymptotic behavior of solutions of
the porous medium equation with a concentrated non-point source initial condition
h(x, t) = h0(x) where h0 is a compactly supported function with integral I.

The dimensional parameters at our disposal in solving this problem are k and
I. A fundamental system of units is L, T , H where H is a unit for the pressure
head. Since we measure the pressure head h in units of length, it is reasonable to
ask why we should use different units for h and x. The explanation is that the units
of vertical length used to measure the head play a different role in the model than
the units used to measure horizontal lengths, and we should be able to rescale x
and z independently.

Equating the dimension of different terms in (2.30), we find that

[k] =
L2

HT
, [I] = LH.

Since we assume that the initial data is a point source, which does not define a
length scale, there are no other parameters in the problem.

Two parameters k, I are not sufficient to nondimensionalize a problem with
three fundamental units. Thus, we must also use one of the variables to do so.
Using t, we get [

(kIt)
1/3
]

= L, [t] = T,

[
I2/3

(kt)
1/3

]
= H

Dimensional analysis then implies that

h(x, t) =
I2/3

(kt)
1/3

F

(
x

(kIt)
1/3

)
where F (ξ) is a dimensionless function.

Using this similarity form in (2.30), we find that F (ξ) satisfies the ODE

(2.32) −1

3
(ξF ′ + F ) = (FF ′)

′
.

Furthermore, (2.31) implies that

F (ξ)→ 0 as |ξ| → ∞,(2.33) ∫ ∞
−∞

F (ξ) dξ = 1.(2.34)
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Integrating (2.32), we get

(2.35) −1

3
ξF + C = FF ′

where C is a constant of integration.
The condition (2.33) implies that C = 0. It then follows from (2.35) that either

F = 0, or

F ′ = −1

3
ξ,

which implies that

F (ξ) =
1

6

(
a2 − ξ2

)
where a is a constant of integration.

In order to get a solution that is continuous and approaches zero as |ξ| → ∞,
we choose

F (ξ) =

{ (
a2 − ξ2

)
/6 if |ξ| < a,

0 if |ξ| ≥ a.

The condition (2.34) then implies that

a =

(
9

2

)1/3

.

Thus, the solution of (2.30)–(2.31) is given by

h(x, t) =
I2/3

6 (kt)
1/3

[(
9

2

)2/3

− x2

(kIt)
2/3

]
if |x| < (9kIt/2)1/3

with h(x, t) = 0 otherwise.
This solution represents a saturated region of finite width which spreads out

at finite speed. The solution is not a classical solution of (2.30) since its derivative
hx has a jump discontinuity at x = ±(9kIt/2)1/3. It can be understood as a weak
solution in an appropriate sense, but we will not discuss the details here.

The fact that the solution has length scale proportional to t1/3 after time t
could have been predicted in advance by dimensional analysis, since L = (kIt)1/3

is the only horizontal length scale in the problem. The numerical factors, and the
fact that the solution has compact support, depend upon the detailed analytical
properties of the porous medium equation equation; they could not be shewn by
dimensional analysis.

8.2. A pedestrian derivation

Let us consider an alternative method for finding the point source solution that
does not require dimensional analysis, but is less systematic.

First, we remove the constants in (2.30) and (2.31) by rescaling the variables.
Defining

u (x, t̄) =
1

I
h (x, t) , t̄ = kIt,

and dropping the bars on t̄, we find that u(x, t) satisfies

(2.36) ut = (uux)x .
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The initial condition (2.31) becomes

u(x, t)→ 0 as t→ 0+ if x 6= 0,

lim
t→0+

∫ ∞
−∞

u(x, t) dx = 1.
(2.37)

We seek a similarity solution of (2.36)–(2.37) of the form

(2.38) u(x, t) =
1

tm
f
( x
tn

)
for some exponents m, n. In order to obtain such a solution, the PDE for u(x, t)
must reduce to an ODE for f(ξ). As we will see, this is the case provided that m,
n are chosen appropriately.

Remark 2.12. Equation (2.38) is a typical form of a self-similar solution that is
invariant under scaling transformations, whether or not they are derived from a
change in units. Dimensional analysis of this problem allowed us to deduce that
the solution is self-similar. Here, we simply seek a self-similar solution of the form
(2.38) and hope that it works.

Defining the similarity variable

ξ =
x

tn

and using a prime to denote the derivative with respect to ξ, we find that

ut = − 1

tm+1
(mf + nξf ′)

(uux)x =
1

t2m+2n
(ff ′)

′
.

(2.39)

In order for (2.36) to be consistent with (2.38), the powers of t in (2.39) must
agree, which implies that

(2.40) m+ 2n = 1.

In that case, f(ξ) satisfies the ODE

(ff ′)
′
+ nξf ′ +mf = 0.

Thus, equation (2.36) has a one-parameter family of self-similar solutions. The
ODE for similarity solutions is easy to integrate when m = n, but it is not as
simple to solve when n 6= m.

To determine the value of m, n for the point source problem, we compute that,
for solutions of the form (2.38),∫ ∞

−∞
u(x, t) dx = tn−m

∫ ∞
−∞

f (ξ) dξ.

Thus, to get a nonzero, finite limit as t → 0+ in (2.37), we must take m = n, and
then (2.40) implies that m = n = 1/3. We therefore recover the same solution as
before.
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8.3. Scaling invariance

Let us consider the scaling invariances of the porous medium equation (2.36) in
more detail.

We consider a rescaling of the independent and dependent variables given by

(2.41) x̃ = αx, t̃ = βt, ũ = µu

where α, β, µ are positive constants. Writing u in terms of ũ in (2.36) and using
the transformation of derivatives

∂x = α∂x̃, ∂t = β∂t̃,

we find that ũ
(
x̃, t̃
)

satisfies the PDE

ũt̃ =
α2

βµ
(ũũx̃)x̃ .

Thus, the rescaling (2.41) leaves (2.36) invariant if α2 = βµ.
To reformulate this invariance in a more geometric way, let E = R2×R be the

space with coordinates (x, t, u). For α, β > 0 define the transformation

(2.42) g (α, β) : E → E, g(α, β) : (x, t, u) 7→
(
αx, βt,

α2

β
u

)
.

Then

(2.43) G = {g(α, β) : α, β > 0}
forms a two-dimensional Lie group of transformations of E:

g(1, 1) = I, g−1 (α, β) = g

(
1

α
,

1

β

)
,

g (α1, β1) g (α2, β2) = g (α1α2, β1β2)

where I denotes the identity transformation.
The group G is commutative (in general, Lie groups and symmetry groups are

not commutative) and is generated by the transformations

(2.44) (x, t, u) 7→
(
αx, t, α2u

)
, (x, t, u) 7→

(
x, βt,

1

β
u

)
.

Abusing notation, we use the same symbol to denote the coordinate u and the
function u(x, t). Then the action of g(α, β) in (2.42) on u(x, t) is given by

(2.45) u(x, t) 7→ α2

β
u

(
x

α
,
t

β

)
.

This map transforms solutions of (2.36) into solutions. Thus, the group G is a sym-
metry group of (2.36), which consist of the symmetries that arise from dimensional
analysis and the invariance of (2.36) under rescalings of its units.

8.4. Similarity solutions

In general, a solution of an equation is mapped to a different solution by elements
of a symmetry group. A similarity solution is a solution that is mapped to itself
by a nontrivial subgroup of symmetries. In other words, it is a fixed point of
the subgroup. Let us consider the case of similarity solutions of one-parameter
subgroups of scaling transformations for the porous medium equation; we will show
that these are the self-similar solutions considered above.
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The one-parameter subgroups of G in (2.43) are given by

Hn = {g (βn, β) : β > 0} for −∞ < n <∞,

and {g (α, 1) : α > 0}. From (2.45), a function u(x, t) is invariant under Hn if

u(x, t) = β2n−1u

(
x

βn
,
t

β

)
for every β > 0. Choosing β = t, we conclude that u(x, t) has the form (2.38) with
m = 1− 2n. Thus, we recover the self-similar solutions considered previously.

8.5. Translational invariance

A transformation of the space E of dependent and independent variables into it-
self is called a point transformation. The group G in (2.43) does not include all
the point transformations that leave (2.36) invariant. In addition to the scaling
transformations (2.44), the space-time translations

(2.46) (x, t, u) 7→ (x− δ, t, u) , (x, t, u) 7→ (x, t− ε, u) ,

where −∞ < δ, ε <∞, also leave (2.36) invariant, because the terms in the equation
do not depend explicitly on (x, t).

As we will show in Section 9.8, the transformations (2.44) and (2.46) generate
the full group of point symmetries of (2.36). Thus, the porous medium equation
does not have any point symmetries beyond the obvious scaling and translational
invariances. This is not always the case, however. Many equations have point
symmetries that would be difficult to find without using the theory of Lie algebras.

Remark 2.13. The one-dimensional subgroups of the two-dimensional group of
space-time translations are given by

(x, t, u) 7→ (x− cε, t− ε, u) ,

where c is a fixed constant (and also the space translations (x, t, u) 7→ (x− ε, t, u)).
The similarity solutions that are invariant under this subgroup are the traveling
wave solutions

u(x, t) = f(x− ct).

9. Continuous symmetries of differential equations

Dimensional analysis leads to scaling invariances of a differential equation. As we
have seen in the case of the porous medium equation, these invariances form a
continuous group, or Lie group, of symmetries of the differential equation.

The theory of Lie groups and Lie algebras provides a systematic method to
compute all continuous point symmetries of a given differential equation; in fact,
this is why Lie first introduced the the theory of Lie groups and Lie algebras.

Lie groups and algebras arise in many other contexts. In particular, as a result
of the advent of quantum mechanics in the early 20th-century, where symmetry
considerations are crucial, Lie groups and Lie algebras have become a central part
of mathematical physics.

We will begin by describing some basic ideas about Lie groups of transforma-
tions and their associated Lie algebras. Then we will describe their application to
the computation of symmetry groups of differential equations. See Olver [40, 41],
whose presentation we follow, for a full account.
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9.1. Lie groups and Lie algebras

A manifold of dimension d is a space that is locally diffeomorphic to Rd, although
its global topology may be different (think of a sphere, for example). This means
that the elements of the manifold may, locally, be smoothly parametrized by d
coordinates, say

(
ε1, ε2, . . . , εd

)
∈ Rd. A Lie group is a space that is both a manifold

and a group, such that the group operations (composition and inversion) are smooth
functions.

Lie groups almost always arise in applications as transformation groups acting
on some space. Here, we are interested in Lie groups of symmetries of a differential
equation that act as point transformations on the space whose coordinates are the
independent and dependent variables of the differential equation.

The key idea we want to explain first is this: the Lie algebra of a Lie group
of transformations is represented by the vector fields whose flows are the elements
of the Lie Group. As a result, elements of the Lie algebra are often referred to as
‘infinitesimal generators’ of elements of the Lie group.

Consider a Lie group G acting on a vector space E. In other words, each g ∈ G
is a map g : E → E. Often, one considers Lie groups of linear maps, which are a
subgroup of the general linear group GL(E), but we do not assume linearity here.

Suppose that E = Rn, and write the coordinates of x ∈ E as
(
x1, x2, . . . , xn

)
.

We denote the unit vectors in the coordinate directions by

∂x1 , ∂x2 , . . . , ∂xn .

That is, we identify vectors with their directional derivatives.
Consider a vector field

~v(x) = ξi(x)∂xi ,

where we use the summation convention in which we sum over repeated upper and
lower indices. The associated flow is a one-parameter group of transformations
obtained by solving the system of ODEs

dxi

dε
= ξi

(
x1, x2, . . . , xn

)
for 1 ≤ i ≤ n.

Explicitly, if x(ε) is a solution of this ODE, then the flow g(ε) : x(0) 7→ x(ε) maps
the initial data at ε = 0 to the solution at ‘time’ ε.

We denote the flow g(ε) generated by the vector field ~v by

g(ε) = eε~v.

Conversely, given a flow g(ε), we can recover the vector field that generates it from

~v(x) =
d

dε
g(ε) · x

∣∣∣∣
ε=0

.

That is, ~v(x) is the tangent, or velocity, vector of the solution curve through x.

Example 2.14. A linear vector field has the form

~v(x) = aijx
j∂xi .

Its flow is given by the usual exponential eε~v = eεA where the linear transformation
A has matrix

(
aij
)
.

The flow eε~v of a smooth linear vector field ~v is defined for all −∞ < ε < ∞.
The flow of a nonlinear vector field may exists only for sufficiently small values of
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ε, which may depend on the initial data. In that case we get a local Lie group of
flows. Since we only use local considerations here, we will ignore this complication.

9.2. The Lie bracket

In general, a Lie algebra g is a vector space with a bilinear, skew-symmetric bracket
operation

[·, ·] : g× g→ g

that satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

The Lie bracket of vector fields ~v, ~w is defined by their commutator

[~v, ~w] = ~v ~w − ~w~v,

where the vector fields are understood as differential operators. Explicitly, if

~v = ξi∂xi , ~w = ηi∂xi ,

then

[~v, ~w] =

(
ξj
∂ηi

∂xj
− ηj ∂ξ

i

∂xj

)
∂xi .

The Lie bracket of vector fields measures the non-commutativity of the correspond-
ing flows:

[~v, ~w] (x) =
1

2

d2

dε2

(
eε~veε~we−ε~ve−ε~w

)
x

∣∣∣∣
ε=0

.

One can show that the Lie bracket of any two vector field that generate elements
of a Lie group of transformations also generates an element of the Lie group. Thus,
the infinitesimal generators of the Lie group form a Lie algebra.

9.3. Transformations of the plane

As simple, but useful, examples of Lie transformation groups and their associated
Lie algebras, let us consider some transformations of the plane.

The rotations of the plane g(ε) : R2 → R2 are given by

g(ε) :

(
x
y

)
7→
(

cos ε − sin ε
sin ε cos ε

)(
x
y

)
where ε ∈ T.

These transformations form a representation of the one-dimensional Lie group
SO(2) on R2. They are the flow of the ODE

d

dε

(
x
y

)
=

(
−y
x

)
.

The vector field on the right hand side of this equation may be written as

~v(x, y) = −y∂x + x∂y,

and thus

g(ε) = eε~v.

The Lie algebra so(2) of SO(2) consists of the vector fields

{−εy∂x + εx∂y : ε ∈ R} .

The translations of the plane in the direction (a, b)

(x, y) 7→ (x− εa, y − εb)
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are generated by the constant vector field

a∂x + b∂y

The rotations and translations together form the orientation-preserving Euclidean
group of the plane, denoted by E+(2). The full Euclidean group E(2) is generated
by rotations, translations, and reflections.

The Euclidean group is not commutative since translations and rotations do
not commute. As a result, the corresponding Lie algebra e(2) is not trivial. For
example, if ~v = ∂x is an infinitesimal generator of translations in the x-direction,
and ~w = −y∂x + x∂y is an infinitesimal generator of rotations, then [~v, ~w] = ∂y is
the infinitesimal generator of translations in the y-direction.

The scaling transformations

(x, y) 7→ (eεrx, eεsy)

are generated by the vector field

rx∂x + sy∂y.

Together with the translations and rotations, the scaling transformations generate
the conformal group of angle preserving transformations of the plane.

Finally, as a nonlinear example, consider the vector field

~v(x, y) = x2∂x − y2∂y.

This generates the local flow

(x, y) 7→
(

x

1− εx
,

y

1 + εy

)
.

9.4. Transformations of function

Next, we want to consider the action of point transformations on functions.
Suppose that f : Rn → R. We denote the coordinates of the independent vari-

ables by x =
(
x1, x2, . . . , xn

)
∈ Rn, and the coordinate of the dependent variable by

u ∈ R. We assume that f is scalar-valued only to simplify the notation; it is straight-
forward to generalize the discussion to vector-valued functions f : Rn → Rm.

Let E = Rn×R be the space with coordinates
(
x1, . . . , xn, u

)
. Then the graph

Γf of f is the subset of E given by

Γf = {(x, u) ∈ E : u = f(x)} .
Consider a local one-parameter group of point transformations g(ε) : E → E on

the space of independent and dependent variables. These transformations induce a
local transformation of functions, which we denote in the same way,

g(ε) : f 7→ g(ε) · f
that maps the graph of f to the graph of g(ε) · f . The global image of the graph
of f under g(ε) need not be a graph; it is, however, locally a graph (that is, in a
sufficiently small neighborhood of a point x ∈ Rn and for small enough values of ε,
when g(ε) is sufficiently close to the identity).

To express the relationship between f and f̃ = g · f explicitly, we write g as

g(ε) : (x, u) 7→ (x̃, ũ) , x̃ = X̃(x, u, ε), ũ = Ũ(x, u, ε).

Then, since

g(ε) : {(x, u) : u = f(x)} 7→ {(x̃, ũ) : ũ = f̃(x̃, ε)},
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we have

Ũ (x, f(x), ε) = f̃
(
X̃(x, f(x), ε), ε

)
.

This is, in general, a complicated implicit equation for f̃ in terms of f .

Example 2.15. Suppose that f : R → R is the square function f : x 7→ x2 and
g(ε) : R× R→ R× R is the rotation

g(ε) · (x, u) = ((cos ε)x− (sin ε)u, (sin ε)x+ (cos ε)u) .

If u = f(x), then

x̃ = (cos ε)x− (sin ε)x2, ũ = (sin ε)x+ (cos ε)x2.

Solving the first equation for x in terms of x̃, then using the second equation to
express ũ in terms of x̃, we find that ũ = f̃ (x̃, ε) where

f̃ (x̃, ε) =
2x̃2 cos ε+ 2x̃ tan ε

1− 2x̃ sin ε+
√

1− 4x̃ sin ε/ cos2 ε

Thus, the image of the function x 7→ x2 under the rotation g(ε) is the function

x 7→ 2x2 cos ε+ 2x tan ε

1− 2x sin ε+
√

1− 4x sin ε/ cos2 ε
.

Note that this reduces to x 7→ x2 if ε = 0, and that the transformed function is
only defined locally if ε 6= 0.

9.5. Prolongation of transformations

In order to obtain the symmetries of a differential equation, we use a geometric
formulation of how the derivatives of a function transform under point transforma-
tions.

To do this, we introduce a space E(k), called the kth jet space, whose coordinates
are the independent variables, the dependent variable, and the derivatives of the
dependent variable of order less than or equal to k.

We will use multi-index notation for partial derivatives. A multi-index α is an
n-tuple

α = (α1, α2, . . . , αn)

where each αi = 0, 1, 2, . . . is a nonnegative integer. The α-partial derivative of a
function f : Rn → R is

∂αf = ∂α1

x1 ∂
α2

x2 . . . ∂αnxn f.

This partial derivative has order |α| where

|α| = α1 + α2 + · · ·+ αn.

We define E(k) to be the space with coordinates (x, u, ∂αu) where α runs over all
multi-indices with 1 ≤ |α| ≤ k. When convenient, we will use alternative notations
for the partial-derivative coordinates, such as uxi for ∂xiu and uα for ∂αu.

Example 2.16. Written out explicitly, the coordinates on the first-order jet space
E(1) are

(
x1, x2, . . . , xn, u, ux1 , ux2 , . . . , uxn

)
. Thus, E(1) has dimension (2n+ 1).

Example 2.17. For functions u = f(x, y) of two independent variables, the second-
order jet space E(2) has coordinates (x, y, u, ux, uy, uxx, uxy, uyy).
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Point transformations induce a map of functions to functions, and therefore
they induce maps of the derivatives of functions and of the jet spaces.

Specifically, suppose that g(ε) : E → E is a point transformation. We extend,
or prolong g(ε), to a transformation

pr(k)g(ε) : E(k) → E(k)

in the following way. Given a point (x, u, ∂αu) ∈ E(k), pick a function f : Rn → R
whose value at x is u and whose derivatives at x are ∂αu, meaning that

f(x) = u, ∂αf(x) = ∂αu for 1 ≤ |α| ≤ k.

For example, we could choose f to be a polynomial of degree k.
Suppose that g(ε) · (x, u) = (x̃, ũ) is the image of (x, u) ∈ E under g(ε) and

f̃ = g(ε)·f is the image of the function f . We define the image of the jet-coordinates
by

∂̃αu = ∂̃αf̃ (x̃) .

That is, they are the values of the derivatives of the transformed function f̃ (x̃).
One can show that these values do not depend on a particular choice of the function
f , so this gives a well-defined map pr(k)g(ε) on E(k) such that

pr(k)g(ε) : (x, u, ∂αu) 7→
(
x̃, ũ, ∂̃αu

)
.

9.6. Prolongation of vector fields

Suppose that g(ε) : E → E is generated by the vector field

(2.47) ~v(x, u) = ξi(x, u)∂xi + ϕ(x, u)∂u.

Then, writing the coordinates of E(k) as (x, u, uα), the prolonged transformation

pr(k)g(ε) : E(k) → E(k)

is generated by a vector field pr(k)~v on E(k). This prolonged vector field has the
form

pr(k)~v = ξi∂xi + ϕ∂u +

k∑
|α|=1

ϕα∂uα ,

where the ϕα are suitable coefficient functions, which are determined by ~v.
The prolongation formula expresses the coefficients ϕα of the prolonged vector

field in terms of the coefficients ξi, ϕ of the original vector field. We will state the
result here without proof (see [40] for a derivation).

To write the prolongation formula in a compact form — see (2.49) below —
we define the total derivative DxiF : E(k) → R of a function F : E(k) → R with
respect to an independent variable xi by

DxiF = ∂xiF +

k∑
|α|=0

uα,i∂uαF.

Here, we use the notation

uα,i = ∂xi∂
αu

to denote the coordinate of the corresponding derivative. That is, uα,i = uβ where
βi = αi + 1 and βj = αj for j 6= i.
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In other words, the total derivative DxiF of F with respect to xi is what we
would obtain by differentiating F with respect to xi after the coordinates u, uα
have been evaluated at a function of x and its derivatives.

If α = (α1, . . . , αn) is a multi-index, we define the α-total derivative by

Dα = Dα1

x1D
α2

x2 . . . D
αn
xn .

Total derivatives commute, so the order in which we take them does not matter.
Finally, we define the characteristic Q : E(1) → R of the vector field (2.47) by

Q (x, u, ∂u) = ϕ(x, u)− ξi(x, u)uxi ,

where the summation convention is understood, and ∂u = (ux1 , . . . , uxn) is the
first-derivative coordinate.

Then the kth-prolongation of the vector field (2.47) is given by

pr(k)~v = ξi∂xi + ϕ∂u +

k∑
|α|=1

ϕα∂uα ,(2.48)

ϕα = DαQ+ ξiuα,i.(2.49)

This is the main result needed for the algebraic computation of symmetries of a
differential equation. See Olver [40] for the prolongation formula for systems.

9.7. Invariance of a differential equation

A kth order differential equation for a real-valued function u(x) may be written as

F (x, u, ∂αu) = 0

where F : E(k) → R and 1 ≤ |α| ≤ k. Here, we abuse notation and use the same
symbols for the coordinates u, ∂αu and the functions u(x), ∂αu(x).

A local point transformation g(ε) : E → E is a symmetry of the differential
equation if g(ε) · u is a solution whenever u is a solution. This means that, for all
ε in the neighborhood of 0 for which g(ε) is defined, we have

(2.50) F
(
pr(k)g(ε) · (x, u, ∂αu)

)
= F (x, u, ∂αu) on F (x, u, ∂αu) = 0.

Suppose that g(ε) = eε~v. Then, differentiating (2.50) with respect to ε and
setting ε = 0, we conclude that

(2.51) pr(k)~v · F (x, u, ∂αu) = 0 on F (x, u, ∂αu) = 0,

where pr(k)~v acts on F by differentiation. Conversely, if F satisfies the ‘maximal
rank’ condition DF 6= 0 on F = 0, which rules out degenerate ways of the equation
such as F 2 = 0, we may integrate the infinitesimal invariance condition (2.51) to
obtain (2.50).

The condition (2.51) is called the determining equation for the infinitesimal
symmetries of the differential equation. It is typically a large, over-determined sys-
tem of equations for ξi(x, u), ϕ(x, u) and their derivatives, which is straightforward
(though tedious) to solve.

Thus, in summary, to compute the point symmetries of a differential equation

F (x, u, ∂αu) = 0

we use the prolongation formula (2.48)–(2.49) to write down the infinitesimal in-
variance condition (2.51), solve the resulting equations for ξi(x, u) and ϕ(x, u), then
integrate the vector fields (2.47) to obtain the symmetries g = e~v.
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9.8. Porous medium equation

Let us return to the porous medium equation (2.36).
The space E of independent and dependent variables has coordinates (x, t, u).

We may write the equation as

(2.52) F (u, ux, ut, uxx) = 0

where F : E(2) → R is given by

F (u, ux, ut, uxx) = −ut + u2
x + uuxx.

A vector field ~v on E is given by

(2.53) ~v(x, t, u) = ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u.

From (2.48), the second prolongation of ~v has the form

pr(2)~v = ξ∂x + τ∂t + ϕ∂u + ϕx∂ux + ϕt∂ut + ϕxx∂uxx + ϕxt∂uxt + ϕtt∂utt .

The infinitesimal invariance condition (2.51) applied to (2.52) gives

(2.54) −ϕt + 2uxϕ
x + ϕuxx + uϕxx = 0 on ut = u2

x + uuxx.

From (2.49), we have

ϕx = DxQ+ ξuxx + τuxt,

ϕt = DtQ+ ξuxt + τutt,

ϕxx = D2
xQ+ ξuxxx + τuxxt,

ϕxt = DxDtQ+ ξuxxt + τuxtt,

ϕtt = D2
tQ+ ξuxtt + τuttt,

where the characteristic Q of (2.53) is given by

Q (x, t, u, ut, ux) = ϕ (x, t, u)− ξ (x, t, u)ux − τ (x, t, u)ut,

and the total derivatives Dx, Dt of a function f (x, t, u, ux, ut) are given by

Dxf = fx + uxfu + uxxfux + uxtfut ,

Dtf = ft + utfu + uxtfux + uttfut .

Expanding the total derivatives of Q, we find that

ϕx = ϕx + (ϕu − ξx)ux − τxut − ξuu2
x − τuuxut,

ϕt = ϕt − ξtux + (ϕu − τt)ut − ξuuxut − τuu2
t ,

ϕxx = ϕxx + (2ϕxu − ξxx)ux − τxxut + (ϕuu − 2ξxu)u2
x

− 2τxtuxut − ξuuu3
x − τuuu2

xut + (ϕu − 2ξx)uxx

− 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt.

We use these expressions in (2.54), replace ut by uuxx+u2
x in the result, and equate

coefficients of the terms that involve different combinations of the spatial derivatives
of u to zero.

The highest derivative terms are those proportional to uxt and uxuxt. Their
coefficients are proportional to τx and τu, respectively, so we conclude that τx = 0
and τu = 0, which implies that τ = τ(t) depends only on t.

The remaining terms that involve second-order spatial derivatives are a term
proportional to uxuxx, with coefficient ξu, so ξu = 0 and ξ = ξ(x, t), and a term
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proportional to uxx. Equating the coefficient of the latter term to zero, we find
that

(2.55) ϕ = (2ξx − τt)u.

Thus, ϕ is a linear function of u.
The terms that are left are either proportional to u2

x, ux, or involve no deriva-
tives of u. Equating to zero the coefficients of these terms to zero, we get

τt − 2ξx + ϕu + uϕuu = 0,

ξt − uξxx + 2ϕx + 2uϕxu = 0,

ϕt − uϕxx = 0.

The first equation is satisfied by any ϕ of the form (2.55). The second equation
is satisfied if ξt = 0 and ξxx = 0, which implies that

ξ = ε1 + ε3x

for arbitrary constants ε1, ε3. The third equation holds if τtt = 0, which implies
that

τ = ε2 + ε4t

for arbitrary constants ε2, ε3. Equation (2.55) then gives

ϕ = (2ε3 − ε4)u

Thus, the general form of an infinitesimal generator of a point symmetry of
(2.36) is

~v(x, t, u) = (ε1 + ε3x) ∂x + (ε2 + ε4t) ∂t + (2ε3 − ε4)u∂u.

We may write this as

~v =

4∑
i=1

εi~vi

where the vector fields ~vi are given by

~v1 = ∂x, ~v2 = ∂t(2.56)

~v3 = x∂x + 2u∂u ~v4 = t∂t − u∂u(2.57)

The vector fields ~v1, ~v2 in (2.56) generate the space and time translations

(x, t, u) 7→ (x+ ε1, t, u), (x, t, u) 7→ (x, t+ ε2, u),

respectively. The vector fields ~v3, ~v4 in (2.57) generate the scaling transformations

(x, t, u) 7→
(
eε3x, t, e2ε3u

)
(x, t, u) 7→

(
x, eε4t, e−ε4u

)
.

These are the same as (2.44) with

α = eε3 , β = eε4 .

Thus the full point symmetry group of the porous medium equation is four
dimensional, and is generated by space and time translations and the two scaling
transformations that arise from dimensional analysis.

This result is, perhaps, a little disappointing, since we did not find any new
symmetries, although it is comforting to know that there are no other point sym-
metries to be found. For other equations, however, we can get symmetries that are
not at all obvious.
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Example 2.18. Consider the one-dimensional heat equation

(2.58) ut = uxx.

The determining equation for infinitesimal symmetries is

ϕt = ϕxx on ut = uxx.

Solving this equation and integrating the resulting vector fields, we find that the
point symmetry group of (2.58) is generated by the following transformations [40]:

u(x, t) 7→ u(x− α, t),
u(x, t) 7→ u(x, t− β),

u(x, t) 7→ γu(x, t),

u(x, t) 7→ u(δx, δ2t),

u(x, t) 7→ e−εx+ε2tu(x− 2εt, t),

u(x, t) 7→ 1√
1 + 4ηt

exp

[
−ηx2

1 + 4ηt

]
u

(
x

1 + 4ηt
,

t

1 + 4ηt

)
,

u(x, t) 7→ u(x, t) + v(x, t),

where (α, . . . , η) are constants, and v(x, t) is an arbitrary solution of the heat equa-
tion. The scaling symmetries involving γ and δ can be deduced by dimensional
arguments, but the symmetries involving ε and η cannot.

As these examples illustrate, given a differential equation it is, in principle,
straightforward (but lengthy) to write out the conditions that a vector field gen-
erates a point symmetry of the equation, solve these conditions, and integrate the
resulting infinitesimal generators to obtain the Lie group of continuous point sym-
metries of the equation. There are a number of symbolic algebra packages that will
do this automatically.

Finally, we note that point symmetries are not the only kind of symmetry
one can consider. It is possible to define ‘generalized’ (also called ‘nonclassical’
or ‘higher’) symmetries on infinite-dimensional jet spaces (see [40], for an intro-
duction). These are of particular interest in connection with completely integrable
equations, such as the Korteweg-de Vries (KdV) equation, which possess ‘hidden’
symmetries that are not revealed by their point symmetries
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The Calculus of Variations

The variational principles of mechanics are firmly rooted in the
soil of that great century of Liberalism which starts with Descartes
and ends with the French Revolution and which has witnessed
the lives of Leibniz, Spinoza, Goethe, and Johann Sebastian
Bach. It is the only period of cosmic thinking in the entire
history of Europe since the time of the Greeks.1

The calculus of variations studies the extreme and critical points of functions.
It has its roots in many areas, from geometry to optimization to mechanics, and it
has grown so large that it is difficult to describe with any sort of completeness.

Perhaps the most basic problem in the calculus of variations is this: given a
function f : Rn → R that is bounded from below, find a point x̄ ∈ Rn (if one exists)
such that

f (x̄) = inf
x∈Rn

f(x).

There are two main approaches to this problem. One is the ‘direct method,’ in
which we take a sequence of points such that the sequence of values of f converges
to the infimum of f , and then try to showing that the sequence, or a subsequence
of it, converges to a minimizer. Typically, this requires some sort of compactness to
show that there is a convergent subsequence of minimizers, and some sort of lower
semi-continuity of the function to show that the limit is a minimizer.

The other approach is the ‘indirect method,’ in which we use the fact that
any interior point where f is differentiable and attains a minimum is a critical, or
stationary, point of f , meaning that the derivative of f is zero. We then examine
the critical points of f , together with any boundary points and points where f is
not differentiable, for a minimum.

Here, we will focus on the indirect method for functionals, that is, scalar-valued
functions of functions. In particular, we will derive differential equations, called
the Euler-Lagrange equations, that are satisfied by the critical points of certain
functionals, and study some of the associated variational problems.

We will begin by explaining how the calculus of variations provides a formula-
tion of one of the most basic systems in classical mechanics, a point particle moving
in a conservative force field. See Arnold [6] for an extensive account of classical
mechanics.

1Cornelius Lanczos, The Variational Principles of Mechanics.
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1. Motion of a particle in a conservative force field

Consider a particle of constant mass m moving in n-space dimensions in a spatially-

dependent force field ~F (~x). The force field is said to be conservative if

~F (~x) = −∇V (~x)

for a smooth potential function V : Rn → R, where ∇ denotes the gradient with

respect to ~x. Equivalently, the force field is conservative if the work done by ~F on
the particle as it moves from ~x0 to ~x1,∫

Γ(~x0,~x1)

~F · d~x,

is independent of the path Γ (~x0, ~x1) between the two endpoints.
Abusing notation, we denote the position of the particle at time a ≤ t ≤ b by

~x(t). We refer to a function ~x : [a, b]→ Rn as a particle trajectory. Then, according
to Newton’s second law, a trajectory satisfies

(3.1) m~̈x = −∇V (~x)

where a dot denotes the derivative with respect to t.
Taking the scalar product of (3.1) with respect to ~̇x, and rewriting the result,

we find that
d

dt

{
1

2
m
∣∣∣~̇x∣∣∣2 + V (~x)

}
= 0.

Thus, the total energy of the particle

E = T
(
~̇x
)

+ V (~x) ,

where V (~x) is the potential energy and

T (~v) =
1

2
m |~v|2

is the kinetic energy, is constant in time.

Example 3.1. The position x(t) : [a, b]→ R of a one-dimensional oscillator moving
in a potential V : R→ R satisfies the ODE

mẍ+ V ′(x) = 0

where the prime denotes a derivative with respect to x. The solutions lie on the
curves in the (x, ẋ)-phase plane given by

1

2
mẋ2 + V (x) = E.

The equilibrium solutions are the critical points of the potential V . Local minima of
V correspond to stable equilibria, while other critical points correspond to unstable
equilibria. For example, the quadratic potential V (x) = 1

2kx
2 gives the linear simple

harmonic oscillator, ẍ + ω2x = 0, with frequency ω =
√
k/m. Its solution curves

in the phase plane are ellipses, and the origin is a stable equilibrium.

Example 3.2. The position ~x : [a, b] → R3 of a mass m moving in three space
dimensions that is acted on by an inverse-square gravitational force of a fixed mass
M at the origin satisfies

~̈x = −GM ~x

|~x|3
,
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where G is the gravitational constant. The solutions are conic sections with the
origin as a focus, as one can show by writing the equations in terms of polar
coordinates in the plane of the particle motion motion, and integrating the resulting
ODEs.

Example 3.3. Consider n particles of mass mi and positions ~xi(t), where i =
1, 2, ..., n, that interact in three space dimensions through an inverse-square gravi-
tational force. The equations of motion,

~̈xi = −G
n∑
j=1

mj
~xi − ~xj

|~xi − ~xj |3
for 1 ≤ i ≤ n,

are a system of 3n nonlinear, second-order ODEs. The system is completely in-
tegrable for n = 2, when it can be reduced to the Kepler problem, but it is non-
integrable for n ≥ 3, and extremely difficult to analyze. One of the main results
is KAM theory, named after Kolmogorov, Arnold and Moser, on the persistence of
invariant tori for nonintegrable perturbations of integrable systems [6].

Example 3.4. The configuration of a particle may be described by a point in some
other manifold than Rn. For example, consider a pendulum of length ` and mass
m in a gravitational field with acceleration g. We may describe its configuration by
an angle θ ∈ T where T = R/(2πZ) is the one-dimensional torus (or, equivalently,
the circle S1). The corresponding equation of motion is the pendulum equation

`θ̈ + g sin θ = 0.

1.1. The principle of stationary action

To give a variational formulation of (3.1), we define a function

L : Rn × Rn → R,

called the Lagrangian, by

(3.2) L (~x,~v) = T (~v)− V (~x) .

Thus, L (~x,~v) is the difference between the kinetic and potential energies of the
particle, expressed as a function of position ~x and velocity ~v.

If ~x : [a, b]→ Rn is a trajectory, we define the action of ~x(t) on [a, b] by

(3.3) S (~x) =

∫ b

a

L
(
~x(t), ~̇x(t)

)
dt.

Thus, the action S is a real-valued function defined on a space of trajectories
{~x : [a, b]→ Rn}. A scalar-valued function of functions, such as the action, is often
called a functional.

The principle of stationary action (also called Hamilton’s principle or, some-
what incorrectly, the principle of least action) states that, for fixed initial and final
positions ~x(a) and ~x(b), the trajectory of the particle ~x(t) is a stationary point of
the action.

To explain what this means in more detail, suppose that ~h : [a, b] → Rn is a

trajectory with ~h(a) = ~h(b) = 0. The directional (or Gâteaux) derivative of S at

~x(t) in the direction ~h(t) is defined by

(3.4) dS (~x)~h =
d

dε
S
(
~x+ ε~h

)∣∣∣∣
ε=0

.
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The (Fréchet) derivative of S at ~x(t) is the linear functional dS (~x) that maps ~h(t)

to the directional derivative of S at ~x(t) in the direction ~h(t).

Remark 3.5. Simple examples show that, even for functions f : R2 → R, the
existence of directional derivatives at a point does not guarantee the existence of a
Fréchet derivative that provides a local linear approximation of f . In fact, it does
not even guarantee the continuity of the function; for example, consider

f (x, y) =
xy2

x2 + y4
if (x, y) 6= (0, 0)

with f(0, 0) = 0. For sufficiently smooth functions, however, such as the action
functional we consider here, the existence of directional derivatives does imply the
existence of the derivative, and the Gâteaux and Fréchet derivatives agree, so we
do not need to worry about the distinction.

A trajectory ~x(t) is a stationary point of S if it is a critical point, meaning that
dS (~x) = 0. Explicitly, this means that

d

dε
S
(
~x+ ε~h

)∣∣∣∣
ε=0

= 0

for every smooth function ~h : [a, b] → Rn that vanishes at t = a, b. Thus, small
variations in the trajectory of the order ε that keep its endpoints fixed, lead to
variations in the action of the order ε2.

Remark 3.6. Remarkably, the motion of any conservative, classical physical sys-
tem can be described by a principle of stationary action. Examples include ideal
fluid mechanics, elasticity, magnetohydrodynamics, electromagnetics, and general
relativity. All that is required to specify the dynamics of a system is an appropriate
configuration space to describe its state and a Lagrangian.

Remark 3.7. This meaning of the principle of stationary action is rather mysteri-
ous, but we will verify that it leads to Newton’s second law. One way to interpret
the principle is that it expresses a lack of distinction between different forms of
energy (kinetic and potential): any variation of a stationary trajectory leads to an
equal gain, or loss, of kinetic and potential energies. An alternative explanation,
from quantum mechanics, is that the trajectories with stationary action are the
ones with a minimal cancelation of quantum-mechanical amplitudes. Whether this
makes the principle less, or more, mysterious is not so clear.

1.2. Equivalence with Newton’s second law

To derive the differential equation satisfied by a stationary point ~x(t) of the action
S defined in (3.2)–(3.3), we differentiate the equation

S
(
~x+ ε~h

)
=

∫ b

a

{
1

2
m
∣∣∣~̇x(t) + ε~̇h(t)

∣∣∣2 − V (~x(t) + ε~h(t)
)}

dt

with respect to ε, and set ε = 0, as in (3.4). This gives

dS (~x)~h =

∫ b

a

{
m~̇x · ~̇h−∇V (~x) · ~h

}
dt.
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Integrating the first term by parts, and using the fact that the boundary terms

vanish because ~h(a) = ~h(b) = 0, we get

(3.5) dS (~x)~h = −
∫ b

a

{
m~̈x+∇V (~x)

}
· ~h dt.

If this integral vanishes for arbitrary ~h(t), it follows from the du Bois-Reymond
lemma (1879) that the integrand vanishes. Thus, ~x(t) satisfies

m~̈x+∇V (~x) = 0

for a ≤ t ≤ b. Hence, we recover Newton’s second law (3.1).

1.3. The variational derivative

A convenient way to write the derivative of the action is in terms of the variational,
or functional, derivative. The variational derivative of S at ~x(t) is the function

δS
δ~x

: [a, b]→ Rn

such that

dS (~x)~h =

∫ b

a

δS
δ~x(t)

· ~h(t) dt.

Here, we use the notation
δS
δ~x(t)

to denote the value of the variational derivative at t. Note that the variational
derivative depends on the trajectory ~x at which we evaluate dS (~x), although the
notation does not show this explicitly.

Thus, for the action functional (3.2)–(3.3), equation (3.5) implies that

δS
δ~x

= −
{
m~̈x+∇V (~x)

}
.

A trajectory ~x(t) is a stationary point of S if the variational derivative of S vanishes
at ~x(t).

The variational derivative of a functional is analogous to the gradient of a
function. If f : Rn → R is a scalar-valued function on n-dimensional Euclidean
space, then the gradient ∇f is defined by

d

dε
f
(
~x+ ε~h

)∣∣∣∣
ε=0

= ∇f (~x) · ~h

where ‘·’ denotes the Euclidean inner product. Thus, we use the inner product
to identify the derivative at a point, which is is a linear map belonging to the
dual space of Rn, with a corresponding gradient vector belonging to Rn. For the
variational derivative, we replace the Euclidean inner product of vectors by the
L2-inner product of functions,

〈~x, ~y〉 =

∫ b

a

~x(t) · ~y(t) dt,

and define the variational derivative by

dS (~x)~h =

〈
δS
δ~x
,~h

〉
.
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Remark 3.8. Considering the scalar case x : [a, b]→ R for simplicity, and taking
h(t) = δt0(t), where δt0(t) = δ (t− t0) is the delta function supported at t0, we have
formally that

δS
δx(t0)

=
d

dε
S (x+ εδt0)

∣∣∣∣
ε=0

.

Thus, we may interpret the value of the functional derivative δS/δx at t as describ-
ing the change in the values of the functional S(x) due to changes in the function
x at the point t.

1.4. Examples from mechanics

Let us return to the examples considered in Section 1.

Example 3.9. The action for the one-dimensional oscillator in Example 3.1 is

S(x) =

∫ b

a

{
1

2
mẋ2 − V (x)

}
dt,

and its variational derivative is

δS
δx

= − [mẍ+ V ′ (x)] .

Example 3.10. The potential energy V : R3 \{0} → R for a central inverse-square
force is given by

V (~x) = −GMm

|~x|
.

The action of a trajectory ~x : [a, b]→ R3 is

S (~x) =

∫ b

a

{
1

2
m
∣∣∣~̇x∣∣∣2 +

GMm

|~x|

}
dt.

Example 3.11. The action for the n-body problem in Example 3.3 is

S (~x1, ~x2, . . . , ~xn) =

∫ b

a

1

2

n∑
i=1

mi

∣∣∣~̇xi∣∣∣2 +
1

2

n∑
i,j=1

Gmimj

|~xi − ~xj |

 dt.

The equations of motion are obtained from the requirement that S is stationary
with respect to independent variations of {~x1, ~x2, . . . , ~xn}.

Example 3.12. The configuration of a particle may be described by a point in some
other manifold than Rn. For example, consider a pendulum of length ` and mass
m in a gravitational field with acceleration g. We may describe its configuration
by an angle θ ∈ T. The action is

S =

∫ b

a

{
1

2
m`2θ̇2 −mg` (1− cos θ)

}
dt,

and the corresponding equation of motion is the pendulum equation

`θ̈ + g sin θ = 0.

The following example connects mechanics and the calculus of variations with
Riemannian geometry.
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Example 3.13. Consider a particle moving freely on a Riemannian manifold M
with metric g. If x =

(
x1, x2, . . . , xn

)
are local coordinates on M , then the arclength

ds on M is given by
ds2 = gij(x)dxidxj

where gij are the metric components. The metric is required to be symmetric,
so gij = gji, and non-singular. We use the summation convention, meaning that
repeated upper and lower indices are summed from 1 to n. A trajectory γ : [a, b]→
M has kinetic energy

T (γ, γ̇) =
1

2
gij(γ)γ̇iγ̇j .

The corresponding action is

S =
1

2

∫ b

a

gij(γ)γ̇iγ̇j dt.

The principle of stationary action leads to the equation

gij(γ)γ̈j + Γjki(γ)γ̇j γ̇k = 0 i = 1, 2, . . . , n

where the connection coefficients, or Christoffel symbols, Γjki are defined by

Γjki =
1

2

(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
.

Since the metric is invertible, we may solve this equation for γ̈ to get

(3.6) γ̈i + Γijk(γ)γ̇j γ̇k = 0 i = 1, 2, . . . , n

where
Γijk = gipΓjkp

and gij denotes the components of the inverse matrix of gij such that

gijgjk = δik.

The solutions of the second-order system of ODEs (3.6) are the geodesics of the
manifold.

2. The Euler-Lagrange equation

In the mechanical problems considered above, the Lagrangian is a quadratic func-
tion of the velocity. Here, we consider Lagrangians with a more general dependence
on the derivative.

Let F be a functional of scalar-valued functions u : [a, b]→ R of the form

F(u) =

∫ b

a

F (x, u(x), u′(x)) dx,

F : [a, b]× R× R→ R,
(3.7)

where F is a smooth function.
It is convenient to use the same notation for the variables

(x, u, u′) ∈ [a, b]× R× R
on which F depends and the functions u(x), u′(x). We denote the partial derivatives
of F (x, u, u′) by

Fx =
∂F

∂x

∣∣∣∣
u,u′

, Fu =
∂F

∂u

∣∣∣∣
x,u′

, Fu′ =
∂F

∂u′

∣∣∣∣
x,u

.
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If h : [a, b]→ R is a smooth function that vanishes at x = a, b, then

dF (~u)h =
d

dε

∫ b

a

F (x, u(x) + εh(x), u′(x) + εh′(x)) dx

∣∣∣∣∣
ε=0

=

∫ b

a

{Fu (x, u(x), u′(x))h(x) + Fu′ (x, u(x), u′(x))h′(x)} dx.

(3.8)

It follows that a necessary condition for a C1-function u(x) to be a stationary
point of (3.7) in a space of functions with given values at the endpoints is that

(3.9)

∫ b

a

{Fu (x, u(x), u′(x))h(x) + Fu′ (x, u(x), u′(x))h′(x)} dx = 0

for all smooth functions h(x) that vanish at x = a, b.
If the function u in (3.8) is C2, then we may integrate by parts to get

dF (~u)h =

∫ b

a

{
Fu (x, u(x), u′(x))− d

dx
Fu′ (x, u(x), u′(x))

}
h(x) dx.

It follows that the variational derivative of F is given by

δF
δu

= − d

dx
Fu′ (x, u, u

′) + Fu (x, u, u′) .

Moreover, if a C2-function u(x) is a stationary point of F , then it must satisfies
the ODE

(3.10) − d

dx
Fu′ (x, u, u

′) + Fu (x, u, u′) = 0.

Equation (3.10) is the Euler-Lagrange equation associated with the functional
(3.7). It is a necessary, but not sufficient, condition that any smooth minimizer
of (3.7) must satisfy. Equation (3.9) is the weak form of (3.10); it is satisfied by
any C1-minimizer (or, more generally, by any minimizer that belongs to a suitable
Sobolev space W 1,p(a, b)).

Note that d/dx in (3.10) is the total derivative with respect to x, meaning that
the derivative is taken after the substitution of the functions u(x) and u′(x) into
the arguments of F . Thus,

d

dx
f (x, u, u′) = fx (x, u, u′) + fu (x, u, u′)u′ + fu′ (x, u, u

′)u′′.

The coefficient of u′′ in (3.10) is equal to Fu′u′ . The ODE is therefore of second
order provided that

Fu′u′ (x, u, u
′) 6= 0.

The derivation of the Euler-Lagrange equation extends straightforwardly to
Lagrangians that depend on higher derivatives and to systems. For example, the
Euler-Lagrange equation for the scalar functional

F(u) =

∫ b

a

F (x, u(x), u′(x), u′′(x)) dx,

where F : [a, b]× R× R× R→ R, is

d2

dx2
Fu′′ −

d

dx
Fu′ + Fu = 0.

This is a forth-order ODE if Fu′′u′′ 6= 0.
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The Euler-Lagrange equation for a vector functional

F (~u) =

∫ b

a

F (x, ~u(x), ~u′(x)) dx,

where F : [a, b]× Rn × Rn → R, is

− d

dx
Fu′i + Fui = 0 for i = 1, 2, . . . , n.

This is an n×n system of ODEs for ~u = (u1, u2, . . . , un). The system is second-order
if the n× n matrix with components Fu′iu′j is invertible.

The extension to functionals that involve more than one independent variable
is less straightforward, and some examples will be considered below. In that case,
the Euler-Lagrange equation is a PDE.

The question of whether a solution of the Euler-Lagrange equation is an extreme
point of the functional is quite subtle even in the one-dimensional case. For example,
the application of a second-derivative test, familiar from calculus for functions on
finite-dimensional spaces, is not entirely straightforward. We will not discuss these
questions here; see [11], for example, for more information.

3. Newton’s problem of minimal resistance

If in a rare medium, consisting of equal particles freely disposed
at equal distance from each other, a globe and a cylinder de-
scribed on equal diameter move with equal velocities in the di-
rection of the axis of the cylinder, the resistance of the globe
will be half as great as that of the cylinder. . . . I reckon that
this proposition will not be without application in the building
of ships.2

Many variational problems arise from optimization problems in which we seek
to minimize (or maximize) some functional. We consider here a problem proposed
and solved by Newton (1685) of finding the shape of a body with minimal resistance
in a rarified gas. This was one of the first problems in the calculus of variations to
be solved.

3.1. Derivation of Newton’s resistance functional

Following Newton, let us imagine that the gas is composed of uniformly distributed,
non-interacting particles that reflect elastically off the body. We suppose that the
particles have number-density n, mass m, and constant velocity v the downward
z-direction, in a frame of reference moving with the body.

We assume that the body is cylindrically symmetric with a maximum radius
of a and height h. We write the equation of the body surface in cylindrical polar
coordinates as z = u(r) , where 0 ≤ r ≤ a and

u(0) = h, u(a) = 0.

Let θ(r) denote the angle of the tangent line to the r-axis of this curve at the
point (r, u(r)). Since the angle of reflection of a particle off the body is equal to
the angle of incidence, π/2− θ, the reflected particle path makes an angle 2θ to the
z-axis.

2I. Newton in Principia Mathematica, quoted from [11].
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The change in momentum of the particle in the z-direction when it reflects off
the body is therefore

mv (1 + cos 2θ) .

For example, this is equal to 2mv for normal incidence (θ = 0), and 0 for grazing
incidence (θ = π/2).

The number of particles per unit time, per unit distance in the radial direction
that hit the body is equal to

2πnvr.

Note that [2πnvr] = (1/L3) · (L/T ) · (L) = 1/(LT ) as it should.
The rate at which the particles transfer momentum to the body per unit time,

which is equal to force F exerted by the gas on the body, is given by

F = 2πnmv2

∫ a

0

r (1 + cos 2θ) dr.

Using the fact that tan θ = u′ to eliminate θ, we get that the resistance force on a
profile z = u(r) is given by

F = 4πnma2v2F(u),

where the resistance functional F is defined by

(3.11) F(u) =
1

a2

∫ a

0

r

1 + [u′(r)]
2 dr.

Introducing dimensionless variables r̃ = r/a, ũ = u/a in (3.11), and dropping the
tildes, we get the nondimensionalized resistance functional

(3.12) F(u) =

∫ 1

0

r

1 + [u′(r)]
2 dr.

As we will see, this resistance functional does not provide the the most con-
vincing physical results, although it has been used as a model for rarified flows and
hypersonic flows. It is nevertheless remarkable that Newton was able to formulate
and solve this problem long before a systematic development of the theory of fluid
mechanics.

3.2. Resistances of some simple shapes

To see how the resistance functional F in (3.11) behaves and formulate an appro-
priate optimization problem for it, let us consider some examples. Clearly, we have
0 < F(u) ≤ 1/2 for any u : [a, b]→ R.

Example 3.14. For a vertical cylinder of radius a, we have u(r) = h for 0 ≤ r < a
and u(a) = 0. The integrand in the functional (3.11) is small when u′ is large, so we
can approximate this discontinuous function by smooth functions whose resistance
is arbitrarily close to the resistance of the cylinder. Setting u′ = 0 in (3.11), we
get F = 1/2. Thus, a blunt cylinder has the maximum possible resistance. The
resistance is independent of the cylinder height h, since the gas particles graze the
sides of the cylinder and exert no force upon it.

Example 3.15. For a sphere, with r2 + z2 = a2 and u(r) =
√
a2 − r2, we get

F = 1/4. As Newton observed, this is half the resistance of the cylinder. More
generally, consider an ellipsoid of radius a and height h, with aspect ratio

(3.13) M =
h

a
,
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and equation
r2

a2
+
z2

h2
= 1, u(r) = M

√
a2 − r2.

Using this expression for u in (3.11), and assuming thatM 6= 1, we get the resistance

F(u) =
M2 logM2 −

(
M2 − 1

)
2 (M2 − 1)

2 .

The limit of this expression as M → 0 is equal to 1/2, the resistance of the cylinder,
and the limit as M → 1 is 1/4, the resistance of the sphere. As M → ∞, the
resistance approaches zero. Thus, the resistance becomes arbitrarily small for a
sufficiently tall, thin ellipsoid, and there is no profile that minimizes the resistance
without a constraint on the aspect ratio.

Example 3.16. The equation of a circular cone with base a and height h is z = u(r)
with u(r) = M (a− r), where M is given by (3.13) as before. In this case u′ = M
is constant, and

F(u) =
1

2 (1 +M2)

As M → 0, the resistance approaches 1/2, and as M → ∞, the resistance ap-
proaches 0.

Example 3.17. Suppose that un(r) consists of (n+ 1/2) ‘tent’ functions of height
h and base 2bn where

bn =
a

2n+ 1
.

Then, except at the ‘corners,’ we have |u′n| = h/bn, and therefore

F (un) =
1

2
[
1 + (2n+ 1)

2
M2
] .

As before, we can approximate this piecewise smooth function by smooth functions
with an arbitrarily small increase in the resistance. Thus, F (un) → 0 as n → ∞,
even though 0 ≤ un(r) ≤ h and the heights of the bodies are uniformly bounded. To
eliminate this kind of oscillatory behavior, which would lead to multiple impacts of
particles on the body contrary to what is assumed in the derivation of the resistance
formula, we will impose the reasonable requirement that u′(r) ≤ 0 for 0 ≤ r ≤ a.

3.3. The variational problem

We fix the aspect ratio M > 0, and seek to minimize F over the space of functions

XM =
{
u ∈W 1,∞(0, 1) : [0, 1]→ R | u(0) = M, u(1) = 0, u′(r) ≤ 0

}
.

Here, W 1,∞(0, 1) denotes the Sobolev space of functions whose weak, or distribu-
tional, derivative is a bounded function u′ ∈ L∞(0, 1). Equivalently, this means
that u is Lipschitz continuous with |u(x) − u(y)| ≤ M |x − y|, where M = ‖u‖∞.
We could minimize F over the larger space W 1,1(0, 1) of absolutely continuous
functions with u′ ∈ L1(0, 1), and get the same result. As we shall see, however, the
smaller space C1[0, 1] of continuously differentiable functions would not be adequate
because the minimizer has a ‘corner’ and is not continuously differentiable.

Also note that, as the examples above illustrate, it is necessary to impose a
constraint, such as u′ ≤ 0, on the admissible functions, otherwise (as pointed out
by Legendre in 1788) we could make the resistance as small as we wish by taking
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profiles with rapid ‘zig-zags’ and large slopes, although the infimum F = 0 is not
attained for any profile.

The functional (3.12) is a pathological one from the perspective of the general
theory of the calculus of variations. First, it is not coercive, because

r

1 + [u′]
2 → 0 as |u′| → ∞.

As a result, minimizing sequences need not be bounded, and, in the absence of
constraints, minimizers can ‘escape’ to infinity. Second, it is not convex. A function
F : X → R on a real vector space X is convex if, for all u, v ∈ X and λ ∈ [0, 1],

F (λu+ (1− λ)v) ≤ λF(u) + (1− λ)F(v).

In general, convex functions have good lower semicontinuity properties and convex
minimization problems are typically well-behaved. The behavior of non-convex
optimization problems can be much nastier.

3.4. The Euler-Lagrange equation

The Euler-Lagrange equation for (3.12) is

d

dr

 ru′[
1 + (u′)

2
]2
 = 0.

Since the Lagrangian is independent of u, this has an immediate first integral,

(3.14) ru′ = −c
[
1 + (u′)

2
]2

where c ≥ 0 is a constant of integration.
If c = 0 in (3.14), then we get u′ = 0, or u = constant. This solution corre-

sponds to the cylinder with maximum resistance 1/2. The maximum is not attained,
however, within the class absolutely continuous functions u ∈ XM , since for such
functions if u′ is zero almost everywhere with respect to Lebesgue measure, then u
is constant, and it cannot satisfy both boundary conditions u(0) = M , u(1) = 0.

If c > 0 in (3.14), then it is convenient to parametrize the solution curve by
p = u′ < 0. From (3.14), the radial coordinate r is given in terms of p by

(3.15) r = −
c
(
1 + p2

)2
p

.

Using this equation to express dr in terms of dp in the integral

u =

∫
p dr,

and evaluating the result, we get

(3.16) u = u0 − c
(
− log |p|+ p2 +

3

4
p4

)
,

where u0 is a constant of integration.
From (3.15), we see that the minimum value of r(p) for p < 0 is

r0 =
16
√

3c

9
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at p = −1/
√

3. Thus, although this solution minimizes the resistance, we cannot
use it over the whole interval 0 ≤ r ≤ 1, only for r0 ≤ r ≤ 1. In the remaining part
of the interval, we use u = constant, and we obtain the lowest global resistance by
placing the blunt part of the body around the nose r = 0, where it contributes least
to the area and resistance.

While this plausibility argument seems reasonable, it is not entirely convincing,
since the flat nose locally maximizes the resistance, and it is far from a proof.
Nevertheless, with additional work, it is possible to prove that it does give the
correct solution u ∈ XM with minimal resistance.

This minimizing solution has the form

u(r) =

{
M for 0 ≤ r ≤ r0,

u0 − c
(
− log |p|+ p2 + 3

4p
4
)

for p1 ≤ p ≤ −1/
√

3,

where r(p1) = 1.

Imposing continuity of the solution at r = r0, p = 1/
√

3 and the boundary
condition u(1) = 0, with p = p1, we get

M = u0 − c
(

log
√

3 +
5

12

)
,

p1 = −c
(
1 + p2

1

)2
,

u0 = c

(
− log |p1|+ p2

1 +
3

4
p4

1

)
.

Eliminating u0, we may write the solution as

u(r) = M − c
(
p2 +

3

4
p4 − log

∣∣∣√3p
∣∣∣− 5

12

)
for p1 ≤ p ≤ −1/

√
3, where

M = c

(
p2

1 +
3

4
p4

1 − log
∣∣∣√3p1

∣∣∣− 5

12

)
, p1 = −c

(
1 + p2

1

)2
.

Thus, p1 is the solution of

p1

(
log
∣∣√3p1

∣∣− p2
1 − 3

4p
4
1 + 5

12

)
(1 + p2

1)
2 = M,

and r0 is given in terms of p1 by

r0 = − 16
√

3p1

9 (1 + p2
1)

2 .

Denoting by

C0 = 2

∫ 1

0

r

1 + (u′)
2 dr

the ratio of the minimal resistance to the maximal resistance of a cylinder, one gets
the numerical values shown below [12]. Moreover, one can show that

r0 ∼
27

16

1

M3
, C0 ∼

27

32

1

M2
as M →∞.

Thus, as the aspect ratio increases, the radius of the blunt nose decreases and the
total resistance of the body approaches zero.
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M = 1 M = 2 M = 3 M = 4

r0 0.35 0.12 0.048 0.023
C0 0.37 0.16 0.0082 0.0049

3.5. Non-radially symmetric solutions

The radially symmetric problem may be generalized to a two-dimensional, non-
radially symmetric problem as follows. Suppose that Ω ⊂ R2 is a given domain
(a bounded, open, connected set). Find a bounded, nonegative convex function
u : Ω→ R that minimizes

F(u) =

∫
Ω

1

1 + |∇u|2
dxdy.

In this case, the shape of the body is given by z = u(x, y).
In the discussion above, we obtained the minimizer among radially symmetric

bodies when Ω is a disc D. It might seem natural to suppose that this radially sym-
metric solution minimizes the resistance among non-radially symmetric admissible
functions u : D → R. It is interesting to note that this is not true. Brock, Ferroni,
and Kawohl (1996) showed that there are non-radially symmetric convex functions
on the disc that give a lower resistance than the radial solution found above.

4. Constrained variational principles

It often occurs that we want to minimize a functional subject to a constraint.
Constraints can take many forms. First, consider the minimization of a functional

F(u) =

∫ b

a

F (x, u, u′) dx,

over functions such that u(a) = 0, u(b) = 0, subject to an integral constraint of the
form

G =

∫ b

a

G (x, u, u′) dx.

Variational problems with integral constraints are called isoperimetric problems
after the prototypical problem of finding the curve (a circle) that encloses the
maximum area subject to the constraint that its length is fixed.3

We may solve this problem by introducing a Lagrange multiplier λ ∈ R and
seeking stationary points of the unconstrained functional

F(u)− λG(u) =

∫ b

a

{F (x, u, u′)− λG (x, u, u′)} dx.

The condition that this functional is stationary with respect to λ implies that
G(u) = 0, so a stationary point satisfies the constraint.

The Euler-Lagrange equation for stationarity of the functional with respect to
variations in u is

− d

dx
Fu′ (x, u, u

′) + Fu (x, u, u′) = λ

[
− d

dx
Gu′ (x, u, u

′) +Gu (x, u, u′)

]
.

3According to Virgil’s Aeneid, Dido was given as much land as she could enclose with an ox hide
to found the city of Carthage. She cut the hide into a thin strip, and used it to enclose a large

circular hill.
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In principle, we solve this problem for u(x) and λ subject to the boundary conditions
u(a) = 0, u(b) = 0 and the constraint G(u) = 0.

4.1. Eigenvalue problems

Consider the following Rayleigh quotient

Q(u) =

∫ b
a

{
p(x)u′

2
+ q(x)u2

}
dx∫ b

a
u2 dx

where p(x), q(x) are given coefficient functions.
Since Q(u) is homogeneous in u, the minimization of Q(u) over nonzero func-

tions u is equivalent to the minimization of the numerator subject to the constraint
that the denominator is equal to one; or, in other words, to the minimization of
F(u) subject to the constraint G(u) = 0 where

F(u) =
1

2

∫ b

a

{
p(x)u′

2
+ q(x)u2

}
dx, G(u) =

1

2

{∫ b

a

u2 dx− 1

}
.

The corresponding Euler-Lagrange equation for the stationarity of F(u)−λG(u)
with respect to u is

− [p(x)u′]
′
+ q(x)u = λu.

This is a Sturm-Liouville eigenvalue problem in which the Lagrange multiplier λ is
an eigenvalue.

5. Elastic rods

As an example of the use of constrained variational principles, we will derive equa-
tions for the equilibria of an inextensible elastic rod and describe some applications.

Consider a thin, inextensible elastic rod that resists bending. Suppose that the
cross-sections of the rod are isotropic and that we can ignore any twisting. We
model the spatial configuration of the rod by a curve ~r(s),

~r : [a, b]→ R3,

where it is convenient to parametrize the curve by arclength a ≤ s ≤ b.
We can model the twisting of a rod by introducing additional vectors that

describe the orientation of its cross-section, leading to the Kirchoff and Cosserat
theories [4], but we will not consider such generalizations here.

5.1. Kinematics

We introduce an orthonormal frame of vectors {~t, ~n,~b} along the curve, consisting
of the unit tangent, normal and binormal vectors, respectively. We have ~t = ~r′ and
~b = ~t× ~n. According to the the Frenet-Serret formulas, these vectors satisfy

~t′ = κ~n, ~n′ = −κ~t+ τ~b, ~b′ = −τ~n

where κ(s) is the curvature and τ(s) is the torsion of the curve.
These equations may also be written as ~t

~n
~b

′ =

 0 κ 0
−κ 0 τ
0 −τ 0

 ~t
~n
~b

 .
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The skew-symmetric matrix on the right-hand side is the infinitesimal generator of

the rotations of the orthonormal frame {~t, ~n,~b} as it is transported along the curve.

5.2. A variational principle

We will derive equilibrium equations for the configuration of the rod from the
condition that they minimize the energy.

We assume that the energy density of a rod configuration is proportional to the
square of its curvature. This constitutive equation, and the model of a rod as an
‘elastic line,’ or elastica, was introduced and developed by James Bernoulli4 (1694),
Daniel Bernoulli (1728), and Euler (1727, 1732).

The curvature is given by κ2 = ~t′ ·~t′, so the total energy of the rod is given by

(3.17) E (~r) =

∫ b

a

1

2
J ~r′′ · ~r′′ ds,

where the material function J : [a, b] → R gives the proportionality between the
square of the curvature and the energy density due to bending.

Equations for the equilibrium configuration of the rod follow by minimizing the
energy (3.17) subject to the constraint that s is arclength, meaning that

~r′ · ~r′ = 1.

This constraint is a pointwise constraint, rather than an integral, so we impose
it by introducing a function λ : [a, b] → R as a Lagrange multiplier, and seeking
stationary points of the functional

F (~r, λ) =

∫ b

a

1

2
{J ~r′′ · ~r′′ − λ (~r′ · ~r′ − 1)} ds.

The Euler-Lagrange equation obtained by varying ~r is

(3.18) (J~r′′)
′′

+ (λ~r′)
′

= 0,

while we recover the constraint by varying λ. Integrating (3.18) once, and writing
~r′ = ~t, we get

(3.19)
(
J~t′
)′

+ λ~t = ~F

where ~F is a constant vector of integration. It corresponds to the contact force
exerted by one part of the rod on another, which is constant in an inextensible rod
which is not acted on by an external force.

We obtain an expression for the Lagrange multiplier λ by imposing the con-
straint that ~t is a unit vector on solutions of (3.19). Taking the inner product of
(3.19) with ~t, and rewriting the result, we get(

J~t · ~t′
)′ − J~t′ · ~t′ + λ~t · ~t = ~F · ~t.

Using ~t · ~t = 1 and ~t · ~t′ = 0 in this equation, we get

λ = ~F · ~t+ J~t′ · ~t′.

4There were a lot of Bernoulli’s. The main ones were the older brother James (1654-1705), the

younger brother Johann (1667-1748), and Johann’s son Daniel (1700-1782). James and Johann
has a prolonged feud over the priority of their mathematical results, and, after James died, Johann

became jealous of his son Daniel’s work, in particular on Bernoulli’s law in hydrodynamics.
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Thus, (3.19) may be written as

(3.20)
(
J~t′
)′

+ Jκ2~t = ~F −
(
~F · ~t

)
~t, κ2 = ~t′ · ~t′.

Equation (3.20) is a second order ODE for the tangent vector ~t(s). We sup-
plement it with suitable boundary conditions at the ends of rod. For example, if
the ends are fully clamped, we specify the directions ~t(a), ~t(b) of the rod at each
endpoint. Given a solution for ~t, we may then recover the position of the rod by
integrating the equation ~r′ = ~t. Note that, in this case, we cannot expect to also
specify the position of both endpoints. In general, the issue of what boundary
conditions to use in rod theories is somewhat subtle (see [4] for further discussion).

Taking the cross product of (3.20) with ~t, and using the fact that ~t × ~t′ = κ~b,
we get

~m′ = ~t× ~F , where ~m = Jκ~b.

This equation expresses a balance of moments in the rod due to the constant contact

force ~F and a contact couple ~m. The couple is proportional to the curvature, as
proposed by Bernoulli and Euler, corresponding to the constitutive assumption
that the energy density is a quadratic function of the curvature Thus, we obtain
the same equations from the Euler-Lagrange equations of the variational principle
as we would by balancing the forces and moments acting on the rod.

5.3. Dimensional considerations

From (3.17), the material function J has the dimension of energy · length. It is often
written as J = EI where E is Young’s modulus for the elastic material making up
the rod, and I is the moment of inertia of a cross-section.

Young’s modulus gives the ratio of tensile stress to tensile strain in an elas-
tic solid. Strain, which measures a deformed length to an undeformed length, is
dimensionless, so E has the dimension of stress, force/area, meaning that

[E] =
M

LT 2
.

For example, the Young’s modulus of steel is approximately 200 kN/mm2.
The moment of inertia, in this context, is a second area moment of the rod

cross-section, and has the dimension of L4. The term ‘moment of inertia’ is also
used to describe the relationship between angular velocity and angular momentum
for a rotating rigid body; the moment of inertia here corresponds to this notion
with mass replaced by area.

Explicitly, we define the components of a second-order, area-moment tensor of
a region Ω ⊂ R2 in the plane, with Cartesian coordinates xi, i = 1, 2, by

Iij =

∫
Ω

xixj dA.

In general, this symmetric, positive-definite tensor has two positive real eigenval-
ues, corresponding to the moments of inertia about the principal axes defined by
the corresponding eigenvectors. If these eienvalues coincide, then we get the the
isotropic case with Iij = Iδij where I is the moment of inertia. For example, if Ω
is a disc of radius a, then I = πa4/4.

Thus,

[EI] =
ML2

T 2
· L,
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consistent with the dimension of J . In general, J may depend upon s, for example
because the cross-sectional area of the rod, and therefore moment of inertia, varies
along its length.

5.4. The persistence length of DNA

An interesting application of rod theories is to the modeling of polymers whose
molecular chains resist bending, such as DNA. A statistical mechanics of flexible
polymers may be derived by supposing that the polymer chain undergoes a random
walk due to thermal fluctuations. Such polymers typically coil up because there
are more coiled configurations that straight ones, so coiling is entropically favored.

If a polymer has elastic rigidity, then the increase in entropy that favors its
coiling is opposed by the bending energy required to coil. As a result, the tangent
vector of the polymer chain is highly correlated over distances short enough that
significant bending energies are required to change its direction, while it is decor-
related over much longer distances. A typical lengthscale over which the tangent
vector is correlated is called the persistence length of the polymer.

According to statistical mechanics, the probability that a system at absolute
temperature T has a specific configuration with energy E is proportional to

(3.21) e−E/kT

where k is Boltzmann’s constant. Boltzmann’s constant has the approximate value
k = 1.38× 10−23 JK−1. The quantity kT is an order of magnitude for the random
thermal energy of a single microscopic degree of freedom at temperature T .

The bending energy of an elastic rod is set by the coefficent J in (3.17), with
dimension energy · length. Thus, the quantity

A =
J

kT

is a lengthscale over which thermal and bending energies are comparable, and it
provides a measure of the persistence length. For DNA, a typical value of this
length at standard conditions is A ≈ 50 nm, or about 150 base pairs of the double
helix.

The statistical mechanics of an elastica, or ‘worm-like chain,’ may be described,
formally at least, in terms of path integrals (integrals over an infinite-dimensional
space of functions). The expected value E [F (~r)] of some functional F (~r) of the
elastica configuration is given by

E [F (~r)] =
1

Z

∫
F (~r) e−E(~r)/kT D~r,

where the right-hand side is a path integral over a path space of configurations ~r(s)
using the Boltzmann factor (3.21) and the elastica energy (3.17). The factor Z is
inserted to normalize the Boltzmann distribution to a probability distribution.

These path integrals are difficult to evaluate in general, but in some cases
the energy functional may be approximated by a quadratic functional, and the
resulting (infinite-dimensional) Gaussian integrals may be evaluated exactly. This
leads to results which are in reasonable agreement with the experimentally observed
properties of DNA [36]. One can also include other effects in the model, such as
the twisting energy of DNA.
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6. Buckling and bifurcation theory

Let us consider planar deformations of an elastic rod of length L. In this case, we
may write

~t = (cos θ, sin θ)

in (3.20), where θ(s) is the angle of the rod to the x-axis. We assume that the rod

is uniform, so that J = EI is constant, and that the force ~F = (F, 0) in the rod is
directed along the x-axis, with F > 0, corresponding to a compression.

With these assumptions, equation (3.20) reduces to a scalar ODE

EIθ′′ + F sin θ = 0.

This ODE is the Euler-Lagrange equation of the functional

E(θ) =

∫ L

0

{
1

2
EI (θ′)

2 − F (1− cos θ)

}
ds

The first term is the bending energy of the rod, and the second term is the work
done by the force in shortening the length of the rod in the x-direction.

This equation is identical in form to the pendulum equation. Here, however, the
independent variable is arclength, rather than time, and we will impose boundary
conditions, not initial conditions, on the solutions.

Let us suppose that the ends of the rod at s = 0, s = L are horizontally clamped,
so that θ(0) = 0, θ(L) = 0. Introducing a dimensionless arclength variable s̃ = s/L,
and dropping the tildes, we may write this BVP as

θ′′ + λ sin θ = 0,(3.22)

θ(0) = 0, θ(1) = 0,(3.23)

where the dimensionless force parameter λ > 0 is defined by

λ =
FL2

EI
.

This problem was studied by Euler, and is one of the original problems in the
bifurcation theory of equilibria.

The problem (3.22)–(3.23) has the trivial solution θ = 0 for any value of λ,
corresponding to the unbuckled state of the rod. This is the unique solution when
λ is sufficiently small, but other non-trivial solutions bifurcate off the trivial solution
as λ increases. This phenomenon corresponds to the buckling of the rod under an
increased load.

The problem can be solved explicitly in terms of elliptic functions, as we will
show below. First, however, we will obtain solutions by perturbing off the trivial
solution. This method is applicable to more complicated problems which cannot
be solved exactly.

6.1. The bifurcation equation

To study the bifurcation of non-zero solutions off the zero solution, we first linearize
(3.22)–(3.23) about θ = 0. This gives

θ′′ + λ0θ = 0,

θ(0) = 0, θ(1) = 0.
(3.24)

We denote the eigenvalue parameter in the linearized problem by λ0.
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Equation (3.24) has a unique solution θ = 0 except when λ0 = λ
(n)
0 , where the

eigenvalues λ
(n)
0 are given by

λ
(n)
0 = n2π2 for n ∈ N.

The corresponding solutions are then θ(s) = Aθ(n)(s), where

θ(n)(s) = sin (nπs) .

The implicit function theorem implies that if λ̄ is not an eigenvalue of the
linearized problem, then the zero solution is the unique solution of the nonlinear
problem for (θ, λ) in a small enough neighborhood of (0, λ̄).

On the other hand, non-trivial solutions can bifurcate off the zero solution at
eigenvalues of the linearized problem. We will compute these solutions by expand-
ing the nonlinear problem about an eigenvalue. As we discuss below, this formal
computation can be made rigorous by use of a Lyapunov-Schmidt reduction.

Fix n ∈ N, and let

λ0 = n2π2

be the nth eigenvalue. We drop the superscript n to simplify the notation.
We introduce a small parameter ε, and consider values of the eigenvalue pa-

rameter λ close to λ0. We suppose that λ(ε) has the expansion

(3.25) λ(ε) = λ0 + ε2λ2 + . . . as ε→ 0,

where we write ε2 instead of ε to simplify the subsequent equations.
We look for small-amplitude solutions θ(s; ε) of (3.22)–(3.23) with an expansion

of the form

(3.26) θ(s; ε) = εθ1(s) + ε3θ3(s) + . . . as ε→ 0.

Using (3.25) and (3.26) in (3.22)–(3.23), Taylor expanding the result with re-
spect to ε, and equating coefficients of ε and ε3 to zero, we find that

θ1
′′ + λ0θ1 = 0,

θ1(0) = 0, θ1(1) = 0,
(3.27)

θ3
′′ + λ0θ3 + λ2θ1 −

1

6
λ0θ

3
1 = 0,

θ3(0) = 0, θ3(1) = 0,
(3.28)

The solution of (3.27) is

(3.29) θ1(s) = A sin (nπs) ,

where A is an arbitrary constant of integration.
Equation (3.28) then becomes

θ3
′′ + λ0θ3 + λ2A sin (nπs)− 1

6
λ0A

3 sin3 (nπs) = 0,

θ3(0) = 0, θ3(1) = 0,

In general, this equation is not solvable for θ3. To derive the solvability condition,
we multiply the ODE by the eigenfunction sin (nπs) and integrate the result over
0 ≤ s ≤ 1.
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Integration by parts, or Green’s formula, gives∫ 1

0

sin (nπs)
{
θ3
′′ + λ0θ3

}
ds−

∫ 1

0

{
sin (nπs)

′′
+ λ0 sin (nπs)

}
θ3 ds

=
[
sin (nπs) θ3

′ − sin (nπs)
′
θ3

]1
0
.

It follows that ∫ 1

0

sin (nπs)
{
θ3
′′ + λ0θ3

}
ds = 0,

and hence that

λ2A

∫ 1

0

sin2 (nπs) ds =
1

6
λ0A

3

∫ 1

0

sin4 (nπs) ds.

Using the integrals∫ 1

0

sin2 (nπs) ds =
1

2
,

∫ 1

0

sin4 (nπs) ds =
3

8
,

we get

(3.30) λ2A =
1

8
λ0A

3.

This is the bifurcation equation for the problem.
To rewrite (3.30) in terms of the original variables, let α denote the maximum

value of a solution θ(s). Then, from (3.26) and (3.29), we have

α = εA+O
(
ε3
)
.

Using (3.30) in (3.25), we get the bifurcation equation

(3.31) (λ− λ0)α =
1

8
λ0α

3 +O(α5) as α→ 0.

Thus, in addition to the trivial solution α = 0, we have solutions with

(3.32) α2 =
8 (λ− λ0)

λ0
+O

(
α4
)

branching from each of the linearized eigenvalues λ0 for λ > λ0. This type of
bifurcation is called a pitchfork bifurcation. It is supercritical because the new
solutions appear for values of λ larger that the bifurcation value.

Thus, the original infinite-dimensional bifurcation problem (3.22)–(3.23) re-
duces to a one-dimensional bifurcation equation of the form F (α, λ) = 0 in a neigh-
borhood of the bifurcation point (θ, λ) = (0, λ0). The bifurcation equation has the
Taylor expansion (3.31) as α→ 0 and λ→ λ0.

6.2. Energy minimizers

For values of λ > π2, solutions of the nonlinear BVP (3.22)–(3.23) are not unique.
This poses the question of which solutions should be used. One criterion is that
solutions of an equilibrium problem should be dynamically stable. We cannot
address this question directly here, since we have not derived a set of time-dependent
evolution equations. We can, however, use energy considerations.

The potential energy for (3.22) is

(3.33) E(θ) =

∫ 1

0

{
1

2
(θ′)

2 − λ (1− cos θ)

}
ds.
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We claim that the zero solution is a global minimizer of (3.33) when λ ≤ π2, with
E(0) = 0, but it is not a minimizer when λ > π. As a result, the zero solution loses
stability as λ passes through the first eigenvalue π2, after which the rod will buckle.

To show that θ = 0 is not a minimizer for λ > π2, we compute the energy in
the direction of the eigenvector of the first eigenvalue:

E(α sinπs) =

∫ 1

0

{
1

2
α2π2 cos2 πs− λ [1− cos (α sinπs)]

}
ds

=

∫ 1

0

{
1

2
α2π2 cos2 πs− 1

2
α2λ sin2 πs

}
ds+O

(
α4
)

=
1

4
α2
(
π2 − λ

)
+O

(
α4
)
.

It follows that we can have E(θ) < E(0) when λ > π2.
For the converse, we use the Poincaré (or Wirtinger) inequality, which states

that ∫ 1

0

θ2 ds ≤ 1

π2

∫ 1

0

θ′
2
ds

for all smooth functions such that θ(0) = 0, θ(1) = 0. (The inequality also holds
for all θ ∈ H1

0 (0, 1).) The best constant, 1/π2, in this inequality is the reciprocal
of the lowest eigenvalue of (3.24), and it may be obtained by minimization of the
corresponding Rayleigh quotient.

Using the inequality

1− cos θ ≤ 1

2
θ2

in (3.33), followed by the Poincaré inequality, we see that

E(θ) ≥
∫ 1

0

{
1

2
(θ′)

2 − 1

2
θ2

}
ds ≥ 1

2

(
1− λ

π2

)∫ 1

0

(θ′)
2
ds.

It follows that E(θ) ≥ 0 if λ < π2, and θ = 0 is the unique global minimizer of E
among functions that vanish at the endpoints.

As the parameter λ passes through each eigenvalue λ
(n)
0 , the energy function

develops another direction (tangent to the corresponding eigenvector) in which it
decreases as θ moves away from the critical point 0. These results are connected to
conjugate points and Morse theory (see [37]).

The branches that bifurcate from λ
(n)
0 for n ≥ 2 are of less interest than the

first branch, because for λ > λ
(1)
0 we expect the solution to lie on one of the stable

branches that bifurcates from λ
(1)
0 rather than on the trivial branch. We are then

interested in secondary bifurcations of solutions from the stable branch rather than
further bifurcations from the unstable trivial branch.

6.3. Solution by elliptic functions

Let us return to the solution of (3.22)–(3.23) in terms of elliptic functions.
The pendulum equation (3.22) has the first integral

1

2
(θ′)

2
+ λ (1− cos θ) = 2λk2

where k is a constant of integration; equivalently

(θ′)
2

= 4λ

(
k2 − sin2 θ

2

)
.
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Thus, if α is the maximum value of θ, we have

(3.34) k = sin
α

2
.

Solving for θ′, separating variables and integrating, we get∫
dθ√

k2 − sin2(θ/2)
= 2
√
λs.

Here, the sign of the square root is chosen appropriately, and we neglect the constant
of integration, which can be removed by a translation of s. Making the substitution
ku = sin(θ/2) in the integral, we get

(3.35)

∫
du√

(1− u2) (1− k2u2)
=
√
λs.

Trigonometric functions arise as inverse functions of integrals of the form∫
du√
p(u)

where p(u) is a quadratic polynomial. In an analogous way, elliptic functions arise as
inverse functions of integrals of the same form where p(u) is a nondegenerate cubic
or quartic polynomial. The Jacobi elliptic function u 7→ sn(u, k), with modulus k,
has the inverse function

sn−1(u, k) =

∫ u

0

dt√
(1− t2) (1− k2t2)

.

Rewriting u in terms of θ, it follows from (3.35) that u = sn(
√
λs, k), so solu-

tions θ(s) of (3.22) with θ(0) = 0 are given by

sin

(
θ

2

)
= k sn

(√
λs, k

)
.

The arclength ` of this solution from the endpoint θ = 0 to the maximum
deflection angle θ = α is given by

` =

∫ `

0

ds =

∫ α

0

dθ

θ′
.

Using the substitution ku = sin(θ/2), we get

` =
1√
λ
K(k)

where K(k) is the complete elliptic integral of the first kind, defined by

(3.36) K(k) =

∫ 1

0

du√
(1− u2) (1− k2u2)

.

This solution satisfies the boundary condition θ(1) = 0 if ` = 1/(2n) for some
integer n = 1, 2, 3, . . . , meaning that

(3.37) λ = 4n2K2(k).

This is the exact bifurcation equation for the nth branch that bifurcates off the
trivial solution.
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A Taylor expansion of this equation agrees with the result from perturbation
theory. From (3.36), we have, as k → 0,

K(k) =

∫ 1

0

du√
1− u2

+
1

2
k2

∫ 1

0

u2du√
1− u2

+ · · · = π

2

(
1 +

1

4
k2 + . . .

)
.

Also, from (3.34), we have k = α/2 + . . . . It follows that (3.37) has the expansion

λ = n2π2

(
1 +

1

4
k2 + . . .

)2

= n2π2

(
1 +

1

8
α2 + . . .

)
,

in agreement with (3.32).
There are also solutions with nonzero winding number, meaning that θ(0) = 0

and θ(1) = 2πN for some nonzero integer N . These cannot be reached from the
zero solution along a continuous branch, since the winding number is a discrete
topological invariant.

6.4. Lyapounov-Schmidt reduction

The Lyapounov-Schmidt method provides a general approach to the rigorous deriva-
tion of local equilibrium bifurcation equations, based on an application of the im-
plicit function theorem. We will outline the method and then explain how it applies
to the buckling problem considered above. The main idea is to project the equa-
tion into two parts, one which can be solved uniquely and the other which gives
the bifurcation equation.

Suppose that X, Y , Λ are Banach spaces, and F : X×Λ→ Y is a smooth map
(at least C1; see [14], for example, for more about derivatives of maps on Banach
spaces). We are interested in solving the equation

(3.38) F (x, λ) = 0

for x as λ varies in the parameter space Λ.
We denote the partial derivatives of F at (x, λ) ∈ X × Λ by

Fx(x, λ) : X → Y, Fλ(x, λ) : Λ→ Y.

These are bounded linear maps such that

Fx(x, λ)h =
d

dε
F (x+ εh, λ)

∣∣∣∣
ε=0

, Fλ(x, λ)η =
d

dε
F (x, λ+ εη)

∣∣∣∣
ε=0

.

Suppose that (x0, λ0) is a solution of (3.38), and denote by

L = Fx (x0, λ0) : X → Y

the derivative of F (x, λ) with respect to x at (x0, λ0).
The implicit function theorem states that if the bounded linear map L has

an inverse L−1 : Y → X, then (3.38) has a unique solution x = f(λ) in some
neighborhood of (x0, λ0). Moreover, the solution is at least as smooth as F , meaning
that if F is Ck in a neighborhood of (x0, λ0), then f is Ck in a neighborhood of
λ0. Thus, roughly speaking, the nonlinear problem is locally uniquely solvable if
the linearized problem is uniquely solvable.

It follows that a necessary condition for new solutions of (3.38) to bifurcate off
a solution branch x = f(λ) at (x0, λ0), where x0 = f (λ0), is that Fx (x0, λ0) is not
invertible.
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Consider such a point, and suppose that the non-invertible map L : X → Y is
a Fredholm operator. This means that: (a) the null-space of L,

N = {h ∈ X : Lh = 0} ,
has finite dimension, and we can write X = M⊕N where M , N are closed subspaces
of X; (b) the range of L,

R = {k ∈ Y : k = Lh for some h ∈ X} ,
has finite codimension, and Y = R⊕ S where R, S are closed subspaces of Y .

The condition that the range R of L is a closed subspace is satisfied automat-
ically for maps on finite-dimensional spaces, but it is a significant assumption for
maps on infinite-dimensional spaces. The condition that R has finite codimension
simply means that any complementary space, such as S, has finite dimension (in
which case the dimension does not depend on the choice of S).

We write x ∈ X as x = m+ n where m ∈M and n ∈ N , and let

Q : Y → Y

denote the projection onto R along S. That is, if y = r+ s is the unique decompo-
sition of y ∈ Y into a sum of r ∈ R and s ∈ S, then Qy = r. Since R is closed, the
linear map Q is bounded.

Equation (3.38) is equivalent to the pair of equations obtained by projecting it
onto the range of L and the complementary space:

QF (m+ n, λ) = 0,(3.39)

(I −Q)F (m+ n, λ) = 0.(3.40)

We write (3.39) as
G(m, ν) = 0,

where ν = (n, λ) ∈ Γ, with Γ = N ⊕ Λ, and G : M × Γ→ R is defined by

G(m, ν) = QF (m+ n, λ) .

Let x0 = m0 + n0 and ν0 = (n0, λ0), so (m0, ν0) ∈ M × Γ corresponds to
(x0, λ0) ∈ X × Λ. It follows from our definitions that the derivative of G

Gm (m0, ν0) : M → R

is an invertible linear map between Banach spaces. The implicit function theorem
then implies that that (3.39) has a unique local solution for m of the form

m = g(n, λ)

where g : N × Λ→M .
Using this expression for m in (3.40), we find that (n, λ) satisfies an equation

of the form

(3.41) Φ(n, λ) = 0

where Φ : N ⊕ Λ→ S is defined locally by

Φ(n, λ) = (I −Q)F (g(n, λ) + n, λ) .

Equation (3.41) is the bifurcation equation for (3.38). It describes all solutions
of (3.38) in a neighborhood of a point (x0, λ0) where the derivative Fx (x0, λ0) is
singular.

This result is sometimes expressed in the following way. The m-component
the solution x = m + n is ‘slaved’ to the n-component; thus, if we can solve the
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bifurcation equation for n in terms of λ, then m is determined by n. This allows us
to reduce a larger bifurcation problem for x ∈ X to a smaller bifurcation problem
for n ∈ N .

If the null-space of L has dimension p and the range has codimension q, then
(3.41) is equivalent to a system of p equations for q unknowns, depending on a
parameter λ ∈ Λ. The integer p − q is called the Fredholm index of L. In the
commonly occuring case when the Fredholm index of L is zero, the bifurcation
equation is a p× p system of equations. Thus, we can reduce bifurcation problems
on infinite-dimensional spaces to ones on finite-dimensional spaces; the number of
unknowns is equal to the dimension of the null space of L at the bifurcation point.

Next, we show how this method applies to the buckling problem. We write
(3.22)–(3.23) as an equation F (θ, λ) = 0, where F : X × R→ Y is given by

F (θ, λ) = θ′′ + λ sin θ

and

X =
{
θ ∈ H2(0, 1) : θ(0) = 0, θ(1) = 0

}
, Y = L2(0, 1).

Here, H2(0, 1) denotes the Sobolev space of functions whose weak derivatives of
order less than or equal to 2 are square-integrable on (0, 1). Functions in H2(0, 1)
are continuously differentiable on [0, 1], so the boundary conditions make sense
pointwise. Other function spaces, such as spaces of Hölder continuous functions,
could be used equally well.

Consider bifurcations off the trivial solution θ = 0. The derivative

L = Fθ (0, λ0)

is given by

Lh = h′′ + λ0h.

This is singular on X if λ0 = n2π2 for some n ∈ N, so these are the only possible
bifurcation points.

In this case, the null-space N of L is one-dimensional:

N = {α sin(nπs) : α ∈ R} .

We take as a closed complementary space

M =
{
ϕ ∈ X :

∫ 1

0
ϕ(s) sin(nπs) ds = 0

}
The range R of L consists of the L2-functions that are orthogonal to sin(nπs),

meaning that

R =
{
ρ ∈ L2(0, 1) :

∫ 1

0
ρ(s) sin(nπs) ds = 0

}
.

As a complementary space, we take

S = {α sin(nπs) : α ∈ R} .

The projection Q : L2(0, 1)→ L2(0, 1) onto R is then given by

(Qρ)(s) = ρ(s)−
[
2

∫ 1

0

ρ (t) sin (nπt) dt

]
sin(nπs).

We write

θ(s) = ϕ(s) + α sin(nπs)
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where α is an arbitrary constant and ϕ ∈M , so that

(3.42)

∫ 1

0

ϕ(s) sin(nπs) ds = 0.

In this case, equation (3.39) becomes

ϕ′′ + λ sin [ϕ+ α sin(nπs)]

− 2λ

{∫ 1

0

sin [ϕ (t) + α sin (nπt)] sin (nπt) dt

}
sin(nπs) = 0,

(3.43)

subject to the boundary conditions ϕ(0) = 0, ϕ(1) = 0, and the projection condition
(3.42).

Equation (3.43) has the form G(ϕ, α, λ) = 0, where G : M × R× R→ R. The
derivative Gϕ (0, 0, λ0) : M → R is given by

Gϕ (0, 0, λ0)h(s) = h′′(s) + λ0

[
h(s)−

(
2

∫ 1

0

sin (nπt)h(t) dt

)
sin(nπs)

]
.

It is one-to-one and onto, and has a bounded inverse. Therefore we can solve (3.43)
locally for ϕ(s) = g(s; a, λ). Equation (3.40) then gives the bifurcation equation

(3.44) 2λ

∫ 1

0

sin [g(s;α, λ) + α sin(nπs)] sin(nπs) ds− αλ0 = 0.

A Taylor expansion of (3.43)–(3.44) in (α, λ) about (0, λ0) gives the same results
as before.

Finally, we remark that these results, which are based on linearization and
Taylor expansion, are local. There are also topological methods in bifurcation
theory, introduced by Krasnoselski (1956) and Rabinowitz (1971), that use degree
theory and provide global, but less explicit, results.

7. Laplace’s equation

One of the most important variational principles for a PDE is Dirichlet’s principle
for the Laplace equation. We will show how Dirichlet’s principle leads to the Laplace
equation and describe how it arises in the potential theory of electrostatic fields.

7.1. Dirichlet principle

Let Ω ⊂ Rn be a domain and u : Ω → R a function. We assume that the domain
and the function are sufficiently smooth.

The Dirichlet integral of u over Ω is defined by

(3.45) F(u) =

∫
Ω

1

2
|∇u|2 dx.

Let us derive the Euler-Lagrange equation that must be satisfied by a minimizer of
F . To be specific, we consider a minimizer of F in a space of functions that satisfy
Dirichlet conditions

u = f on δΩ

where f is a given function defined on the boundary ∂Ω of Ω.
If h : Ω→ R is a function such that h = 0 on ∂Ω, then

dF(u)h =
d

dε

∫
Ω

1

2
|∇u+ ε∇h|2 dx

∣∣∣∣
ε=0

=

∫
Ω

∇u · ∇h dx.
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Thus, any minimizer of the Dirichlet integral must satisfy

(3.46)

∫
Ω

∇u · ∇h dx = 0

for all smooth functions h that vanish on the boundary.
Using the identity

∇ · (h∇u) = h∆u+∇u · ∇h
and the divergence theorem, we get∫

Ω

∇u · ∇h dx = −
∫

Ω

(∆u)h dx+

∫
∂Ω

h
∂u

∂n
dS.

Since h = 0 on ∂Ω, the integral over the boundary is zero, and we get

dF(u)h = −
∫

Ω

(∆u)h dx

Thus, the variational derivative of F , defined by

dF(u)h =

∫
Ω

δF
δu
h dx,

is given by
δF
δu

= −∆u.

Therefore, a smooth minimizer u of F satisfies Laplace’s equation

(3.47) ∆u = 0.

This is the classical form of Laplace’s equation, while (3.46) is the weak form.
Similarly, a minimizer of the functional

F(u) =

∫
Ω

{
1

2
|∇u|2 − fu

}
dx,

where f : Ω→ R is a given function, satisfies Poisson’s equation

−∆u = f.

We will study the Laplace and Poisson equations in more detail later on.

7.2. The direct method

One of the simplest ways to prove the existence of solutions of the Laplace equation
(3.47), subject, for example, to Dirichlet boundary conditions to show directly the
existence of minimizers of the Dirichlet integral (3.45). We will not give any details
here but we will make a few comments (see [13] for more information).

It was taken more-or-less taken for granted by Dirichlet, Gauss, and Riemann
that since the Dirichlet functional (3.45) is a quadratic functional of u, which is
bounded from below by zero, it attains its minimum for some function u, as would
be the cases for such functions on Rn. Weierstrass pointed out that this argument
requires a nontrivial proof for functionals defined on infinite-dimensional spaces,
because the Heine-Borel theorem that a bounded set is (strongly) precompact is
not true in that case.

Let us give a few simple one-dimensional examples which illustrate the difficul-
ties that can arise.
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Example 3.18. Consider the functional (Weierstrass, 1895)

(3.48) F(u) =
1

2

∫ 1

−1

x2 [u′(x)]
2
dx

defined on functions

u : [−1, 1]→ R such that u(−1) = −1, u(1) = 1.

This functional is quadratic and bounded from below by zero. Furthermore, its
infimum over smooth functions that satisfy the boundary conditions is equal to
zero. To show this, for instance, let

uε(x) =
tan−1(x/ε)

tan−1(1/ε)
for ε > 0.

A straightforward computation gives

F (uε) =
ε

tan−1(1/ε)
→ 0 as ε→ 0+.

The Euler-Lagrange equation for (3.48) is

−
[
x2u′

]′
= 0.

Solutions u+, u− that satisfy the boundary conditions u+(1) = 1, u−(−1) = −1
have the form

u+(x) = 1 + c+
(

1− 1

x

)
, u−(x) = −1 + c−

(
1 +

1

x

)
for some constants c±. However, we cannot satisfy both boundary conditions for
any choice the constants. Thus, there is no smooth, or even absolutely continuous,
function that minimizes F . Note that

F(u) =

∫ 1

−1

F (x, u′) dx, F (x, p) =
1

2
x2p2.

The integrand F (x, p) is a strictly convex function of p for each x, with

Fpp(x, p) = x2 > 0,

except when x = 0. This loss of strict convexity at x = 0 is what leads to the
singular behavior of the solutions of the Euler-Lagrange equations and the lack of
a minimizer.

Example 3.19. Consider the functional

F(u) =

∫ 1

0

x2/3 [u′]
2
dx

defined on functions u : [0, 1] → R with u(0) = 0, u(1) = 1. The infimum is
equal to zero. This infimum is attained for the function u(x) = x1/3, which is
not differentiable at x = 0. Thus, we cannot find a minimizer if we restrict the
functional to C1-functions; but we can find a minimizer on the larger class of
absolutely continuous functions with weak derivative in L1(0, 1). The minimizer is
Hölder continuous with exponent 1/3.
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Example 3.20. Consider the non-convex functional

F(u) =

∫ 1

0

(
1− [u′]

2
)2

dx

defined on functions u : [0, 1] → R with u(0) = 0, u(1) = 0. The infimum is equal
to zero. This infimum is not attained at any C1-function, but it is attained at any
‘zig-zag’ Lipschitz continuous function that vanishes at the endpoints and whose
derivative is equal to ±1 almost everywhere. If we change the functional to

F(u) =

∫ 1

0

{
u2 +

(
1− [u′]

2
)2
}
dx

then the infimum is still zero (as can be seen by taking a sequence of functions un
with n ‘zig-zags’ and small L∞-norm). This infimim, however, is not attained by
any absolutely continuous function, since we cannot simultaneously make |u′| = 1
and u = 0. The difficulty here is associated with a lack of weak lower semicontinuity
of the non-convex functional F ; for example, for the ‘zig-zag’ functions, we have
un ⇀ 0 in W 1,1(0, 1), but F(0) > lim infn→∞ F(un).

These difficulties were resolved for the Dirichlet functional by Hilbert (1900)
and Lebesgue (1907), and Hilbert included several problems in the calculus of vari-
ations among his list of 23 problems at the 1900 ICM in Paris.

The Dirichlet functional is defined provided that∇u is square-integrable. Thus,
it is natural to look for minimizers of (3.45) is the Sobolev space H1(Ω) of Lebesgue
measurable, square-integrable functions u : Ω → R such that u ∈ L2(Ω), meaning
that

∫
Ω
u2(x) dx < ∞, with square-integrable weak derivatives ∂xiu ∈ L2(Ω). If

g : ∂Ω→ R is a given boundary value that is attained by some function in H1(Ω),
then one can prove that there is a unique minimizer of (3.45) in the space

X =
{
u ∈ H1 (Ω) : such that u = g on ∂Ω

}
.

The definition of the boundary values, or trace, of Sobolev functions requires a
more careful discussion, but we will not go into the details here.

A further central issue in the calculus of variations is the regularity of minimiz-
ers. It is possible to prove that the minimizer of the Dirichlet functional is, in fact,
a smooth function with continuous derivative of all orders inside Ω. In particular,
it follows that it is a classical solution of Laplace’s equation. Furthermore, if the
boundary data and the domain are smooth, then the solution is also smooth on Ω.

7.3. Electrostatics

As an example of a physical problem leading to potential theory, consider a static
electric field in a dielectric medium. (A dielectric medium is simply an insulator
that does not conduct electricity, such as glass, air, or a vacuum.) We suppose that
the dielectric has a charge-density ρ(~x), and that there is no magnetic field.

The electrostatic properties of the dielectric are characterized by two vector

fields, the electric field ~E (~x) and the electric displacement ~D (~x). According to
Maxwell’s equations, these satisfy [28]

curl ~E = 0,(3.49)

div ~D = ρ.(3.50)
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The integral form of these balance laws is∫
Γ

~E · d~x = 0,(3.51) ∫
∂Ω

~D · ~n d~x =

∫
Ω

ρd~x,(3.52)

for any closed curve Γ and any bounded volume Ω.

Equation (3.51) states that the circulation of ~E around the closed curve Γ is

equal to zero, since by Stokes’ theorem it is equal to the flux of curl ~E through a

surface bounded by Γ. Equation (3.52) states that the flux of ~D through a closed
surface ∂Ω is equal to the total charge in the enclosed volume Ω.

On a simply connected domain, equation(3.49) implies that

~E = −∇Φ.

for a suitable potential Φ (~x).
The electric displacement is related to the electric field by a constitutive rela-

tion, which describes the response of the dielectric medium to an applied electric
field. We will assume that it has the simplest linear, isotropic form

~E = ε ~D

where ε is a constant, called the dielectric constant, or electric permittivity, of the
medium. In a linear, anisotropic medium, ε becomes a tensor; for large electric
fields, it may be necessary to use a nonlinear constitutive relation.

It follows from these equations and (3.50) that Φ satisfies Poisson’s equation

(3.53) −ε∆Φ = ρ.

This equation is supplemented by boundary conditions; for example, we require
that Φ is constant on a conducting boundary, and the normal derivative of Φ is zero
on an insulating boundary.

The energy of the electrostatic field in some region Ω ⊂ R3 is

E =

∫
Ω

{
1

2
~E · ~D − ρΦ

}
d~x =

∫
Ω

{
1

2
ε |∇Φ|2 − ρΦ

}
d~x.

The term proportional to ~E · ~D the the energy of the field, while the term propor-
tional to ρΦ is the work required to bring the charge distribution to the potential
Φ.

The potential Φ minimizes this functional, and the condition that E(Φ) is sta-
tionary with respect to variations in Φ leads to (3.53).

8. The Euler-Lagrange equation

A similar derivation of the Euler-Lagrange equation as the condition satisfied by a
smooth stationary point applies to more general functionals. For example, consider
the functional

F(u) =

∫
Ω

F (x, u,∇u) dx

where Ω ⊂ Rn and u : Ω→ Rm. Then, writing

x =
(
x1, x2, . . . , xn

)
, u =

(
u1, u2, . . . , um

)
,
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denoting a derivative with respect to xj by ∂j , and using the summation convention,
we have

dF(u)h =

∫
Ω

{
Fui (x, u,∇u)hi + F∂jui (x, u,∇u) ∂jh

i
}
dx.

Thus, u is a stationary point of F if

(3.54)

∫
Ω

{
Fui (x, u,∇u)hi + F∂jui (x, u,∇u) ∂jh

i
}
dx = 0

for all smooth test functions h : Ω→ R that vanish on the boundary.
Using the divergence theorem, we find that

dF(u)h =

∫
Ω

{
Fui (x, u,∇u)− ∂j

[
F∂jui (x, u,∇u)

]}
hi dx.

Thus,
δF
δhi

= −∂j
[
F∂jui (x, u,∇u)

]
+ Fui (x, u,∇u) ,

and a smooth stationary point u satisfies

−∂j
[
F∂jui (x, u,∇u)

]
+ Fui (x, u,∇u) = 0 for i = 1, 2, . . . , n.

The weak form of this equation is (3.54).

8.1. The minimal surface equation

Suppose that a surface over a domain Ω ⊂ Rn is the graph of a smooth function
z = u(x), where u : Ω→ R. The area A of the surface is

A(u) =

∫
Ω

√
1 + |∇u|2 dx.

The problem of finding a surface of minimal area that spans a given curve z = g(x)
over the boundary, where g : ∂Ω → R, is called Plateau’s problem. Any smooth
minimizer of the area functional A(u) must satisfy the Euler-Lagrange equation,
called the minimal surface problem,

∇ ·

 ∇u√
1 + |∇u|2

 = 0.

As a physical example, a film of soap has energy per unit area equal to its surface
tension. Thus, a soap file on a wire frame is a minimal surface.

A full analysis of this problem is not easy. The PDE is elliptic, but it is
nonlinear and it is not uniformly elliptic, and it has motivated a large amount of
work on quasilinear elliptic PDEs. See [13] for more information.

8.2. Nonlinear elasticity

Consider an equilibrium deformation of an elastic body. We label material points
by their location ~x ∈ B in a suitable reference configuration B ⊂ Rn. A deformation
is described by an invertible function ~ϕ : B → Rn, where ~ϕ (~x) is the location of
the material point ~x in the deformed configuration of the body.

The deformation gradient

F = ∇~ϕ, Fij =
∂ϕi
∂xj
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gives a linearized approximation of the deformation at each point, and therefore
describes the local strain and rotation of the deformation.

An elastic material is said to be hyperelastic if the work required to deform it,
per unit volume in the reference configuration, is given by a scalar-valued strain
energy function. Assuming, for simplicity, that the body is homogeneous so the
work does not depend explicitly on ~x, the strain energy is a real-valued function
W (F) of the deformation gradient. In the absence of external forces, the total
energy of a deformation ~ϕ is given by

W (~ϕ) =

∫
B
W (∇~ϕ(~x)) d~x.

Equilibrium deformations are minimizers of the total energy, subject to suitable
boundary conditions. Therefore, smooth minimizers satisfy the Euler-Lagrange
equations

∇ · S (∇~ϕ(~x)) = 0,
∂Sij
∂xj

= 0 i = 1, . . . , n,

where we use the summation convention in the component form of the equations,
and S(F) is the Piola-Kirchoff stress tensor, given by

S = ∇FW, Sij =
∂W

∂Fij
.

This is an n× n nonlinear system of second-order PDEs for ~ϕ(~x).
There are restrictions on how the strain energy W depends on F. The principle

of material frame indifference [25] implies that, for any material,

W (RF) = W (F)

for all orthogonal transformations R. If the elastic material is isotropic, then

W (F) = W̃ (B)

depends only on the left Cauchy-Green strain tensor B = FF>, and, in fact, only
on the principle invariants of B.

The constitutive restriction imply that W is not a convex function of F. This
creates a difficulty in the proof of the existence of minimizers by the use of di-
rect methods, because one cannot use convexity to show that W is weakly lower
semicontinuous.

This difficult was overcome by Ball (1977). He observed that one can write

W (F) = Ŵ (F, cof F,det F)

where Ŵ is a convex function of F and the cofactors cof F of F, including its
determinant. A function with this property is said to be polyconvex.

According to the theory of compensated compactness, given suitable bounds
on the derivatives of ~ϕ, the cofactors of F are weakly continuous, which is a very
unusual property for nonlinear functions. Using this fact, combined with the ob-
servation that the strain energy is polyconvex, Ball was able to prove the existence
of minimizers for nonlinear hyperelasticity.
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9. The wave equation

Consider the motion of a medium whose displacement may be described by a scalar
function u(x, t), where x ∈ Rn and t ∈ R. For example, this function might
represent the transverse displacement of a membrane z = u(x, y, t).

Suppose that the kinetic energy T and potential energy V of the medium are
given by

T (ut) =
1

2

∫
ρ0u

2
t dx, V(u) =

1

2

∫
k |∇u|2 dx,

where ρ0 (~x) is a mass-density and k (~x) is a stiffness, both assumed positive. The
Lagrangian L = T − V is

(3.55) L (u, ut) =

∫
1

2

{
ρ0u

2
t − k |∇u|

2
}
dx,

and the action — the time integral of the Lagrangian — is

S(u) =

∫ ∫
1

2

{
ρ0u

2
t − k |∇u|

2
}
dxdt.

Note that the kinetic and potential energies and the Lagrangian are functionals
of the spatial field and velocity u(·, t), ut(·, t) at each fixed time, whereas the action
is a functional of the space-time field u(x, t), obtained by integrating the Lagrangian
with respect to time.

The Euler-Lagrange equation satisfied by a stationary point of this action is

(3.56) ρ0utt −∇ · (k∇u) = 0.

If ρ0, k are constants, then

(3.57) utt − c20∆u = 0,

where c20 = k/ρ0. This is the linear wave equation with wave-speed c0.
Unlike the energy for Laplace’s equation, the action functional for the wave

equation is not positive definite. We therefore cannot expect a solution of the
wave equation to be a minimizer of the action, in general, only a critical point.
As a result, direct methods are harder to implement for the wave equation (and
other hyperbolic PDEs) than they are for Laplace’s equation (and other elliptic
PDEs), although there are ‘mountain-pass’ lemmas that can be used to establish the
existence of stationary points. Moreover, in general, stationary points of functionals
do not have the increased regularity that minimizers of convex functionals typically
possess.

10. Hamiltonian mechanics

Let us return to the motion of a particle in a conservative force field considered in
Section 1. We will give an alternative, Hamiltonian, formulation of its equations of
motion.

Given a Lagrangian

L (~x,~v) =
1

2
m |~v|2 − V (~x) ,

we define the momentum ~p by

(3.58) ~p =
∂L

∂~v
,
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meaning that ~p = m~v. Here, we use the notation

∂L

∂~v
=

(
∂L

∂v1
,
∂L

∂v2
, . . . ,

∂L

∂vn

)
to denote the derivative with respect to ~v, keeping ~x fixed, with a similar notation
for the derivative ∂/∂~p with respect to ~p, keeping ~x fixed. The derivative ∂/∂~x is
taken keeping ~v or ~p fixed, as appropriate.

We then define the Hamiltonian function H by

(3.59) H (~x, ~p) = ~p · ~v − L (~x,~v) ,

where we express ~v = ~p/m on the right hand side in terms of ~p. This gives

H (~x, ~p) =
1

2m
~p · ~p+ V (~x) .

Thus, we transform L as a function of ~v into H as a function of ~p. The variable ~x
plays the role of a parameter in this transformation. The function H (~x, ~p), given
by (3.58)–(3.59) is the Legendre transform of L (~x,~v) with respect to ~v; conversely,
L is the Legendre transform of H with respect to ~p.

Note that the the Hamiltonian is the total energy of the particle,

H (~x, ~p) = T (~p) + V (~x) ,

where T is the kinetic energy expressed as a function of the momentum

T (~p) =
1

2m
|~p|2 .

The Lagrangian equation of motion (3.1) may then be written as a first order
system for (~x, ~p):

~̇x =
1

m
~p, ~̇p = −∂V

∂~x
.

This system has the canonical Hamiltonian form

(3.60) ~̇x =
∂H

∂~p
, ~̇p = −∂H

∂~x
.

Equation (3.60) is a 2n-dimensional system of first-order equations. We refer
to the space R2n, with coordinates (~x, ~p), as the phase space of the system.

10.1. The Legendre transform

The above transformation, from the Lagrangian as a function of velocity to the
Hamiltonian as a function of momentum, is an example of a Legendre transform.
In that case, the functions involved were quadratic.

More generally, if f : Rn → R, we define the Legendre transform f∗ (x∗) of the
function f(x) as follows. Let

x∗ =
∂f

∂x
(x),

and suppose we can invert this equation to get x = x (x∗). This is the case, for
example, if f is a smooth, convex function. We then define

f∗ (x∗) = x∗ · x (x∗)− f (x (x∗)) .

Note that, by the chain rule and the definition of x∗, we have

∂f∗

∂x∗
= x+ x∗ · ∂x

∂x∗
− ∂f

∂x

∂x

∂x∗
= x+ x∗ · ∂x

∂x∗
− x∗ · ∂x

∂x∗
= x,



78

and, from the definition of f∗,

f (x) = x · x∗ (x)− f∗ (x∗ (x)) .

Thus, if f is convex, the Legendre transform of f∗ (x∗) is the original function f(x)
(see [43] for more on convex analysis).

Consider a Lagrangian F (x, u, u′), where u : [a, b] → Rn and F : [a, b]× Rn ×
Rn → R. Taking the Legendre transform of F with respect to the u′-variable, we
get

p =
∂F

∂u′
, H(x, u, p) = p · u′ − F (x, u, u′) .

It follows that

∂H

∂u
= p · ∂u

′

∂u
− ∂F

∂u
− ∂F

∂u′
∂u′

∂u
= −∂F

∂u
,

∂H

∂p
= u′ + p · ∂u

′

∂p
− ∂F

∂u′
∂u′

∂p
= u′.

Hence, the Euler-Lagrange equation

− d

dx

(
∂F

∂u′

)
+
∂F

∂u
= 0

may be written as a Hamiltonian system

u′ =
∂H

∂p
, p′ = −∂H

∂u
.

In general, the Hamiltonian in these equations may depend on the independent
variable x (or t in the mechanical problem above) as well as the dependent variables.
For simplicity, we will consider below Hamiltonians that do not depend explicitly
on the independent variable.

10.2. Canonical coordinates

It is important to recognize that there are two ingredients in the Hamiltonian system
(3.60). One is obvious: the Hamiltonian function H (~x, ~p) itself. The other, less
obvious, ingredient is a Hamiltonian structure that allows us to map the differential
of a Hamiltonian function

dH =
∂H

∂~x
d~x+

∂H

∂~p
d~p

to the Hamiltonian vector field

XH =
∂H

∂~p

∂

∂~x
− ∂H

∂~x

∂

∂~p

that appears in (3.60).
We will not describe the symplectic geometry of Hamiltonian systems in any

detail here (see [6] for more information, including an introduction to differential
forms) but we will make a few comments to explain the role of canonical coordinates
(~x, ~p) in the formulation of Hamiltonian equations.

The Hamitonian structure of (3.60) is defined by a symplectic two-form

(3.61) ω = d~x ∧ d~p
on the phase space R2n. More generally, one can consider symplectic manifolds,
which are manifolds, necessarily even-dimensional, equipped with a closed, nonde-
generate two-form ω.
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The two-form (3.61) can be integrated over a two-dimensional submanifold S
of R2n to give an ‘area’ ∫

S

ω =

n∑
i=1

∫
S

dxi ∧ dpi.

Roughly speaking, this integral is the sum of the oriented areas of the projections
of S, counted according to multiplicity, onto the

(
xi, pi

)
-coordinate planes. Thus,

the phase space of a Hamiltonian system has a notion of oriented area, defined by
the skew-symmetric two-form ω. In a somewhat analogous way, Euclidean space
(or a Riemannian manifold) has a notion of length and angle, which is defined by
a symmetric two-form, the metric g. The geometry of symplectic manifolds (M,ω)
is, however, completely different from the more familiar geometry of Riemannian
manifolds (M, g).

According to Darboux’s theorem, if ω is a closed nondegenerate two-form, then
there are local coordinates (~x, ~p) in which it is given by (3.61). Such coordinates
are called canonical coordinates, and Hamilton’s equations take the canonical form
(3.60) for every Hamiltonian H in any canonical system of coordinates. The canon-
ical form of ω and Hamilton’s equations, however, are not preserved under arbitrary
transformations of the dependent variables.

A significant part of the theory of Hamiltonian systems, such as Hamilton-
Jacobi theory, is concerned with finding canonical transformations that simplify
Hamilton’s equations. For example, if, for a given Hamiltonian H (~x, ~p), we can
find a canonical change of coordinates such that

(~x, ~p) 7→ (~x′, ~p′) , H (~x, ~p) 7→ H (~p′) ,

meaning that the transformed Hamiltonian is independent of the position variable
~x′, then we can solve the corresponding Hamiltonian equations explicitly. It is
typically not possible to do this, but the completely integrable Hamiltonian systems
for which it is possible form an important and interesting class of solvable equations.
We will not discuss these ideas further here (see [24] for more information).

11. Poisson brackets

It can be inconvenient to use conjugate variables, and in some problems it may
be difficult to identify which variables form conjugate pairs. The Poisson bracket
provides a way to write Hamiltonian systems, as well as odd-order generalizations
of the even-order canonical systems, which does not require the use of canonical
variables. The Poisson bracket formulation is also particularly convenient for the
description of Hamiltonian PDEs.

First we describe the Poisson-bracket formulation of the canonical equations.

Let ~u = (~x, ~p)
> ∈ R2n. Then we may write (3.60) as

~̇u = J
∂H

∂~u

where J : R2n → R2n is the constant skew-symmetric linear map with matrix

(3.62) J =

(
0 I
−I 0

)
.
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If F,G : R2n → R are smooth functions, then we define their Poisson bracket
{F,G}, which is also a function {F,G} : R2n → R, by

{F,G} =
∂F

∂~u
· J∂G

∂~u
.

In terms of derivatives with respect to (~x, ~p), the bracket is given by

(3.63) {F,G} =
∂F

∂~x
· ∂G
∂~p
− ∂F

∂~p
· ∂G
∂~x

=

n∑
i=1

(
∂F

∂xi
∂G

∂pi
− ∂F

∂pi

∂G

∂xi

)
Hamilton’s equations may be written as

~̇u = {~u,H},

or, in component form,

ui =
{
ui, H

}
1 ≤ i ≤ 2n.

Moreover, if F (~u) is any function, then

Ḟ =
∂F

∂~x
~̇x+

∂F

∂~p
~̇p =

∂F

∂~x

∂H

∂~p
− ∂F

∂~p

∂H

∂~x
.

It follows that

Ḟ = {F,H}.
Thus, a function F (~x, ~p) that does not depend explicitly on time t is a conserved
quantity for Hamilton’s equations if its Poisson bracket with the Hamiltonian van-
ishes; for example, the Poisson bracket of the Hamiltonian with itself vanishes, so
the Hamiltonian is conserved.

The Poisson bracket in (3.63) has the properties that for any functions F , G,
H and constants a, b

{F,G} = −{G,F},(3.64)

{aF + bG,H} = a{F,H}+ b{G,H},(3.65)

{FG,H} = F{G,H}+ {F,H}G,(3.66)

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.(3.67)

That is, it is skew-symmetric (3.64), bilinear (3.65), a derivation (3.66), and satisfies
the Jacobi identity (3.67).

Any bracket with these properties that maps a pair of smooth functions F , G to
a smooth function {F,G} defines a Poisson structure. The bracket corresponding to
the matrix J in (3.62) is the canonical bracket, but there are many other brackets.
In particular, the skew-symmetric linear operator J can depend on u, provided that
the associated bracket satisfies the Jacobi identity.

12. Rigid body rotations

Consider a rigid body, such as a satellite, rotating about its center of mass in three
space dimensions.

We label the material points of the body by their position ~a ∈ B in a given
reference configuration B ⊂ R3, and denote the mass-density of the body by

ρ : B → [0,∞).
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We use coordinates such that the center of mass of the body at the origin, so that∫
B
ρ (~a)~a d~a = 0.

Here, d~a denotes integration with respect to volume in the reference configuration.
The possible configurations of the body are rotations of the reference configu-

ration, so the configuration space of a the body may be identified with the rotation
group. This is the special orthogonal group SO(3) of linear transformations R on
R3 such that

R>R = I, detR = 1.

The first condition is the orthogonality condition, R> = R−1, which ensures that R
preserves the Euclidean inner product of vectors, and therefore lengths and angles.
The second condition restricts R to the ‘special’ transformations with determinant
one. It rules out the orientation-reversing orthogonal transformations with detR =
−1, which are obtained by composing a reflection and a rotation.

First, we will define the angular velocity and angular momentum of the body
in a spatial reference frame. Then we will ‘pull back’ these vectors to the body
reference frame, in which the equations of motion simplify.

12.1. Spatial description

Consider the motion of the body in an inertial frame of reference whose origin is at
the center of mass of the body. The position vector ~x of a point ~a ∈ B at time t is
given by

(3.68) ~x (~a, t) = R(t)~a

where R(t) ∈ SO(3) is a rotation. Thus, the motion of the rigid body is described
by a curve of rotations R(t) in the configuration space SO(3).

Differentiating (3.68) with respect to t, and using (3.68) in the result, we find
that the velocity

~v (~a, t) = ~̇x (~a, t)

of the point ~a is given by

(3.69) ~v = w~x,

where

(3.70) w = ṘR>.

Differentiation of the equation RR> = I with respect to t implies that

ṘR> +RṘ> = 0.

Thus, w in (3.70) is skew-symmetric, meaning that w> = −w.
If W : R3 → R3 is a skew-symmetric linear map on three-dimensional Euclidean

space, then there is a unique vector ~Ω ∈ R3 such that

(3.71) W~x = ~Ω× ~x.

We denote this correspondence by ~Ω = Ŵ . With respect to a right-handed or-

thonormal basis, the matrix of W and the components of ~Ω are related by 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

←→
 Ω1

Ω2

Ω3
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We let ~ω(t) = ŵ(t) denote the vector associated with w in (3.70). Then, from
(3.69), the velocity of the body in the spatial frame is

(3.72) ~v = ~ω × ~x.

Thus, the vector ~ω(t) is the angular velocity of the body at time t.
The angular momentum π, or moment of momentum, of the body is defined by

(3.73) π(t) =

∫
B
ρ (~a) [~x (~a, t)× ~v (~a, t)] d~a

Equivalently, making the change of variables ~a 7→ ~x in (3.68) in the integral, whose
Jacobian is equal to one, we get

π =

∫
Bt
ρ
(
R>(t)~a

)
[~x× (~ω(t)× ~x)] d~x,

where Bt = ~x (B, t) denotes the region occupied by the body at time t.
Conservation of angular momentum implies that, in the absence of external

forces and couples,

(3.74) ~̇π = 0.

This equation is not so convenient to solve for the motion of the body, because
the angular momentum ~π depends in a somewhat complicated way on the angular
velocity ~ω and the rotation matrix R. We will rewrite it with respect to quantities
defined with respect to the body frame, which leads to a system of ODEs for the
angular momentum, or angular velocity, in the body frame.

12.2. Body description

The spatial coordinate ~x is related to the body coordinate ~a by ~x = R~a. Simi-

larly, we define a body frame velocity ~V (~a, t), angular velocity Ω (t), and angular
momentum Π (t) in terms of the corresponding spatial vectors by

(3.75) ~v = R~V , ~ω = R~Ω, ~π = R~Π.

Thus, we rotate the spatial vectors back to the body frame.

First, from (3.69), we find that if ~v = R~V , then

(3.76) ~V = W~a

where W is the skew-symmetric map

(3.77) W = R>Ṙ.

Therefore, denoting by ~Ω = Ŵ the vector associated with W , we have

(3.78) ~V = ~Ω× ~a.

Since w = RWR>, it follows that ~ω = R~Ω, as in (3.75).
Next, since rotations preserve cross-products, we have

~x× ~v = R
(
~a× ~V

)
.

Using this equation, followed by (3.78), in (3.73), we find that ~π = R~Π where

~Π(t) =

∫
B
ρ (~a) [~a× (Ω(t)× ~a)] d~a.
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This equation is a linear relation between the angular velocity and angular momen-
tum. We write it as

(3.79) ~Π = I~Ω.

where I : R3 → R3 is a constant linear map depending only on the mass distribution
of the body. It is called the inertia tensor.

An explicit expression for the inertia tensor is

(3.80) I =

∫
B
ρ (~a) [(~a · ~a) I − ~a⊗ ~a] d~a,

where I denotes the identity transformation, or, in components,

Iij =

∫
B
ρ (~a) [(akak) δij − aiaj ] d~a.

The inertia tensor is symmetric and positive definite. In the limiting case of a
rod, or ‘rotator,’ idealized as a straight line with a mass density per unit length,
the eigenvalue of I corresponding to rotations about the axis of the rod is zero, and
I is singular. We will not consider that case here, and assume that I is nonsingular.

The quantities in (3.79) have dimensions[
~Ω
]

=
1

T
,

[
~Π
]

=
ML2

T
, [I] = ML2,

so the equation is dimensionally consistent.

Using the equation ~π = R~Π in the spatial equation of conservation of angular
momentum (3.74), using (3.77) to write Ṙ in terms of W , and using the fact that
~Ω = Ŵ , we get the body form of conservation of angular momentum

~̇Π + Ω× ~Π = 0.

Together with (3.79), this equation provides a 3× 3 system of ODEs for either the

body angular velocity ~Ω(t)

I~̇Ω + ~Ω×
(
I~Ω
)

= 0,

or the body angular momentum ~Π(t)

(3.81) ~̇Π +
(
I−1~Π

)
× ~Π = 0.

Once we have solved these equations for ~Ω(t), and therefore W (t), we may
reconstruct the rotation R(t) by solving the matrix equation

Ṙ = RW.

12.3. The kinetic energy

The kinetic energy T of the body is given by

T =
1

2

∫
B
ρ (~a) |~v (~a, t)|2 d~a.

Since R is orthogonal and ~v = R~V , we have |~v|2 = |~V |2. Therefore, using (3.78),
the kinetic energy of the body is given in terms of the body angular velocity by

(3.82) T =
1

2

∫
B
ρ (~a) |Ω(t)× ~a|2 d~a.



84

From (3.80), this expression may be written as

T =
1

2
~Ω · I~Ω.

Thus, the body angular momentum ~Π is given by

~Π =
∂T

∂~Ω
.

Note that this equation is dimensionally consistent, since [T ] = ML2/T 2. Ex-

pressed in terms of ~Π, the kinetic energy is

T =
1

2
~Π ·
(
I−1~Π

)
.

As we will show below, the kinetic energy T is conserved for solutions of (3.81).

12.4. The rigid body Poisson bracket

The equations (3.81) are a 3× 3 system, so they cannot be canonical Hamiltonian
equations, which are always even in number. We can, however, write them in
Poisson form by use of a suitable noncanonical Poisson bracket.

We define a Poisson bracket of functions F,G : R3 → R by

(3.83) {F,G} = −~Π ·
(
∂F

∂~Π
× ∂G

∂~Π

)
,

This bracket is a skew-symmetric, bilinear derivation. It also satisfies the Jacobi
identity (3.67), as may be checked by a direct computation. The minus sign is not
required in order for (3.83) to define a bracket, but it is included to agree with
the usual sign convention, which is related to a difference between right and left
invariance in the Lie group SO(3) underlying this problem.

For each ~Π ∈ R3, we define a linear map J
(
~Π
)

: R3 → R3 by

J
(
~Π
)
~x = ~Π× ~x.

Then, using the cyclic symmetry of the scalar triple product, we may write the
Poisson bracket as

{F,G} =
∂F

∂~Π
· J
(
~Π
)[∂G

∂~Π

]
,

Equation (3.81) is then

~̇Π = J
(
~Π
)[∂T

∂~Π

]
or, in Poisson bracket form,

~̇Π =
{
~Π, T

}
, Π̇i = {Πi, T} .

Next let us derive the conserved quantities for this equation Any function F
such that {F, T} = 0 is conserved. In particular, since the Poisson bracket is
skew-symmetric, the kinetic energy T itself is conserved.

Let L : R3 → R denote the total angular momentum function

L
(
~Π
)

= ~Π · ~Π.
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Then, from (3.83),

{F,L} = −2~Π ·
(
∂F

∂~Π
× ~Π

)
= −2

∂F

∂~Π
·
(
~Π× ~Π

)
= 0.

Thus, {F,L} = 0 for any function F . Such a function L is called a Casimir
(or distinguished) function of the Poisson bracket; it is a conserved quantity for
any Hamiltonian with that Poisson bracket. In particular, it follows that L is a
conserved quantity for (3.81)

The conservation of L is also easy to derive directly from (3.81). Taking the
inner product of the equation with π, we get

d

dt

(
1

2
~π · ~π

)
= 0,

and, since R is orthogonal, ~π · ~π = ~Π · ~Π.
Thus, the trajectories of (3.81) lie on the intersection of the invariant spheres

of constant angular momentum

~Π · ~Π = constant.

and the invariant ellipsoids of constant energy

~Π ·
(
I−1~Π

)
= constant.

To explain this picture in more detail, we write the rigid body equations in
component form. Let {~e1, ~e2, ~e3} be an orthonormal basis of eigenvectors, or prin-
cipal axes, of I. There is such a basis because I is symmetric. We denote the
corresponding eigenvalues, or principal moments of inertia, by Ij > 0, where

I~ej = Ij~ej .

The eigenvalues are positive since I is positive definite. (It also follows from (3.80)
that if I1 ≤ I2 ≤ I3, say, then I3 ≤ I1 + I2.)

We expand

~Π(t) =

3∑
j=1

Πj(t)~ej

with respect to this principal axis basis. The component form of (3.81) is then

Π̇1 =

(
1

I3
− 1

I2

)
Π2Π3,

Π̇2 =

(
1

I1
− 1

I3

)
Π3Π1,

Π̇3 =

(
1

I2
− 1

I1

)
Π1Π2.

Restricting this system to the invariant sphere

Π2
1 + Π2

2 + Π2
3 = 1,

we see that there are three equilibrium points (1, 0, 0), (0, 1, 0), (0, 0, 1), corre-
sponding to steady rotations about each of the principle axes of the bodies. If
I1 < I2 < I3, then the middle equilibrium is an unstable saddle point, while the
other two equilibria are stable centers.
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The instability of the middle equilibrium can be observed by stretching an
elastic band around a book and spinning it around each of its three axes.

This rigid-body Poisson bracket has a geometrical interpretation as a Poisson
bracket on so(3)∗, the dual of the lie algebra of the three-dimensional rotation group
SO(3). Here, this dual space is identified with R3 through the cross-product and
the Euclidean inner product.

There is an analogous Poisson bracket, called a Lie-Poisson bracket, on the
dual of any Lie algebra. Like the rigid-body bracket, it depends linearly on the
coordinates of the dual Lie algebra. Arnold observed that the equations of incom-
pressible, inviscid fluid flows may be interpreted as Lie-Poisson equations associated
with the infinite-dimensional group of volume-preserving diffeomorphisms on the
fluid domain.

13. Hamiltonian PDEs

The Euler-Lagrange equation of a variational PDE can be transformed into a canon-
ical Hamiltonian PDE in an analogous way to ODEs.

For example, consider the wave equation (3.57) with Lagrangian L (u, ut) in
(3.55). We define the momentum p(·, t), conjugate to the field variable u(·, t) by

p =
δL
δut

For (3.55), we get

p = ρ0ut.

We then define the Hamiltonian functional H(u, p) by

H(u, p) =

∫
put dx− L (u, ut) .

For (3.55), we get

H(u, p) =
1

2

∫ {
p2

ρ0
+ k |∇u|2

}
dx.

Hamilton’s equations are

ut =
δH
δp
, pt = −δH

δu
.

For (3.55), we find that

ut =
p

ρ0
, pt = k∆u.

The elimination of p from this equation yields the wave equation (3.57).
The Poisson bracket of two functionals F(u, p), G(u, p) associated with these

canonical variables is

{F ,G} =

∫ (
δF
δu

δG
δp
− δF
δp

δG
δu

)
dx

Then, as before, for any functional F(u, p), evaluated on a solutions of Hamilton’s
equation, we have

Ft = {F ,H} .
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13.1. Poisson brackets

One advantage of the Poisson bracket formulation is that it generalizes easily to
PDE problems in which a suitable choice of canonical variables is not obvious.

Consider, for simplicity, an evolution equation that is first-order in time for
a scalar-valued function u(x, t). Suppose that J(u) is a skew-symmetric, linear
operator on functions, which may depend upon u. In other words, this means that∫

f(x)J(u) [g(x)] dx = −
∫

J(u) [f(x)] g(x) dx.

for all admissible functions f , g, u. Here, we choose the integration range as
appropriate; for example, we take the integral over all of space if the functions are
defined on R or Rn, or over a period cell if the functions are spatially periodic.
We also assume that the boundary terms from any integration by parts can be
neglected; for example, because the functions and their derivatives decay sufficiently
rapidly at infinity, or by periodicity.

We then define a Poisson bracket of two spatial functionals F(u), G(u) of u by

{F ,G} =

∫
δF
δu
· J(u)

[
δG
δu

]
dx

This bracket is a skew-symmetric derivation. If J is a constant operator that
is independent of u, then the bracket satisfies the Jacobi identity (3.67), but, in
general, the Jacobi identity places severe restrictions on how J (u) can depends on
u (see [40]).

As an example, let us consider the Hamiltonian formulation of the KdV equa-
tion

(3.84) ut + uux + uxxx = 0.

We define a constant skew-symmetric operator

J = ∂x

and a Hamiltonian functional

H(u) =

∫ {
−1

6
u3 +

1

2
u2
x

}
Then

δH
δu

= −1

2
u2 − uxx

and hence the KdV equation (3.84) may be written as

ut = J

[
δH
δu

]
The associated Poisson bracket is

{F ,G} =

∫
δF
δu

∂x

[
δG
δu

]
dx

The KdV equation is remarkable in that it has two different, but compatible,
Hamiltonian formulations. This property is one way to understand the fact that
the KdV equation is a completely integrable Hamiltonian PDE.

The second structure has the skew-symmetric operator

K(u) =
1

3
(u∂x + ∂xu) + ∂3

x.



88

Note that the order of the operations here is important:

u∂x · f = ufx, ∂xu · f = (uf)x = ufx + uxf.

Thus, the commutator of the multiplication operator u and the partial derivative
operator ∂x, given by [u, ∂x] f = −uxf , is the multiplication operator −ux.

The Poisson bracket associated with K satisfies the Jacobi identity (this de-
pends on a nontrivial cancelation). In fact, the Poisson bracket associated with
αJ+βK satisfies the Jacobi identity for any constants α, β, which is what it means
for the Poisson structures to be compatible.

The KdV-Hamiltonian for K is

P(u) = −1

2

∫
u2 dx,

with functional derivative
δP
δu

= −u.

The KdV equation may then be written as

ut = K

[
δP
δu

]
.

14. Path integrals

Feynman gave a remarkable formulation of quantum mechanics in terms of path
integrals. The principle of stationary action for classical mechanics may be under-
stood heuristically as arising from a stationary phase approximation of the Feynman
path integral.

The method of stationary phase provides an asymptotic expansion of integrals
with a rapidly oscillating integrand. Because of cancelation, the behavior of such
integrals is dominated by contributions from neighborhoods of the stationary phase
points where the oscillations are the slowest. Here, we explain the basic idea in the
case of one-dimensional integrals. See Hormander [27] for a complete discussion.

14.1. Fresnel integrals

Consider the following Fresnel integral

(3.85) I(ε) =

∫ ∞
−∞

eix
2/ε dx.

This oscillatory integral is not defined as an absolutely convergent integral, since

eix
2/ε has absolute value one, but it can be defined as an improper Riemann integral

I(ε) = lim
R→∞

∫ R

−R
eix

2/ε dx.

The convergence follows from an integration by parts:∫ R

1

eix
2/ε dx =

[ ε

2ix
eix

2/ε
]R

1
+

∫ R

1

ε

2ix2
eix

2/ε dx.

The integrand in (3.85) oscillates rapidly away from the stationary phase point
x = 0, and these parts contribute terms that are smaller than any power of ε as
ε → 0, as we show below. The first oscillation near x = 0, where cancelation does
not occur, has width of the order ε1/2, and as a result I(ε) = O(ε1/2) as ε→ 0.
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Using contour integration, and changing variables x 7→ eiπ/4s if ε > 0 or
x 7→ e−iπ/4s if ε < 0, one can show that∫ ∞

−∞
eix

2/ε dx =

{
eiπ/4

√
2π|ε| if ε > 0,

e−iπ/4
√

2π|ε| if ε < 0.

14.2. Stationary phase

Next, we consider the integral

(3.86) I(ε) =

∫ ∞
−∞

f(x)eiϕ(x)/ε dx,

where f : R→ C and ϕ : R→ R are smooth functions. A point x = c is a stationary
phase point if ϕ′(c) = 0. We call the stationary phase point nondegenerate if
ϕ′′(c) 6= 0.

Suppose that I has a single stationary phase point at x = c, and it is nonde-
generate. If there are several such points, we simply add together the contributions
from each one. Then, using the idea that only the part of the integrand near
the stationary phase point x = c contributes significantly, we Taylor expand the
function f and the phase ϕ to approximate I(ε) as follows:

I(ε) ∼
∫
f(c) exp

i

ε

[
ϕ(c) +

1

2
ϕ′′(c)(x− c)2

]
dx

∼ f(c)eiϕ(c)/ε

∫
exp

[
iϕ′′(c)

2ε
s2

]
ds

∼

√
2πε

|ϕ′′(c)|
f(c)eiϕ(c)/ε+iσπ/4,

where

σ = signϕ′′(c).

14.3. The Feynman path integral

Consider a single, non-relativistic quantum mechanical particle of mass m in a
potential V (~x). Suppose that the particle is located at ~x0 at time t0, and we
observe the location of the particle at time t1. We would like to calculate the
probability of finding the particle in some specific region Ω ⊂ Rn.

According to Feynman’s formulation of quantum mechanics [21], every event
has an associated complex number, Ψ, called its amplitude. If an event can occur in
a number of different independent ways, the amplitude of the event is obtained by
adding together the amplitudes of the different subevents. Finally, the probability of
observing an event when some measurement is made is the modulus of the amplitude
squared |Ψ|2.

The fact that amplitudes add, not probabilities, leads to the interference effects
characteristic of quantum mechanics. For example, consider an event (like the
observation of an electron in the ‘double slit’ experiment) which can occur in two
different ways with equal probability. If the two amplitudes have opposite phase,
then the probability of the event is zero, while if they have the same phase, then
the probability of the event is four times the probability of the separate subevents.

To apply this formulation to the motion of a quantum mechanical particle, we
take as the basic subevents the possible paths ~x(t) of the particle from ~x0 at time



90

t0 to ~x1 at time t1. The amplitude of a path ~x is proportional to eiS(~x)/~ where
S (~x) is the action of the path

S (~x) =

∫ t1

t0

{
1

2
m
∣∣∣~̇x∣∣∣2 − V (~x)

}
dt,

and ~ is Planck’s constant. Like the action, Planck’s constant has the dimension of
energy · time, or momentum · length; its approximate value is ~ = 1.054× 10−34 Js.

Thus the action, which is a somewhat mysterious quantity in classical mechan-
ics, corresponds to a phase, measured in units of ~, in quantum mechanics.

The amplitude ψ (~x1, t1; ~x0, t0) of the particle moving from ~x0 at time t0 to ~x1

at time t1 is then obtained formally by summing the amplitudes of each path over
‘all’ possible paths

P (~x1, t1; ~x0, t0) = {~x | ~x(t) : [t0, t1]→ Rn is continuous, ~x (t0) = ~x0,~x (t0) = ~x0} .
This gives

(3.87) ψ (~x1, t1; ~x0, t0) =

∫
P(~x1,t1;~x0,t0)

eiS(~x)/~D~x,

where D~x is supposed to be a measure on the path space that weights all paths
equally, normalized so that |ψ|2 is a probability density.

This argument has great intuitive appeal, but there are severe difficulties in
making sense of the result. First, there is no translation-invariant ‘flat’ measure
D~x on an infinite-dimensional path space, analogous to Lebesgue measure on Rn,
that weights all paths equally. Second, for paths ~x(t) that are continuous but
not differentiable, which include the paths one expects to need, the action S (~x)
is undefined, or, at best, infinite. Thus, in qualitative terms, the Feynman path
integral in the expression for ψ in fact looks something like this:

“
∫
P e

iS(~x)/~D~x =
∫
ei∞/~D?”.

Nevertheless, there are ways to make sense of (3.87) as providing the solution
ψ (~x, t; ~x0, t0) of the Schrödinger equation

i~ψt = − ~2

2m
∆ψ + V (~x)ψ,

ψ (~x, t0; ~x0, t0) = δ (~x− ~x0) .

For example, the Trotter product formula gives an expression for ψ as a limit of
finite dimensional integrals over RN as N →∞, which may be taken as a definition
of the path integral in (3.87) (see (3.92)–(3.94) below).

After seeing Feyman’s work, Kac (1949) observed that an analogous formula
for solutions of the heat equation with a lower-order potential term (the ‘imaginary
time’ version of the Schrödinger equation),

(3.88) ut =
1

2
∆u− V (x)u,

can be given rigorous sense as a path integral with respect to Wiener measure,
which describes the probability distribution of particle paths in Brownian motion.

Explicitly, for sufficiently smooth potential functions V (x), the Green’s function
of (3.88), with initial data u(x, t0) = δ(x−x0), is given by the Feynman-Kac formula

u (x, t;x0, t0) =

∫
P(x,t;x0,t0)

e
∫ t
t0
V (x(s)) ds

dW (x) .



LECTURE 3. THE CALCULUS OF VARIATIONS 91

Here, P (x, t;x0, t0) denotes the space of all continuous paths x(s), with t0 ≤ s ≤ t
from x0 at t0 to x at t. The integral is taken over P with respect to Wiener measure.
Formally, we have

(3.89) dW (x) = e
−
∫ t
t0

1
2 |~̇x|2 dsDx.

However, neither the ‘flat’ measure Dx, nor the exponential factor on the right-hand
side of this equation are well-defined. In fact, the Wiener measure is supported on
continuous paths that are almost surely nowhere differentiable (see Section 3.4).

14.4. The Trotter product formula

To explain the idea behind the Trotter product formula, we write the Schrödinger
equation as

(3.90) i~ψt = Hψ,

where the Hamiltonian operator H is given by

H = T + V

and the kinetic and potential energy operators T and V , respectively, are given by

T = − ~2

2m
∆, V = V (~x) .

Here, V is understood as a multiplication operator V : ψ 7→ V (~x)ψ.
We write the solution of (3.90) as

ψ(t) = e−it~
−1Hψ0

where ψ(t) = ψ(·, t) ∈ L2 (Rn) denotes the solution at time t, ψ0 = ψ(0) is the
initial data, and

e−it~
−1H : L2 (Rn)→ L2 (Rn)

is the one-parameter group of solution operators (or flow).
Assuming that V (~x) is not constant, the operators T , V do not commute:

[T, V ] = TV − V T = − ~2

2m
(2∇V · ∇+ ∆V ) .

(Here, ∆V denotes the operation of multiplication by the function ∆V .) Thus, the

flows e−it~
−1T , e−it~

−1V do not commute, and e−it~
−1H 6= e−it~

−1V e−it~
−1T .

For small times ∆t, however, we have

e−i∆t~
−1H = I − i∆t

~
H − ∆t2

2~2
H2 +O

(
∆t3

)
= I − i∆t

~
(T + V )− ∆t2

2~2

(
T 2 + TV + V T + V 2

)
+O

(
∆t3

)
,

e−i∆t~
−1T = I − i∆t

~
T − ∆t2

2~2
T 2 +O

(
∆t3

)
e−i∆t~

−1V = I − i∆t

~
V − ∆t2

2~2
V 2 +O

(
∆t3

)
.

Thus,

e−i∆t~
−1H = e−i∆t~

−1V e−i∆t~
−1T − ∆t2

2~2
[T, V ] +O

(
∆t3

)
,

and we can obtain a first-order accurate approximation for the flow associated with
H by composing the flows associated with V and T .
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The numerical implementation of this idea is the fractional step method. We
solve the evolution equation

ut = (A+B)u

by alternately solving the equations

ut = Au, ut = Bu

over small time-steps ∆t. In this context, the second-order accurate approximation
in ∆t

e∆t(A+B) = e
1
2 ∆tAe∆tBe

1
2 ∆tA

is called ‘Strang splitting.’
To obtain the solution of (3.90) at time t, we take N time-steps of length

∆t = t/N , and let N →∞, which gives the Trotter product formula

(3.91) ψ(t) = lim
N→∞

[
e−it(~N)−1V e−it(~N)−1T

]N
ψ0.

Under suitable assumptions on V , the right-hand side converges strongly to ψ(t)
with respect to the L2 (Rn)-norm.

The flows associated with V , T are easy to find explicitly. The solution of

i~ψt = V ψ

is given by the multiplication operator

ψ0 7→ e−it~
−1V ψ0.

The solution of

i~ψt = Tψ

may be found by taking the spatial Fourier transform and using the convolution
theorem, which gives

ψ (~x, t) =

∫
e{−it|~p|

2/(2~m)+i~p·~x/~}ψ̂0 (~p) d~p

=
( m

2πi~t

)n/2 ∫
eim|~x−~y|

2/(2~t)ψ0 (~y) d~y.

Using these results in the Trotter product formula (3.91), writing the spatial
integration variable at time tk = kt/N as ~xk, with ~xN = ~x, and assuming that
ψ (~x, 0) = δ (~x− ~x0), we get, after some algebra, that

(3.92) ψ (~x, t) = lim
N→∞

CN,t

∫
eiSN,t(~x0,~x1,~x2,...,~xN−1,~xN )/~ d~x1d~x2, . . . d~xN−1

where the normalization factor CN,t is given by

(3.93) CN,t =

(
mN

2πi~t

)n(N−1)/2

and the exponent SN,t is a discretization of the classical action functional

(3.94) SN,t (~x0, ~x1, ~x2, . . . , ~xN−1, ~xN ) =

N−1∑
k=1

t

N

[
m

2

∣∣∣∣~xk+1 − ~xk
t/N

∣∣∣∣2 − V (~xk)

]
.

Equations (3.92)–(3.94) provide one way to interpret the path integral formula
(3.87).
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14.5. Semiclassical limit

One of the most appealing features of the Feynman path integral formulation is
that it shows clearly the connection between classical and quantum mechanics. The
phase of the quantum mechanical amplitude is the classical action, and, by analogy
with the method of stationary phase for finite-dimensional integrals, we expect that
for semi-classical processes whose actions are much greater than ~, the amplitude
concentrates on paths of stationary phase. Again, however, it is difficult to make
clear analytical sense of this argument while maintaining its simple intuitive appeal.





LECTURE 4

Sturm-Liouville Eigenvalue Problems

Possibly one of the most useful facts in mathematics is that a symmetric matric
has real eigenvalues and a set of eigenvectors that form an orthonormal basis. This
property of symmetric matrices has a wide-ranging generalization to the spectral
properties of self-adjoint operators in a Hilbert space, of which the Sturm-Liouville
ordinary differential operators are fundamental examples.

Sturm-Liouville equations arise throughout applied mathematics. For example,
they describe the vibrational modes of various systems, such as the vibrations of
a string or the energy eigenfunctions of a quantum mechanical oscillator, in which
case the eigenvalues correspond to the resonant frequencies of vibration or energy
levels. It was, in part, the idea that the discrete energy levels observed in atomic
systems could be obtained as the eigenvalues of a differential operator which led
Schrödinger to propose his wave equation.

Sturm-Liouville problems arise directly as eigenvalue problems in one space
dimension. They also commonly arise from linear PDEs in several space dimensions
when the equations are separable in some coordinate system, such as cylindrical or
spherical coordinates.

The general form of the Sturm-Liouville equation is an ODE for u(x) of the
form

(4.1) − (pu′)
′
+ qu = λru.

Here, p(x), q(x) are coefficient functions, r(x) is a weighting function (equal to one
in the simplest case) and λ is an eigenvalue, or spectral, parameter. The ODE is
supplemented by appropriate self-adjoint boundary conditions.

The simplest example of a Sturm-Liouville operator is the constant-coefficient
second-derivative operator, whose eigenfunctions are trigonometric functions. Many
other important special functions, such as Airy functions and Bessel functions, are
associated with variable-coefficient Sturm-Liouville operators.

Just as we may expand a vector with respect to the eigenvectors of a symmet-
ric matrix, we may expand functions in terms of the eigenfunctions of a regular
Sturm-Liouville operator; the expansion of periodic functions in Fourier series is an
example.

One feature that occurs for Sturm-Liouville operators, which does not occur
for matrices, is the possibility of an absolutely continuous (or, for short, contin-
uous) spectrum. Instead of eigenfunction expansions, we then then get integral
transforms, of which the Fourier transform is an example.

Other, more complicated spectral phenomena can also occur. For example,
eigenvalues embedded in a continuous spectrum, singular continuous spectrum,
and pure point spectrum consisting of eigenvalues that are dense in an interval (see
Section 4.6 on the Anderson localization of waves in random media for an example).

95



96

1. Vibrating strings

Consider the vibrations of a string such as a violin string. We label material points
on the string by a Lagrangian coordinate a ∈ R; for example, we can define a as
the distance of the point from some fixed point in a given reference configuration
of the string. We denote the position of the material point a on the string at time
t by ~r(a, t).

Let ρ0(a) denote the mass-density of the string in the reference configuration,
meaning that the mass of the part of the string with c ≤ a ≤ d is given by∫ d

c

ρ0(a) da.

We assume that the mass of the string is conserved as it vibrates, in which case the
density ρ0(a) in the reference configuration is independent of time.

We suppose that the only force exerted by one part of the string on another is a
tension force tangent to the string. This assumption distinguishes a string from an
elastic rod that resists bending. We also suppose, for simplicity, that no external
forces act on the string.

The contact force ~F exerted by the part of the string with b > a on the part
with b < a is then given by

~F (a, t) = T (a, t)~t(a, t)

where T (a, t) is the tension in the string and

~t =
~ra
|~ra|

is the unit tangent vector. We assume that ~ra never vanishes. The part of the

string with b < a exerts an equal and opposite force −~F on the part of the string
with b > a.

Newton’s second law, applied to the part of the string with c ≤ a ≤ d, gives

d

dt

∫ d

c

ρ0(a)~rt(a, t) da = ~F (d, t)− ~F (c, t).

For smooth solutions, we may rewrite this equation as∫ d

c

{
ρ0(a)~rtt(a, t)− ~Fa(a, t)

}
da = 0.

Since this holds for arbitrary intervals [c, d], and since we assume that all functions
are smooth, we conclude that

ρ0(a)~rtt(a, t) = ~Fa(a, t).

This equation expresses conservation of momentum for motions of the string.
To close the equation, we require a constitutive relation that relates the tension

in the string to the stretching of the string. The local extension of the string from
its reference configuration is given by

e(a, t) = |~ra(a, t)|.
We assume that

T (a, t) = f (e(a, t), a)

where f(e, a) is a given function of the extension e and the material coordinate a.
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It follows that the position-vector ~r(a, t) of the string satisfies the nonlinear
wave equation

(4.2) ρ0(a)~rtt(a, t) = ∂a

{
f (|~ra(a, t)|, a)

~ra(a, t)

|~ra(a, t)|

}
.

1.1. Equilibrium solutions

A function ~r = ~r0(a) is an exact, time-independent solution of (4.2) if

(4.3)
d

da

{
f (|~r0a|, a)

~r0a

|~r0a|

}
= 0.

We consider a solution such that the tangent vector of the string is in a constant
direction, say the ~i-direction.

We may then use as a material coordinate the distance a along the string in
the equilibrium configuration, in which case

(4.4) ~r0(a) = a~i.

Using (4.4) and the corresponding extension e = 1, in (4.3), we find that the tension

f (1, a) = T0

is constant in equilibrium, as required by the balance of longitudinal forces.

1.2. Linearized equation

For small vibrations of the string about an equilibrium state, we may linearize the
equations of motion. We look for solutions of the form

(4.5) ~r(a, t) = a~i+ ~r′(a, t),

where ~r′ is a small perturbation of the equilibrium solution (4.4). We decompose
~r′ into longitudinal and transverse components

~r′(a, t) = x′(a, t)~i+ ~r⊥(a, t),

where ~i · ~r⊥ = 0.
We use (4.5) in (4.2), with e = 1 + x′a + . . . , and Taylor expand the resulting

equation with respect to ~r′. This gives

ρ0~r
′
tt = ∂a

{
(T0 + kx′a) (1− x′a)

[
(1 + x′a)~i+ ~r⊥a

]}
+ . . .

where k(a) = fe (1, a). Linearizing the equation, and separating it into longitudinal
and transverse components, we find that

(4.6) ρ0x
′
tt = (kx′a)a , ρ0~r

⊥
tt = T0~r

⊥
aa.

Thus we obtain decoupled equations for the longitudinal and transverse motions of
the string.

The longitudinal displacement satisfies a one-dimensional wave equation of the
form (3.56). The density is given by the density in the reference configuration,
and the stiffness by the derivative of the tension with respect to the extension; the
stiffness is positive, and the equation is a wave equation provided that the tension in
the string increases when it is stretched. In general, both coefficients are functions
of a, but for a uniform string they are constants.

Unlike the longitudinal mode, the stiffness constant T0 for the transverse mode
is necessarily constant. If T0 > 0, meaning that the string is stretched, the trans-
verse displacement satisfies a wave equation, but if T0 < 0 it satisfies an elliptic
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equation. As we explain in the following section, the initial value problem for such
PDEs is subject to an extreme instability. This is consistent with our experience
that one needs to stretch a string to pluck it.

1.3. Hadamard instability

As a short aside, we consider the instability of the initial value problem for an elliptic
PDE, such as the one that arises above for transverse vibrations of a compressed
elastic string. This type of instability arises in other physical problems, such as the
Kelvin-Helmholtz instability of a vortex sheet in fluid mechanics.

The simplest case of the transverse equation in (4.6) with constant coefficients,
normalized to ρ0 = 1, T0 = −1, and planar motions x = a and y = u(x, t), is the
Laplace equation

(4.7) utt = −uxx.

Equation (4.7) has solutions

(4.8) u(x, t) = Aeinx+|n|t

for arbitrary n ∈ R and A ∈ C. Since the equation is linear with real-coefficients,
we may obtain real-valued solutions by taking the real or imaginary parts of any
complex-valued solution, and we consider complex-valued solutions for convenience.

The solution in (4.8) has modulus |u(x, t)| = |A|e|k|t. Thus, these solutions
grow exponentially in time with arbitrarily large rates. (The solutions proportional
to einx−|n|t grow arbitrarily fast backward in time.)

This behavior is a consequence of the invariance of (4.8) under the rescalings
x 7→ λ, t 7→ λt. This scale-invariance implies that if there is one solution with
bounded initial data and a nonzero growth rate, then we can obtain solutions with
arbitrarily fast growth rates by rescaling the initial data.

As a result, solutions do not depend continuously on the initial data in any
norm that involves only finitely many derivatives, and the resulting initial value
problem for (4.7) is ill-posed with respect to such norms. For example, if

‖u‖K (t) = max
0≤k≤K

sup
x∈R

∣∣∂kxu(x, t)
∣∣

and

un(x, t) = e−|n|
1/2 {

einx−nt + einx+nt
}
,

then for every K ∈ N we have

‖un‖K (0)→ 0 as n→∞,

but

|un(x, t)| → ∞ as n→∞ if t 6= 0.

This failure of continuous dependence leads to a loss of existence of solutions.
For example, the Fourier series

f(x) =

∞∑
k=−∞

e−|k|
1/2

eikx

converges to a C∞-function, but there is no solution of (4.7) with initial data

u(x, 0) = f(x), ut(x, 0) = 0

in any time interval about 0, however short.
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It is possible to obtain solutions of (4.7) for sufficiently ‘good’ initial data, such
as analytic functions (which, from the Cauchy-Kovalewsky theorem, are given by
locally convergent power series). Such assumptions, however, are almost always
too restrictive in applications. The occurrence of Hadamard instability typically
signals a failure of the model, and means that additional stabilizing effects must be
included at sufficiently short length-scales.

2. The one-dimensional wave equation

Consider a uniform string with constant density ρ0 and and constant stiffness k0.
Then, from (4.17), longitudinal vibrations of the string satisfy the one-dimensional
wave equation

(4.9) utt = c20uxx

Planar transverse vibrations of a stretched string satisfy the same equation with
c20 = T0/ρ0.

2.1. The d’Alembert solution

The general solution of (4.9) is given by the d’Alembert solution

(4.10) u(x, t) = F (x− c0t) +G (x+ c0t)

where F , G are arbitrary functions. This solution represents a superposition of a
right-moving traveling wave with profile F and a left-moving traveling wave with
profile G.

It follows that the solution of the Cauchy problem for (4.9) with initial data

(4.11) u(x, 0) = f(x), ut(x, 0) = g(x)

is given by (4.10) with

F (x) =
1

2
f(x)− 1

2c0

∫ x

x0

g(ξ) dξ, G(x) =
1

2
f(x) +

1

2c0

∫ x

x0

g(ξ) dξ.

Here, x0 is an arbitrary constant; changing x0 does not change the solution, it
simply transforms F (x) 7→ F (x) + c, G(x) 7→ G(x)− c for some constant c.

2.2. Normal modes

Next, consider a boundary value problem (BVP) for (4.9) in 0 ≤ x ≤ L with
boundary conditions

(4.12) u(0, t) = 0, u(L, t) = 0.

This BVP describes the vibration of a uniform string of length L that is pinned at
its endpoints.

We look for separable solutions of the form

(4.13) u(x, t) = ϕ(x)e−iωt

where ω is a constant frequency and ϕ(x) is a function of the spatial variable only.
The real and imaginary parts of a complex-valued solution of a linear equation with
real coefficients are also solutions, so we may recover the real-valued solutions from
these complex-valued solutions.

The function u(x, t) in (4.13) satisfies (4.9), (4.12) if ϕ(x) satisfies

ϕ′′ + k2ϕ = 0, ϕ(0) = 0, ϕ(L) = 0
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where the prime denotes a derivative with respect to x, and

k2 =
ω2

c20
.

The spectral problem

−ϕ′′ = λϕ, ϕ(0) = 0, ϕ(L) = 0

has a point spectrum consisting entirely of eigenvalues

(4.14) λn =
π2n2

L2
for n = 1, 2, 3, . . . .

Up to an arbitrary constant factor, the corresponding eigenfunctions ϕn ∈ L2[0, L]
are given by

(4.15) ϕn(x) = sin
(nπx
L

)
.

These eigenfunctions are orthogonal with respect to the L2[0, L]-inner product

〈f, g〉 =

∫ L

0

f(x)g(x) dx,

where f, g : [0, L]→ R are square-integrable functions. Explicitly, for any m,n ∈ N∫ L

0

sin
(mπx

L

)
sin
(nπx
L

)
dx =

{
L/2 if n = m,
0 if n 6= m.

An arbitrary function f ∈ L2[0, L] may be expanded with respect to these
eigenfunctions in a Fourier sine series as

f(x) =

∞∑
n=1

an sinnπx,

where, by orthogonality,

an =
2

L

∫ L

0

f(x) sinnπx dx.

The series converges to f in the L2-norm, meaning that∥∥∥∥∥f(x)−
N∑
n=1

an sinnπx

∥∥∥∥∥ =

∫ L

0

∣∣∣∣∣f(x)−
N∑
n=1

an sinnπx

∣∣∣∣∣
2

dx

1/2

→ 0 as N →∞.

We say that the eigenfunctions are a basis of L2[0, L], and form a complete set.
The solutions for k corresponding to (4.14) are

kn =
nπ

L
for n = 1, 2, 3, . . . ,

The separable solutions of (4.9), (4.12) associated with (4.15) are therefore

sin(knx) e−ic0knt, sin(knx) eic0knt.

The real part of these solutions is

(4.16) u(x, t) = sin(knx) cos (c0knt) .

This is a standing-wave solution with profile proportional to sin (knx) that oscillates
periodically in time with frequency ωn = c0n. The nth mode has n/2 periods of
the sine that fit between the two pinned endpoints at x = 0, x = L.
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The frequencies of these solutions are ωn = c0kn. When expressed in terms of
the properties of the string, the lowest, or fundamental, frequency for transverse
modes is

ω1 =

√
T0

ρ0L2
.

Thus, for example, increasing the tension in a string increases the fundamental
frequency of its transverse vibrations, and heavier, longer strings have a lower
fundamental frequency than lighter, shorter ones.

The solution (4.16) may be written as

u(x, t) =
1

2
sin [nπ (x− c0t)] +

1

2
sin [nπ (x+ c0t)] ,

which shows that the standing wave arise from the interference between two trav-
eling waves propagating in opposite directions.

Since the PDE and the boundary conditions (4.9), (4.12) are linear, we can
superpose the separated, time-periodic solutions to get the general real-valued so-
lution

u(x, t) =

∞∑
n=1

sin(nπx)
{
Ane

ic0nt + Āne
−ic0nt

}
where An ∈ C is an arbitrary constant for each n ∈ N.

We may write this solution in real form as

u(x, t) =

∞∑
n=1

sin(nπx) {an cos (c0nt) + bn sin (c0nt)}

where An = (an + ibn)/2. Imposing the initial condition (4.11), we find that

an = 2

∫ 1

0

f(x) sin(nπx) dx, bn =
2

nc0

∫ 1

0

g(x) sin(nπx) dx.

This solution can again be written as a superposition of right-moving and right-
moving traveling waves.

Similar solutions can be obtained for Neumann boundary conditions

ϕ′(0) = 0, ϕ′(L) = 0

leading to Fourier cosine series, and periodic boundary conditions

ϕ(0) = ϕ(L), ϕ′(0) = ϕ′(L)

leading to Fourier series.

2.3. The Fourier transform

On the real line, the spectral problem

−ϕ′′ = λϕ

has a continuous spectrum 0 ≤ λ < ∞, with bounded solutions that do not lie in

L2(R); they are linear combinations of e±i
√
λx. Since k2 = λ and ω2 = c20k

2, we get
a continuous set of solutions of the wave equation, proportional to

u(x, t) = eikx−ic0kt, u(x, t) = eikx+ic0kt

where k ∈ R. The general superposition of these solutions is

u(x, t) =

∫ {
F̂ (k)eik(x−c0t) + Ĝ(k)eik(x+c0t)

}
dk



102

where F̂ , Ĝ : R → C are arbitrary functions. The solution u(x, t) is real-valued if

F̂ (−k) = F̂ ∗(k) and Ĝ(−k) = Ĝ∗(k) This solution is the Fourier transform of the
d’Alembert solution (4.10).

This solution exhibits an important feature of the wave equation, namely that
it is nondispersive. Fourier modes with different wavenumbers k propagate with
the same velocity c0 (or −c0). As a result, The Fourier modes stay together as the
solution evolves in time, and the solution is a superposition of traveling wave solu-
tions with arbitrary wave-profiles that propagate at velocities c0 (or −c0) without
changing their shape.

This behavior contrast with the behavior of linear dispersive waves, where the
velocity of the Fourier modes depends on their wavenumbers. In this case, the
Fourier modes making up the initial data separate, or disperse, as the solution
evolves, leading to an extended oscillatory wavetrain.

2.4. Nonuniform strings

Let us return to the one-dimensional wave equation

(4.17) ρ0utt = (kux)x

for the longitudinal displacement u(x, t) of a string of length L with mass-density
ρ0(x) and stiffness k(x), both of which we assume are smooth, strictly positive func-
tions on 0 ≤ x ≤ L. Suppose, for definiteness, that u(x, t) satisfies the homogeneous
Dirichlet condition (4.12) at the endpoints of the string.

Looking for separable time-periodic solutions of (4.17) and (4.12) of the form
(4.13), we get the BVP

− (kϕ′)
′

= λρ0ϕ,

ϕ(0) = 0, ϕ(L) = 0,

where λ = ω2. This equation has the form of a Sturm-Liouville eigenvalue problem
(4.1) with p = k, q = 0, and r = ρ0. Values of ω for which this BVP has nonzero
solutions correspond to resonant frequencies of oscillation of the string. Unlike
the uniform case, we cannot solve this eigenvalue problem explicitly for general
coefficient functions ρ0, k.

The qualitative behavior is, however, the same. There is an infinite sequence of
simple positive eigenvalues λ1 < λ2 < λ3 < . . . . The corresponding eigenfunctions
{ϕ1, ϕ2, ϕ3, . . . } are orthogonal with respect to the weighted inner-product

〈f, g〉 =

∫ L

0

ρ0(x)f(x)g(x) dx,

and form a complete set in L2[0, L]. Moreover, like the sine-functions in the uni-
form case, the nth eigenfunction has (n− 1) zeros in the interval 0 < x < L. This
is an example of a general oscillation property possessed by Sturm-Liouville eigen-
functions, and it means that eigenfunctions with higher eigenvalues oscillate more
rapidly than ones with lower eigenvalues.

2.5. The Helmholtz equation

Analogous results apply in higher space dimensions, although the resulting eigen-
value problems are more difficult to analyze because they involve PDEs instead of
ODEs.
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Consider the wave equation in n space-dimensions,

utt = c20∆u.

We look for time-periodic solutions of the form

u(x, t) = ϕ(x)e−iωt

where the frequency ω is constant. We find that ϕ satisfies the Helmholtz equation

(4.18) −∆ϕ = λϕ,

where λ = k2, and the wavenumber k is given by

k =
ω

c0
.

Consider solutions of (4.18) on a smooth, bounded domain Ω ⊂ Rn, subject to
homogeneous Dirichlet boundary conditions

(4.19) ϕ(x) = 0 for x ∈ ∂Ω

Equations (4.18)–(4.19) are an eigenvalue problem for the Laplace equation on Ω.
It is possible to show that the eigenvalues form an infinite increasing sequence

0 < λ1 < λ2 ≤ λ3 ≤ . . . . If λn is an eigenvalue, then ωn = c0
√
λn is a resonant

frequency of the wave equation. For example, if n = 2, we may think of the resonant
frequencies of a drum, and if n = 3, we may think of the resonant frequencies of
sound waves in a container.

Mark Kac [29] asked the question: “Can one hear the shape of a drum?” In
other words, is it possible to deduce the shape of a planar domain Ω ⊂ R2 given
the sequence of Dirichlet eigenvalues {λn} for the Laplacian on Ω.

The sequence of eigenvalues contains a considerable amount of geometrical
information. For example, according to Weyl’s formula, in n space-dimensions the
volume V (or area if n = 2) of the domain is given by

V = lim
R→∞

(2π)nN(R)

Rn/2

where N(R) denotes the number of eigenvalues of the Dirichlet Laplacian that are
less than R.

More generally, one can ask a similar question about the whether or not the
eigenvalues of the Laplace-Beltrami operator on a Riemannian manifold determine
the manifold up to an isometry. Milnor (1964) gave examples of two non-isometric
sixteen dimensional tori whose Laplace-Betrami operators have the same eigen-
values. The two-dimensional question remained open until 1992, when Gordon,
Webb, and Wolpert constructed two non-isometric plane domains whose Dirichlet
Laplacians have the same eigenvalues.

Related inverse spectral problems that involve the reconstruction of the coef-
ficients of a differential operator from appropriate spectral data are important in
connection with the theory of completely integrable nonlinear PDEs, such as the
KdV equation.

3. Quantum mechanics

I was in Bristol at the time I started on Heisenberg’s theory.
I had returned home for the last part of the summer vacation,
and I went back to Cambridge at the beginning of October, 1925,
and resumed my previous style of life, intensive thinking on the
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problems during the week and relaxing on Sunday, going for
a long walk in the country alone. It was during one of these
Sunday walks in October, when I was thinking very much about
this uv − vu, in spite of my intention to relax, that I thought
about Poisson brackets.1

There is no systematic derivation of quantum mechanics from classical mechan-
ics. (If there were, presumably quantum mechanics would have been discovered by
the founders of classical mechanics.) There is, however, a close correspondence
between the two theories. One way to understand the correspondence is through
path integrals, which leads to the Lagrangian formulation of classical mechanics.
Here, we will discuss an alternative, Hamiltonian, approach.

3.1. The correspondence principle

In the Hamiltonian formulation of classical mechanics, observables (such as the
energy) are functions defined on the phase space of the system. In the Heisenberg
formulation of quantum mechanics, observables are self-adjoint operators acting on
a complex Hilbert space. The possible values of a quantum mechanical observable
are the elements of its spectrum, and an eigenvector of an observable is a state
with a definite value of the observable equal to the associated eigenvalue. The
quantum and classical theories correspond in the sense that the commutators of
quantum-mechanical operators agree with the canonical Poisson brackets of the
corresponding classical functions multiplied by i~.

To write this requirement explicitly, we let F̂ denote the quantum mechanical
operator corresponding to the classical observable F . Then for any pair of classical
observables F , G we require that

{̂F,G} =
1

i~

[
F̂ , Ĝ

]
.

Here, {F,G} is the canonical Poisson bracket of F , G, and[
F̂ , Ĝ

]
= F̂ Ĝ− ĜF̂

is the commutator of the operators F̂ , Ĝ. This prescription is dimensionally con-
sistent, since the canonical bracket involves a derivative with respect to momentum
and position, which has the dimension of action.

Thus, roughly speaking, the prescription in passing from classical to quantum
mechanics is to replace Poisson brackets by commutators divided by i~. This pre-
scription is not entirely unambiguous when it leads to products of non-commuting
operators, since all such ordering information is lost in the passage from quantum
to classical mechanics.

The classical Hamiltonian equations for the evolution of a function F with
respect to a Hamiltonian H is

Ft = {F,H} .
Thus, the corresponding quantum mechanical equation is

i~F̂t =
[
F̂ , Ĥ

]
.

1P. A. M. Dirac, Varenna lectures, 1972. Dirac apparently had to wait until Monday so he could
look up Poisson brackets in the library, such was the speed of transmission of information at the

time.
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This operator equation has the solution

(4.20) F̂ (t) = e−iĤt/~F̂0e
iĤt/~.

The Hamiltonian Ĥ is self adjoint, so(
e−iĤt/~

)∗
= eiĤ

∗t/~ = eiĤt/~ =
(
e−iĤt/~

)−1

,

meaning that the evolution operator e−iĤt/~ is unitary.
In this ‘Heisenberg picture’ the operators evolve in time and act on a fixed

vector ψ0 in an underlying Hilbert space H. The measurable quantities associated
with an observable F̂ are inner products of the form〈

ϕ0, F̂ (t)ψ0

〉
where ϕ0, ψ0 ∈ H, and 〈·, ·〉 denotes the inner product in H.

3.2. The Schrödinger equation

To obtain the ‘Schrödinger picture,’ from the ‘Heisenberg picture,’ we transfer
the time-evolution from the operators to the states. That is, given a fixed vector
ψ0 ∈ H, we define

(4.21) ψ(t) = eiĤt/~ψ0.

Then, if ϕ0, ψ0 are any two vectors in H, with corresponding time-dependent states
ψ(t), ϕ(t), we have from (4.20)〈

ϕ0, F̂ (t)ψ0

〉
=
〈
ϕ(t), F̂0ψ(t)

〉
.

Moreover, since conjugation preserves commutators, the operators F̂ (t) and F̂0

satisfy the same commutation relations. Thus, both ‘pictures’ lead to the same
result.

The Schrödinger state vector ψ(t) in (4.21) satisfies the evolution equation

i~ψt = Hψ.

This equation is the Schrödinger equation for a nonrelativistic quantum mechanical
system.

Now consider the canonical Hamiltonian formulation of a classical mechanical
system with conjugate position and momentum variables,

~x = (x1, x2, . . . , xn) , ~p = (p1, p2, . . . , pn) .

Their Poisson brackets are given by

{xj , xk} = 0, {pj , pk} = 0, {xj , pk} = δjk.

We represent these operators as operators acting on functions in L2(Rn). We
define the position operator x̂ as a multiplication operator, and the momentum
operator p̂ as a gradient:

x̂ = ~x, x̂j = xj ; p̂ = −i~∇, p̂k = −i~ ∂

∂xk
.

We have
[x̂j , x̂k] = 0, [p̂j , p̂k] = 0, [x̂j , p̂k] = i~δjk,

in correspondence with the Poisson brackets of the classical position and momentum
functions.
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We again consider a particle of mass m moving in n-space dimensions in a
potential V . of the particles. The kinetic energy operator T = p̂2/(2m) is given by

T = − ~2

2m
∆,

where we now drop the ‘hats’ on operators. The potential energy operator V is
multiplication by V (~x). The Hamiltonian operator H = T + V is therefore

H = − ~2

2m
∆ + V (~x) .

We describe the state of a quantum-mechanical particle by a complex-valued
wavefunction ψ (~x, t), where |ψ|2(~x, t) is the spatial probability density for the lo-
cation of the particle at time t.

The time-dependent Schrödinger equation in this case is the linear PDE

(4.22) i~ψt = − ~2

2m
∆ψ + V (~x)ψ.

3.3. Energy eigenfunctions

In this paper I wish to consider, first, the simple case of the
hydrogen atom (no-relativistic and unperturbed), and show that
the customary quantum conditions can be replaced by another
postulate, in which the notion of “whole numbers,” merely as
such, is not introduced. Rather, when integrality does appear, it
arises in the same natural way as it does in the case of the node
numbers of a vibrating string. The new conception is capable of
generalization, and strikes, I believe, very deeply at the nature
of the quantum rules.2

Separable solutions of (4.22) of the form

ψ (~x, t) = ϕ (~x) e−iEt/~

correspond to energy eigenstates with energy E. The function ϕ (~x) satisfies the
time-independent Schrödinger equation

− ~2

2m
∆ϕ+ V (~x)ϕ = Eϕ.

This equation may be supplemented with suitable boundary conditions. For exam-
ple, if the particle is confined to a bounded domain Ω ⊂ Rn, we impose ϕ = 0 on
∂Ω Eigenvalues correspond to the energy levels of bound states, while continuous
spectrum corresponds to scattered states.

4. The one-dimensional Schrödinger equation

For a single quantum-mechanical particle of mass m moving in one space dimension
in a potential V (x), the time-dependent Shrödinger equation (4.22) is

(4.23) i~ψt = − ~2

2m
ψxx + V (x)ψ.

Looking for separable solutions

ψ(x, t) = ϕ (x) e−iEt/~,

2E. Schrodinger, translated from Annalen der Physic79 (1926).
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we find that ϕ(x) satisfies the ODE

(4.24) − ~2

2m
ϕ′′ + V (x)ϕ = Eϕ.

After normalization, this a Sturm-Liouville equation (4.1) of the form

−u′′ + qu = λu.

The coefficient q is proportional to the potential V and the eigenvalue parameter λ
in proportional to the energy E.

4.1. A free particle in a box

Consider a particle that is confined to a finite ‘box’ of length L, but is otherwise
free to move. Formally, this corresponds to a potential

V (x) =

{
0 if 0 < x < L,
∞ otherwise.

Since the probability of finding the particle outside the box 0 ≤ x ≤ L is zero,
continuity of the wavefunction implies that it vanishes at the endpoints, and the
spatial profile ϕ(x) of an energy eigenfunction with energy E satisfies the BVP

− ~2

2m
ϕ′′ = Eϕ, ϕ(0) = 0, ϕ(L) = 0.

This has exactly the same form as the eigenvalue problem arising from the vibration
of a uniform string. In particular, the energy levels are

En =
1

2m

(
n~π
L

)2

, n = 1, 2, 3, . . . .

4.2. Motion in a constant force

Consider a particle that is confined to a half-line x > 0 and acted on by a constant
force −F directed toward the origin, so that F > 0. The corresponding potential
is V (x) = Fx, and the energy eigenfunction with energy E satisfies the BVP

− ~2

2m
ϕ′′ + Fxϕ = Eϕ,

ϕ(0) = 0,

ϕ(x)→ 0 as x→∞.

This problem may be solved in terms of Airy functions Ai(x), discussed below. Its
spectrum consists of eigenvalues, which may be expressed in terms of the zeros of
Ai(x).

Classically, a particle of energy E would repeatedly bounce elastically off the
wall at x = 0 to a distance a = E/F . In quantum mechanics, the wavefunction of
the particle is localized near the wall.

4.3. The simple harmonic oscillator

I remember that when someone had started to teach me about
creation and annihilation operators, that this operator creates
an electron, I said, ”how do you create an electron? It disagrees
with the conservation of charge”, and in that way, I blocked my
mind from learning a very practical scheme of calculation. 3

3Richard P. Feynman, Nobel Lecture, December 11, 1965.
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The quadratic potential V (x) = 1
2kx

2 corresponds to a simple harmonic oscil-
lator. In that case, the energy eigenstates satisfy

(4.25) − ~2

2m
ϕ′′ +

1

2
kx2ϕ = Eϕ.

We consider this eigenvalue problem on the infinite domain −∞ < x < ∞, and
look for solutions ϕ ∈ L2(R) that decay as |x| → ∞.

Although this problem is posed on the whole real line, its spectrum consists
entirely of eigenvalues. This is because it involves an ‘oscillator-type’ potential,
meaning that V (x)→ +∞ as |x| → ∞, so a particle with finite energy is confined
to a bounded region with high probability.

Despite the fact that the ODE in (4.25) has variable coefficients, the eigenvalue
problem is explicitly solvable in terms of elementary Hermite functions. From the
perspective of Feynman path integrals, this is explained by the fact that the corre-
sponding path integral is an oscillatory Gaussian integral, which can be evaluated
exactly.

We will solve the problem by the introduction of creation and annihilation, or
‘ladder,’ operators, which map an eigenfunction to the succeeding, or preceding,
eigenfunction. The creation operator adds a quantum of energy to the oscillator,
while the annihilation operator removes quantum of energy.

We write (4.25) in operator form as

(4.26) Hϕ = Eϕ

where the Hamiltonian operator H is given by

(4.27) H = − ~2

2m

d2

dx2
+

1

2
kx2.

We may write H as

H =
1

2m
p2 +

1

2
kx2,

where p denotes the momentum operator

p = −i~ d

dx
.

Let

ω0 =

√
k

m
denote the frequency of the corresponding classical simple harmonic oscillator. We
define the annihilation operator a and the adjoint creation operator a∗ by

a =

√
k

2~ω0

(
x+

ip

mω0

)
=

√
~

2mω0

d

dx
+

√
k

2~ω0
x

a∗ =

√
k

2~ω0

(
x− ip

mω0

)
= −

√
~

2mω0

d

dx
+

√
k

2~ω0
x,

The annihilation and creation operators are dimensionless, and satisfy the com-
mutation relation

[a, a∗] = 1.

We may express the Hamiltonian in (4.27) in terms of a, a∗ as

(4.28) H = ~ω0

(
aa∗ − 1

2

)
= ~ω0

(
a∗a+

1

2

)
.
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It follows from these equations that

[H, a∗] = ~ω0a
∗, [H, a] = −~ω0a.

Now suppose that ϕ is an eigenfunction of H, with energy eigenvalue E, so
that Hϕ = Eϕ. Let ϕ̃ = a∗ϕ. Then we find that

Hϕ̃ = Ha∗ϕ = a∗Hϕ+ [H, a∗]ϕ = Ea∗ϕ+ ~ω0a
∗ϕ = Ẽϕ̃,

where Ẽ = E+~ω0. There are no non-zero functions ϕ ∈ L2(R) such that a∗ϕ = 0,
and a∗ maps L2 functions to L2 functions. Therefore a∗ maps an eigenfunction of
H with eigenvalue E to one with eigenvalue E + ~ω0.

To start the ‘ladder’ of eigenfunctions, we observe from (4.28) that if aϕ = 0,
then Hϕ = 1

2~ω0. The condition aϕ = 0 corresponds to the ODE

ϕ′ +
mω0x

~
ϕ = 0,

which has the L2-solution

ϕ0(x) = exp

(
−mω0x

2

2~

)
.

It then follows that the nth-eigenfunction ϕn has the form

(4.29) ϕn = cn (a∗)
n
ϕ0

where cn is any convenient normalization coefficient. The corresponding energy
eigenvalues are

En = ~ω0

(
n+

1

2

)
where n = 0, 1, 2, . . . .

The ‘ground state’ of the oscillator, with n = 0, has nonzero energy ~ω0/2.
The fact that the energy of the oscillating particle cannot be reduced completely
to zero contrasts with the behavior of the corresponding classical oscillator. It may
be interpreted as a consequence of the uncertainty principle that the position and
momentum of a quantum-mechanical particle cannot both specified simultaneously.
As a result, if the particle is located at the point x = 0, where the potential energy
attains its minimum value of zero, it would necessarily have nonzero momentum
and therefore nonzero kinetic energy.

The energy of the nth level is equal to the energy of the ground state plus n
‘quanta’ of energy ~ω0. This quantization of energy also contrasts with classical
mechanics, where the particle can posses any energy 0 ≤ E <∞.

Each derivative in (a∗)n of the Gaussian ϕ0 in (4.29) brings down a factor of
x. Thus, the eigenfunctions ϕn have the form of a polynomial of degree n, called a
Hermite polynomial, multiplied by the same Gaussian factor. Explicitly, we have

ϕn(x) = e−α
2x2/2Hn (αx) , n = 0, 1, 2, . . .

where the nth Hermite polynomial Hn(x) is defined in (4.31), and

α =

√
mω0

~
.

The lengthscale α−1 is a characteristic lengthscale over which the wavefunction of
the ground state of the oscillator varies.



110

4.4. The Hermite functions

The Hermite functions ϕn(x), where n = 0, 1, 2, . . . , are eigenfunctions of the
Sturm-Liouville equation on −∞ < x <∞
(4.30) −ϕ′′ + x2ϕ = λϕ.

The corresponding eigenvalues λ = λn are given by

λn = 2n+ 1.

Thus, the spectrum σ of (4.30) consists entirely of eigenvalues.
The Hermite functions have the form

ϕn(x) = e−x
2/2Hn(x),

where the Hermite polynomials Hn(x) are given by Rodriguez’ formula

(4.31) Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
.

We see from this formula that Hn is a polynomial of degree n. Thus, the Hermite
functions decay exponentially as |x| → ∞.

First, we show that {ϕn | n = 0, 1, 2, . . . } form an orthogonal set in L2(R) with
respect to the standard inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x) dx.

It is sufficient to show that ϕn is orthogonal to e−x
2/2xm for every 0 ≤ m ≤ n− 1,

since then ϕn is orthogonal to every function of the form e−x
2/2pm where pm is a

polynomial of degree m ≤ n− 1, and hence in particular to ϕm.

Integrating by parts m-times, and using the fact that e−x
2/2p(x)→ 0 as |x| →

∞ for every polynomial p, we compute that〈
e−x

2/2xm, ϕn

〉
= (−1)n

∫ ∞
−∞

xm
dn

dxn

(
e−x

2
)
dx

= (−1)m+nm!

∫ ∞
−∞

dn−m

dxn−m

(
e−x

2
)
dx

= (−1)m+nm!

[
dn−m−1

dxn−m−1

(
e−x

2
)]∞
−∞

= 0,

which proves the result.
Next, we prove that the Hermite polynomials satisfy the following recurrence

relations:

Hn+1 = 2xHn − 2nHn−1,(4.32)

dHn

dx
= 2nHn−1.(4.33)

First, carrying out one differentiation and using the Leibnitz formula for the
nth derivative of a product, we get

dn+1

dxn+1

(
e−x

2
)

=
dn

dxn

(
−2xe−x

2
)

= −2x
dn

dxn

(
e−x

2
)
− 2n

dn−1

dxn−1

(
e−x

2
)
.
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Multiplying this equation by (−1)n+1ex
2

and using the definition of the Hermite
polynomials, we get (4.32).

Second, using the definition of the Hermite polynomials and the product rule,
we get

dHn

dx
= (−1)n

d

dx

[
ex

2 dn

dxn

(
e−x

2
)]

= (−1)nex
2 dn+1

dxn+1

(
e−x

2
)

+ (−1)n2xex
2 dn

dxn

(
e−x

2
)

= −Hn+1 + 2xHn.

Using (4.32) to eliminate Hn+1 from this equation, we get (4.33).
To show that the Hermite functions are eigenfunctions of the operator

H = − d2

dx2
+ x2

in (4.30), we define annihilation and creation operators

a =
d

dx
+ x, a∗ = − d

dx
+ x, H = aa∗ − 1.

Using (4.32)–(4.33), we compute that

aϕn =

(
d

dx
+ x

)(
e−x

2/2Hn

)
= e−x

2/2 dHn

dx
= 2nϕn−1,

a∗ϕn =

(
− d

dx
+ x

)(
e−x

2/2Hn

)
= e−x

2/2

(
−dHn

dx
+ 2xHn

)
= ϕn+1.

It follows that

Hϕn = (aa∗ − 1)ϕn = aϕn+1 − ϕn = (2n+ 1)ϕn,

which proves the result.
It is interesting to note that the Hermite functions are eigenfunctions of the

Fourier transform. With a convenient normalization, the Fourier transform

F : L2(R)→ L2(R), F : f 7→ f̂

is an isometry on L2(R). A function f and its Fourier transform f̂ are related by

f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eikx dk, f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx.

Then, using (4.31) in the definition of the Fourier transform, we find that

F [ϕn] = (−i)nϕn.

For example, if n = 0, this is the familiar fact that the Fourier transform of the

Gaussian e−x
2/2 is the same Gaussian e−k

2/2. As with any unitary map, the spec-
trum of the Fourier transform lies on the unit circle. It consists of four eigenvalues
1, i,−1,−i, each of which has infinite multiplicity.

One way to understand why the eigenfunctions of (4.30) are also eigenfunctions
of the Fourier transform is to observe that the transforms of a derivative and a
product with x are given by

F [f ′(x)] = ikf̂(k), F [xf(x)] = if̂ ′(k).
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Thus, the operations of differentiation and multiplication by the independent vari-
able exchange places under the Fourier transform. As a result, the operator

− d2

dx2
+ x2 7→ k2 − d2

dk2

maps to itself. Hence, if ϕ is an eigenfunction, then ϕ̂ is also an eigenfunction.

4.5. Periodic potentials

When I started to think about it, I felt that the main problem
was to explain how the electrons could sneak by all the ions in
the metal...By straight Fourier analysis I found to my delight
that the wave differed from the plane wave of free electrons only
by a periodic modulation.4

A simple model for the motion of a conduction electron in a crystal lattice
consists of the time-independent Schrödinger equation with a potential that varies
periodically in space. This potential describes the effect of the forces due to the
ions in the crystal lattice and the other electrons in the crystal on the motion of
the electron.

Let us consider the one-dimensional version of this problem. The wavefunction
of the electron then satisfies the one-dimensional Schrödinger equation in which
the potential V (x) is a periodic function. Suppose that the period is a, so that
V (x+ a) = V (x). Then, after making the change of variables

u(x) = ϕ
(x
a

)
, q(x) =

2ma2

~
V
(x
a

)
, λ =

2mE

~2
,

the normalized wavefunction u and energy parameter λ satisfy

(4.34) −u′′ + q (x)u = λu,

where q(x+ 1) = q(x). We will consider (4.34) on the real line −∞ < x <∞ with
a general 1-periodic potential q which we assume is continuous.

A specific example of such an equation (with the period of the coefficient q
normalized to π rather than 1) is the Mathieu equation

(4.35) −u′′ + 2k cos(2x)u = λu,

where k is a real parameter. Its solutions, called Mathieu functions, have been
studied extensively.

A simpler example to analyze is a ‘delta-comb’ potential

q(x) = Q

∞∑
n=−∞

δ(x− n),

corresponding to a periodic array of δ-potentials at integer lattice points. This equa-
tion may be solved explicitly by matching solutions e±kx of the ‘free’ equation with
q = 0 and λ = k2 across the points x = n, where u′ jumps by Q. Alternatively, one
may consider periodic, piecewise constant potentials (the ‘Kronig-Penney’ model).

As we will see, the spectrum of (4.34) is absolutely continuous, and consists of
the union of closed intervals, or ‘bands,’ separated by ‘gaps’. When λ lies inside
a band, the equation has bounded, non-square integrable, solutions; when λ lies
inside a gap, all nonzero solutions are unbounded, and grow exponentially either
at −∞ or ∞.

4Felix Bloch, quoted in [31].
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The existence of these bands and gaps has significant implications for the con-
ductivity properties of crystals. Electrons whose energy lies in one of the bands can
move freely through the crystal, while electrons whose energy lies in one of the gaps
cannot move large distances. A crystal behaves like an insulator if its non-empty
energy bands are completely filled with electrons, while it conducts electricity if,
like a metal, it has energy bands that are only partially filled (say between 10
and 90 percent). Semiconductors typically have a full valence band, but a small
band gap energies Eg of the same order as the thermal energy kBT . As a result,
electrons can be thermally excited from the valence band to an empty conduction
band. The excited electrons, and the ‘holes’ they leave behind in the valence band,
then conduct electricity (see [31] for a detailed discussion).

To study the spectrum of (4.34), we use Floquet theory, which applies to linear
ODEs with periodic coefficients. Floquet theory is also used to study the stability
of time-periodic solutions of ODEs.

The periodicity of the coefficient q(x) does not imply that solutions are periodic,
but it does imply that if u(x) is a solution, then so is u(x + 1). For example, the
ODE u′′ + u = 0 trivially has 1-periodic coefficients, since they are constant. The
solutions cosx, sinx are not 1-periodic, but sin(x+ 1) = sin 1 cosx+ cos 1 sinx is a
solution.

Suppose that, for a given value of λ, the functions u1(x;λ), u2(x;λ) form a
fundamental pair of solutions for (4.34). It follows that there are constants aij(λ),
1 ≤ i, j ≤ 2, such that

u1(x+ 1;λ) = a11(λ)u1(x;λ) + a12(λ)u2(x;λ),

u2(x+ 1;λ) = a21(λ)u1(x;λ) + a22(λ)u2(x;λ).

Let

A =

(
a11 a12

a21 a22

)
.

If ρ ∈ C is an eigenvalue of A with left eigenvector (c1, c2) and v = c1u1 + c2u2,
then it follows that

v(x+ n;λ) = ρn(λ)v(x, λ) for every n ∈ Z.

This solution is bounded if |ρ| = 1, otherwise it grows exponentially either as
x → −∞ (if |ρ| < 1) or as x → +∞ (if |ρ| > 1). We call the eigenvalues of A
Floquet multipliers.

The Wronskian u1u
′
2−u2u

′
1 is a nonzero constant (since its derivative vanishes

and u1, u2 are independent). It follows that the matrix A has determinant one, so
the characteristic equation of A has the form

det (A− ρI) = ρ2 −Dρ+ 1,

where D(λ) = trA(λ). The value of D(λ) does not depend in the choice of the
fundamental pair of solutions, since the use of another pair leads to a matrix that
is similar to A and has the same trace.

If |D| > 2, then A has two real eigenvalues ρ1, ρ2, one with |ρ1| < 1 and the
other with |ρ2| > 1. Thus, the corresponding fundamental solution are unbounded,
and (4.34) has no non-zero bounded solutions.

If |D| < 2, then A has two complex-conjugate eigenvalues. Since the product
of the eigenvalues is equal to 1, the eigenvalues have modulus equal to one, say
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ρ1 = eiα, ρ2 = e−iα. We may then write the corresponding pair of fundamental
solutions as

v1 (x;λ) = eiα(λ)xp1 (x;λ) , v2 (x;λ) = e−iα(λ)xp2 (x;λ) ,

where p1 (x;λ), p2 (x;λ) are 1-periodic functions of x. These functions, called Bloch
waves, are bounded but not square-integrable, so they are not eigenfunctions.

The function D(λ) is a continuous function of λ, and the spectrum σ of (4.34)
is real and closed. It follows that the spectrum is given by

σ = {λ ∈ R : |D(λ)| ≤ 2} .
To describe the spectrum in more detail, we need to analyze the function D(λ). We
will not carry out a general analysis here but we will describe the result (see [16]
for more information).

As motivation, it is useful to consider the, almost trivial, explicitly solvable
case q(x) = 0 from the perspective of Floquet theory. In that case (4.34) is

−u′′ = λu.

If λ < 0, a fundamental pair of solutions of the ODE is

u1(x;λ) = e−
√
−λx, u2(x;λ) = e

√
−λx.

Thus,

u1(x+ 1;λ) = e−
√
−λu1(x;λ), u2(x+ 1;λ) = e

√
−λu2(x;λ),

and A(λ) is a diagonal matrix with trace

D(λ) = 2 cosh
√
−λ.

If λ > 0, a fundamental pair of solutions of the ODE is

u1(x;λ) = cos
(√

λx
)
, u2(x;λ) = sin

(√
λx
)
,

and

u1(x+ 1;λ) = cos
(√

λ
)
u1(x;λ)− sin

(√
λ
)
u2(x;λ),

u2(x+ 1;λ) = sin
(√

λ
)
u1(x;λ) + cos

(√
λ
)
u2(x;λ),

so
D(λ) = 2 cos

√
λ.

Thus, |D(λ)| ≤ 2 for 0 ≤ λ <∞, corresponding to continuous spectrum. Also
note that D(λ) = 2 at λ = (2m)2π2, where the equation has a two-dimensional
space of 1-periodic solutions, and D(λ) = −2 at λ = (2m + 1)2π2, where the
equation has a two-dimensional space of 2-periodic solutions.

For nonzero periodic potentials, the behavior of D(λ) is similar, except that its
local maximum values are, in general, greater than 2, and its local minimum values,
are in general, less than −2. This leads to a structure with bands of continuous
spectrum separated by gaps.

Specifically, given a periodic potential q(x), we introduce two auxiliary eigen-
value problems. The first eigenvalue problem on 0 ≤ x ≤ 1 is for 1-periodic solutions
of (4.34),

− u′′ + q (x)u = λu,

u(0) = u(1), u′(0) = u′(1).
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This is a regular Sturm-Liouville eigenvalue problem, and its spectrum consists of
an infinite sequence of real eigenvalues

λ0 ≤ λ1 ≤ λ2 ≤ . . .
such that λn → ∞ as n → ∞. Here, if there are any eigenvalues of multiplicity
two (meaning that it has two linearly independent eigenfunctions), we include them
twice in the sequence.

The second the eigenvalue problem on 0 ≤ x ≤ 1 is for semi-periodic solutions
of (4.34), which satisfy

− u′′ + q (x)u = µu,

u(0) = −u(1), u′(0) = −u′(1).

The spectrum of this eigenvalue problem also consists of an infinite sequence
of real eigenvalues

µ0 ≤ µ1 ≤ µ2 ≤ . . .
such that µn → ∞ as n → ∞, where again any eigenvalue of multiplicity two
appears twice. The corresponding eigenfunctions extend to 2-periodic functions on
R.

One can prove that [16]:

(a) λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < . . . ;

(b) D(λ) decreases from 2 to −2 in the intervals [λ2m, µ2m];

(c) D(λ) increases from −2 to 2 in the intervals [µ2m+1, λ2m+1];

(d) D(λ) > 2 in the intervals (−∞, λ0) and (λ2m+1, λ2m+2);

(e) D(λ) < −2 in the intervals (µ2m, µ2m+1).

Thus, the spectrum σ of (4.34) is given by

σ =

∞⋃
m=0

[λ2m, µ2m] ∪ [µ2m+1, λ2m+1] .

It is purely absolutely continuous, and consists of an infinite sequence of ‘bands,’
or ‘stability intervals,’ separated by ‘gaps,’ or ‘instability intervals,’ (λ2m+1, λ2m+2)
or (µ2m, µ2m+1).

In the case when λ2m+1 = λ2m+2, or µ2m = µ2m+1, is a double eigenvalue of
the auxiliary eigenvalue problem, the corresponding ‘gap’ disappears. For instance,
all of the gaps disappear if q = 0. On the other hand, for the Mathieu equation
(4.35) with k 6= 0, every gap has nonzero width, which tends to zero rapidly as
m→∞.

An interesting special class of potentials are the ‘finite-gap’ potentials, in which
λ2m+1 = λ2m+2 and µ2m = µ2m+1 for all but finitely many m. An example of an
n-gap potentials is the Lamé equation

−u′′ + n(n+ 1)℘(x)u = λu

where the elliptic function ℘ is the Weierstrass ‘p’-function. These results are of
interest in the theory of completely integrable systems, in connection with the use of
the inverse scattering transform for spatially-periodic solutions the KdV equation.

Generalizations of these results apply to the time-independent Schrödinger
equation with a periodic potential in higher space dimensions, including the ex-
istence of Bloch waves. The analysis there is more complicated, and there are
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many more possible lattice symmetries in two and three space dimensions than the
single periodic lattice in one space dimension.

4.6. Anderson localization

The spectrum of the one-dimensional, time-independent Schrödinger equation on
the real line with a continuous periodic potential is always absolutely continuous.
For values of λ in the spectrum, the ODE has bounded solutions which do not
decay at infinity.

Anderson (1958) observed that random stationary potentials, such as ones that
model a disordered medium, can have a dense point spectrum with associated,
exponentially decaying eigenfunctions. This phenomenon is called Anderson local-
ization.

As an example, consider a Schrödinger equation of the form

(4.36) −u′′ +

(∑
n∈Z

Qn(ω)f(x− n)

)
u = λu −∞ < x <∞,

where f(x) is a given potential function, which is the same at different lattice
points n, and the amplitudes Qn(ω) are independent identically distributed random
variables.

Then, under suitable assumptions (for example, f(x) ≥ 0 has support in [0, 1],
so the supports of f do not overlap, and the Qn are independent random variables
uniformly distributed on [0, 1]) the spectrum of (4.36) is, almost surely, the interval
0 ≤ λ <∞. Moreover, it is pure point spectrum, meaning that there are countably
many eigenvalues which are dense in [0,∞) (similar to the way in which the rational
numbers are dense in the real numbers).

Localization has also been studied and observed in classical waves, such as
waves in an elastic medium.

5. The Airy equation

The eigenvalue equation for Airy’s equation is

−u′′ + xu = λu.

In this case, we can remove the spectral parameter λ by a translation x 7→ x − λ,
so we set λ = 0 to get

(4.37) −u′′ + xu = 0.

(The Airy operator on the real line has continuous spectrum R, with bounded
solutions given by translations of the Airy function described below.)

The coefficient of the lower order term in (4.37) changes sign at x = 0. As
a result, one might expect that the qualitative behavior of its solutions changes
from oscillatory (like u′′ + u = 0) when x is large and negative to exponential (like
u′′ − u = 0) when x is large and positive. This is indeed the case, and the Airy
functions are, perhaps, the most fundamental functions that describe a continuous
transition from oscillatory to exponential behavior as a real variable changes.

One of the most familiar example of this phenomenon occurs at the bright caus-
tics one can observe in light reflections. Airy functions describe the high-frequency
light wave-field near a smooth convex caustic that separates the illuminated region
from the shadow region. Similar problems arise in semi-classical quantum mechan-
ics, where the wavefunction of a particle is oscillatory in classically allowed regions,
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and exponential in classically forbidden regions. The Airy functions describe the
transition between these two regimes. The fact that the Airy functions have an
exponentially decaying tail is what allows a quantum mechanical particle to ‘tun-
nel’ through a classically impassible potential barrier. Here, we will describe an
application of Airy functions to the propagation of linear dispersive waves.

First, we summarize some properties of the Airy functions. A standard fun-
damental pair of solutions of (4.37) is denoted by Ai(x) and Bi(x). The solution
Ai is determined uniquely, up to a normalization constant, by the condition that it
decays exponentially as x→∞. The function Bi is a second, independent solution
of (4.37), which grows exponentially as x→∞. This property does not determine
Bi up to normalization, since we could add to it any multiple of Ai without altering
this asymptotic behavior.

These solutions may be defined by their initial values at x = 0:

Ai(0) = α, Ai′(0) = −β, Bi(0) =
√

3α, Bi′(0) =
√

3β.

Here, the constants α ≈ 0.355, β ≈ 0.259 are defined by

α =
1

32/3Γ(2/3)
, β =

1

31/3Γ(1/3)

where the Gamma-function Γ is defined by

Γ(x) =

∫ ∞
0

e−ttx−1 dt, for x > 0,

An integration by parts shows that Γ(n) = (n − 1)! for n ∈ N, so the Gamma-
function may be regarded as an extension of the factorial to non-integers.

In order to properly understand the behavior of the Airy functions it is nec-
essary to consider them in the complex plane. For z ∈ C, using a Fourier-Laplace
transform, we write

(4.38) u(z) =

∫
C

ezξf(ξ) dξ

where C is a suitable contour and f : C → C is a function.
Then, assuming we can differentiate under the integral sign and integrate by

parts, we find that

−d
2u

dz2
+ zu =

∫
C

ezξ
(
ξ2f +

df

dξ

)
dξ.

Thus, u(z) is a solution of the Airy equation if f(ξ) satisfies

f ′ + ξ2f = 0.

The simplification here is that, since u(z) is multiplied by the first power of z in
the original equation, we get a first-order ODE for f(ξ), which is easy to solve. Up
to a constant factor, the solution is

f(ξ) = e−ξ
3/3.

Suppose that the contour C is given parametrically as ξ = ξ(t) with −∞ <
t <∞. In order to ensure convergence of the contour integral in (4.38), we require
that ξ(t) ∼ te2πik/3 for some k = −1, 0, 1 as t → ∞, in which case ξ3(t) ∼ t3, and
ξ(t) ∼ −te2πik/3 for some k = −1, 0, 1 as t→ −∞, in which case ξ3(t) ∼ −t3.
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Up to orientation, this gives three types of contours C1, C2, C3. We define

Ek(z) =
1

πi

∫
Ck

ezξ−ξ
3/3 dξ.

Then, since the integrand has no singularities in C and C1 + C2 + C3 is a closed
curve (after being deformed away from infinity), Cauchy’s theorem implies that

E1(z) + E2(z) + E3(z) = 0

Also

E2(z) = −E2(z).

One can show that the Airy functions are defined so that

E3(z) = Ai(z) + iBi(z).

These functions are entire (that is, analytic in all of C), with an essential singularity
at ∞.

Deforming the contours C3 to the real axis, we may derive a Fourier represen-
tation of the Airy functions as oscillatory integrals

Ai(x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt,

Bi(x) =
1

π

∫ ∞
0

[
e−t

3/3+xt + sin

(
1

3
t3 + xt

)]
dt

Note that, in comparison with the Fresnel integral, the oscillatory integrals for the
Airy functions have two stationary phase points at t = ±

√
−x when x < 0 and no

stationary phase points when x > 0. This explains their transition from oscillatory
to exponential behavior.

Using the method of steepest descent, one can show that the Airy functions
have the asymptotic behaviors

Ai(x) ∼
sin
(
2|x|3/2/3 + π/4

)
√
π|x|1/4

as x→ −∞,

Bi(x) ∼
cos
(
2|x|3/2/3 + π/4

)
√
π|x|1/4

as x→ −∞,

Ai(x) ∼
exp

(
−2x3/2/2

)
2
√
πx1/4

as x→∞,

Bi(x) ∼
exp

(
2x3/2/3

)
2
√
πx1/4

as x→∞.

6. Dispersive wave propagation

An important application of the method of stationary phase, discussed briefly in
Section 14.2, concerns the long-time, or large-distance, behavior of linear dispersive
waves. Kelvin (1887) originally developed the method for this purpose, following
earlier work by Cauchy, Stokes, and Riemann. He used it to study the pattern of
dispersive water waves generated by a ship in steady motion, and showed that at
large distances from the ship the waves form a wedge with a half-angle of sin−1(1/3),
or approximately 19.5◦.

Here, we will illustrate this method by using it to study the linearized Korteweg-
de Vries (KdV), or Airy equation. We will then show how Airy functions arise
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when two stationary phase point coalesce, leading to a transition from oscillatory
to exponential behavior.

Consider the following initial value problem (IVP) for the linearized KdV equa-
tion

ut = uxxx,

u(x, 0) = f(x).

This equation provides an asymptotic description of linear, unidirectional, weakly
dispersive long waves. It was first derived for shallow water waves. In the following
section we give a derivation of the KdV equation for ion-acoustic waves in a plasma.

We assume for simplicity that the initial data f : R→ R is a Schwarz function,
meaning that it is smooth and decays, together with all its derivatives, faster than
any polynomial as |x| → ∞.

Let û(k, t) denote the Fourier transform of u(x, t) with respect to x,

u(x, t) =

∫ ∞
−∞

û(k, t)eikx dk,

û(k, t) =
1

2π

∫ ∞
−∞

u(x, t)e−ikx dx.

Then û(k, t) satisfies

ût + ik3û = 0,

û(k, 0) = f̂(k).

The solution of this equation is

û(k, t) = f̂(k)e−iω(k)t,

where

ω(k) = k3.

The function ω : R→ R gives the (angular) frequency ω(k) of a wave with wavenum-
ber k, and is called the dispersion relation of the KdV equation.

Inverting the Fourier transform, we find that the solution is given by

u(x, t) =

∫ ∞
−∞

f̂(k)eikx−iω(k)t dk.

Using the convolution theorem, we can write this solution as

(4.39) u(x, t) = f ∗ g(x, t),

where the star denotes convolution with respect to x, and

g(x, t) =
1

(3t)1/3
Ai

(
− x

(3t)1/3

)
is the Green’s function of the Airy equation.

This Green’s function may also be found directly by looking for similarity so-
lutions

g(x, t) =
1

tm
G
( x
tn

)
of the linearized KdV equation such that∫ ∞

−∞
g(x, t) dx→ 1 as t→ 0.



120

We consider the asymptotic behavior of the solution (4.39) as t → ∞ with
x/t = v fixed. This limit corresponds to the large-time limit in a reference frame
moving with velocity v.

Thus, we want to find the behavior as t→∞ of

(4.40) u(vt, t) =

∫ ∞
−∞

f̂(k)eiϕ(k,v)t dk,

where
ϕ(k, v) = kv − ω(k).

The stationary phase points satisfy ϕk = 0, or

v = ω′(k).

The solutions are the wavenumbers k whose group velocity ω′(k) is equal to v. It
follows that

3k2 = v.

If v < 0, then there are no stationary phase points, and u(vt, t) = o(t−n) as
t→∞ for any n ∈ N.

If v > 0, then there are two nondegenerate stationary phase points at k =
±k0(v), where

k0(v) =

√
v

3
.

These two points contribute complex conjugate terms, and the method of stationary
phase implies that

u(vt, t) ∼

√
2π

|ω′′(k0)|t
f̂(k0)eiϕ(k0,v)t−iπ/4 + c.c. as t→∞.

The energy in the wave-packet therefore propagates at the group velocity C = ω′(k),

C = 3k2,

rather than the phase velocity c = ω/k,

c = k2.

The solution decays at a rate of t−1/2, in accordance with the linear growth in t of
the length of the wavetrain and the conservation of energy,∫ ∞

−∞
u2(x, t) dt = constant.

The two stationary phase points coalesce when v = 0, and then there is a single
degenerate stationary phase point. To find the asymptotic behavior of the solution
when v is small, we make the change of variables

k =
ξ

(3t)1/3

in the Fourier integral solution (4.40). This gives

u(x, t) =
1

(3t)1/3

∫ ∞
−∞

f̂

(
ξ

(3t)1/3

)
e−i(ξw+ 1

3 ξ
3) dξ,

where

w = − t
2/3v

31/3
.
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It follows that as t→∞ with t2/3v fixed,

u(x, t) ∼ 2π

(3t)1/3
f̂(0) Ai

(
− t

2/3v

31/3

)
.

Thus the transition between oscillatory and exponential behavior is described by
an Airy function. Since v = x/t, the width of the transition layer is of the order
t1/3 in x, and the solution in this region is of the order t−1/3. Thus it decays more
slowly and is larger than the solution elsewhere.

7. Derivation of the KdV equation for ion-acoustic waves

The Korteweg-de Vries (KdV) equation is the following nonlinear PDE for u(x, t):

(4.41) ut + uux + uxxx = 0.

This equation was first derived by Korteweg and de Vries (1895) for shallow water
waves, and it is a generic asymptotic equation that describes weakly nonlinear waves
with weak long-wave dispersion.

The term ut is the rate of change of the wave profile u in a reference frame
moving with the linearized phase velocity of the wave. The term uux is an advective
nonlinearity, and uxxx is a linear dispersive term.

Water waves are described by a relatively complicated system of equations
which involve a free boundary. Here, we derive the KdV equation from a simpler
system of PDEs that describes ion acoustic waves in a plasma. This derivation illus-
trates the universal nature of the KdV equation, which applies to any wave motion
with weak advective nonlinearity and weak long wave dispersion. Specifically, the
linearized dispersion relation ω = ω(k) between frequency ω and wavenumber k
should have a Taylor expansion as k → 0 of the form ω = c0k + αk3 + . . . .

7.1. Plasmas

A plasma is an ionized fluid consisting of positively charged ions and negatively
charged electrons which interact through the electro-magnetic field they generate.
Plasmas support waves analogous to sound waves in a simple compressible fluid,
but as a result of the existence of ion and electron oscillations in plasmas, these
waves are dispersive.

Here, we use a simple ‘two-fluid’ model of a plasma in which the ions and elec-
trons are treated as separate fluids. More detailed models use a kinetic description
of the plasma. The full system of equations follows from the fluid equations for the
motion of the ions and electrons, and Maxwell’s equations for the electro-magnetic
field generated by the charged fluids. We will consider relatively low frequency
waves that involve the motion of the ions, and we assume that there are no mag-
netic fields. After simplification and nondimensionalization, we get the equations
summarized in (4.47) below.

Let ni, ne denote the number density of the ions and electrons, respectively,
ui, ue their velocities, pi, pe their pressures, and E the electric field.

In one space dimension, the equations of conservation of mass and momentum
for the ion fluid are

nit + (niui)x = 0,

mini
(
uit + uiuix

)
+ pix = eniE.
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Here, mi is the mass of an ion and e is its charge. For simplicity, we assume that
this is the same as the charge of an electron.

We suppose that the ion-fluid is ‘cold’, meaning that we neglect its pressure.
Setting pi = 0, we get

nit + (niui)x = 0,

mi
(
uit + uiuix

)
= eE.

The equations of conservation of mass and momentum for the electron fluid are

net + (neue)x = 0,

mene (uet + ueuex) + pex = −eneE,

where me is the mass of an electron and −e is its charge. The electrons are much
lighter than the ions, so we neglect their inertia. Setting me = 0, we get

(4.42) pex = −eneE.

As we will see, this equation provides an equation for the electron density ne. The
electron velocity ue is then determined from the equation of conservation of mass. It
is uncoupled from the remaining variables, so we do not need to consider it further.

We assume an isothermal equation of state for the electron fluid, meaning that

(4.43) pe = kTne,

where k is Boltzmann’s constant and T is the temperature. Using (4.43) in (4.42)
and writing E = −ϕx in terms of an electrostatic potential ϕ, we get

kTnex = eneϕx.

This equation implies that ne is given in terms of ϕ by

(4.44) ne = n0 exp
( eϕ
kT

)
,

where the constant n0 is the electron number density at ϕ = 0.
Maxwell’s equation for the electrostatic field E generated by a charge density

σ is ε0∇ · E = σ, where ε0 is a dielectric constant. This equation implies that

(4.45) ε0Ex = e(ni − ne).

In terms of the potential ϕ, equation (4.45) becomes

(4.46) −ϕxx =
e

ε0

(
ni − ne

)
.

We may then use (4.44) to eliminate ne from (4.46).
Dropping the i-superscript on the ion-variables (ni, ui), we may write the final

system of equations for (n, u, ϕ) as

nt + (nu)x = 0,

ut + uux +
e

m
ϕx = 0,

− ϕxx +
en0

ε0
exp

( eϕ
kT

)
=

e

ε0
n.

This system consists of a pair of evolution equations for (n, u) coupled with a semi-
linear elliptic equation for ϕ.
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To nondimensionalize these equations, we introduce the the Debye length λ0

and the ion-acoustic sound speed c0, defined by

λ2
0 =

ε0kT

n0e2
, c20 =

kT

m
.

These parameters vary by orders of magnitudes for plasmas in different conditions.
For example, a dense laboratory plasma may have n0 ≈ 1020 m−3, T ≈ 60, 000 K
and λ0 ≈ 10−6 m; the solar wind near the earth has n0 ≈ 107 m−3, T ≈ 120, 000 K,
and λ0 ≈ 10 m.

Introducing dimensionless variables

x̄ =
x

λ0
, t̄ =

c0t

λ0
, n̄ =

n

n0
, ū =

u

c0
, ϕ̄ =

eϕ

kT
,

and dropping the ‘bars’, we get the nondimensionalized equations

nt + (nu)x = 0,

ut + uux + ϕx = 0,(4.47)

− ϕxx + eϕ = n.

7.2. Linearized equations

First, we derive the linearized dispersion relation of ion acoustic waves. Linearizing
the system (4.47) about n = 1, ϕ = 0 and u = 0, we get

nt + ux = 0,

ut + ϕx = 0,

− ϕxx + ϕ = n,

where n now denotes the perturbation in the number density about 1.
We seek Fourier solutions

n(x, t) = n̂eikx−iωt, u(x, t) = ûeikx−iωt, ϕ(x, t) = ϕ̂eikx−iωt.

From the last equation, we find that

ϕ̂ =
n̂

1 + k2
.

From the first and second equations, after eliminating ϕ̂, we get(
−iω ik

ik/(1 + k2) −iω

)(
n̂
û

)
= 0

This linear system has a non-zero solution if the determinant of the matrix is zero,
which implies that (ω, k) satisfies the dispersion relation

ω2 =
k2

1 + k2
.

The corresponding null-vector is(
n̂
û

)
= â

(
k
ω

)
,

where â is an arbitrary constant.
The phase velocity c = ω/k of these waves is given

c =
1

(1 + k2)1/2
,
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so that c→ 1 as k → 0 and c→ 0 as k →∞.
The group velocity C = dω/dk is given by

C =
1

(1 + k2)3/2
.

For these waves, the group veclocity is smaller than the phase velocity for all k > 0.
In the long-wave limit k → 0, we get the leading order approximation ω =

k, corresponding to non-dispersive sound waves with phase speed ω/k = 1. In
the original dimensional variables, this speed is the ion-acoustic speed c0, and the
condition for long-wave dispersion to be weak is that kλ0 � 1, meaning that the
wavelength is much larger than the Debye length. In these long waves, the electrons
oscillate with the ions, and the fluid behaves essentially like a single fluid. The
inertia of the wave is provided by the ions and the restoring pressure force by the
electrons.

By contrast, in the short-wave limit k → ∞, we get waves with constant fre-
quency ω = 1, corresponding in dimensional terms to the ion plasma frequency
ω0 = c0/λ0. In these short waves, the ions oscillate in an essentially fixed back-
ground of electrons.

For water waves, the condition for weak long-wave dispersion is that the wave-
length is much larger than the depth of the fluid. Such waves are called ‘shallow
water waves.’

At the next order in k, we find that

(4.48) ω = k − 1

2
k3 +O(k5) as k → 0.

The O(k3) correction corresponds to weak KdV-type long-wave dispersion.
For very long waves, we may neglect ϕxx in comparison with eϕ in (4.47), which

gives n = eϕ and nx = nϕx. In that case, (n, u) satisfy the isothermal compressible
Euler equations

nt + (nu)x = 0,

n (ut + uux) + nx = 0.

These equations form a nondispersive hyperbolic system. (The analogous system for
water waves is the shallow water equations.) In general, solutions form shocks, but
then the long-wave approximation breaks down and it is no longer self-consistent.

A weakly nonlinear expansion of these long wave equations, which is a limiting
case of the KdV expansion given below,(

n
u

)
=

(
1
0

)
+ εa(x− t, εt)

(
1
1

)
+O(ε2),

leads to an inviscid Burgers equation for a(ξ, τ),

aτ + aaξ = 0.

In the next section, we apply a similar expansion to (4.47) and include the effect
of weak long wave dispersion, leading to a KdV equation.

7.3. KdV expansion

We can see from the KdV equation (4.41) what orders of magnitude of the wave
amplitude and the spatial and temporal scales lead to a balance between weak non-
linearity and long-wave dispersion. We need u to have the same order of magnitude
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as ∂2
x and ∂t to have the same order of magnitude as ∂3

x. Thus, we want

u = O(ε), ∂x = O(ε1/2), ∂t = O(ε3/2)

where ε is a small positive parameter. We could, of course, replace ε by ε2, or some
other small parameter, provided that we retain the same relative scalings. Here,
the time-derivative ∂t is taken in a reference frame moving with the linearized wave
velocity.

This scaling argument suggests that we seek an asymptotic solution of (4.47),
depending on a small parameter ε of the form

n = n
(
ε1/2(x− λt), ε3/2t; ε

)
,

u = u
(
ε1/2(x− λt), ε3/2t; ε

)
,

ϕ = ϕ
(
ε1/2(x− λt), ε3/2t; ε

)
.

We will determine the wave velocity λ as part of the solution. The parameter ε
does not appear explicitly in the PDE (4.47), but it could appear in the initial
conditions, for example.

We introduce multiple-scale variables

ξ = ε1/2(x− λt), τ = ε3/2t.

According to the chain rule, we may expand the original space-time derivatives as

∂x = ε1/2∂ξ, ∂t = −ε1/2λ∂ξ + ε3/2∂τ .

After including the small parameter ε explicitly in the new variables, we assume
that derivatives with respect to ξ, τ are of the order 1 as ε→ 0+, which is not the
case for derivatives with respect to the original variables x, t.

It follows that n(ξ, τ ; ε), u(ξ, τ ; ε), ϕ(ξ, τ ; ε) satisfy

(nu)ξ − λnξ + εnτ = 0,

ϕξ − λuξ + uuξ + εuτ = 0,

eϕ − εϕξξ = n.

(4.49)

We look for an asymptotic solution of (4.49) of the form

n = 1 + εn1 + ε2n2 + ε3n3 +O(ε4),

u = εu1 + ε2u2 + ε3u3 +O(ε4),

ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 +O(ε4).

Using these expansions in (4.49), Taylor expanding the result with respect to
ε, and equating coefficients of ε, we find that

u1ξ − λn1ξ = 0,

ϕ1ξ − λu1ξ = 0,

ϕ1 − n1 = 0.

(4.50)

Equating coefficients of ε2, we find that

u2ξ − λn2ξ + n1τ + (n1u1)ξ = 0,

ϕ2ξ − λu2ξ + u1τ + u1u1ξ = 0,

ϕ2 − n2 +
1

2
ϕ2

1 − ϕ1ξξ = 0.

(4.51)
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Eliminating ϕ1 from (4.50), we get a homogeneous linear system for (n1, u1),(
−λ 1
1 −λ

)(
n1

u1

)
ξ

= 0.

This system has a nontrivial solution if λ2 = 1. We suppose that λ = 1 for
definiteness, corresponding to a right-moving wave. Then

(4.52)

(
n1

u1

)
= a(ξ, τ)

(
1
1

)
, ϕ1 = a(ξ, τ),

where a(ξ, τ) is an arbitrary scalar-valued function.
At the next order, after setting λ = 1 and eliminating ϕ2 in (4.51), we obtain

a nonhomogeneous linear system for (n2, u2),

(4.53)

(
−1 1
1 −1

)(
n2

u2

)
ξ

+

(
n1τ + (n1u1)ξ

u1τ + u1u1ξ − ϕ1ϕ1ξ + ϕ1ξξξ

)
= 0.

This system is solvable for (n2, u2) if and only if the nonhomogeneous term is
orthogonal to the null-vector (1, 1). Using (4.52), we find that this condition implies
that a(ξ, τ) satisfies a KdV equation

(4.54) aτ + aaξ +
1

2
aξξξ = 0.

Note that the linearized dispersion relation of this equation agrees with the long
wave expansion (4.48) of the linearized dispersion relation of the original system.

If a satisfies (4.54), then we may solve (4.53) for (n2, u2). The solution is the
sum of a solution of the nonhomogeneous equations and an arbitrary multiple

a2(ξ, τ)

(
1
1

)
of the solution of the homogeneous problem.

We may compute higher-order terms in the asymptotic solution in a similar
way. At the order εk, we obtain a nonhomogeneous linear equation for (nk, uk) of
the form (

−1 1
1 −1

)(
nk
uk

)
ξ

+

(
fk−1

gk−1

)
= 0,

where fk−1, gk−1 depend only on (n1, u1),. . . , (nk−1, uk−1), and ϕk may be ex-
pressed explicitly in terms of n1, . . . , nk. The condition that this equation is solv-
able for (nk, uk) is fk−1 + gk−1 = 0, and this condition is satisfied if ak−1 satisfies
a suitable equation. The solution for (nk, uk) then involves an arbitrary function
of integration ak. An equation for ak follows from the solvability condition for the
order (k + 1)-equations.

In summary, the leading-order asymptotic solution of (4.47) as ε→ 0+ is n
u
ϕ

 =

 1
0
0

+ εa
(
ε1/2(x− t), ε3/2t

) 1
1
1

+O(ε2),

where a(ξ, τ) satisfies the KdV equation (4.54). We expect that this asymptotic
solution is valid for long times of the order τ = O(1) or t = O(ε−3/2).



LECTURE 4. STURM-LIOUVILLE EIGENVALUE PROBLEMS 127

8. Other Sturm-Liouville problems

Finally, we summarize a few other Sturm-Liouville equations and some of their
applications. See [2] for a much more extensive list and an interesting collection of
recent reviews on the subject.

8.1. Bessel’s equation

This equation arises in solving the Laplace and Helmholtz equations by separation
of variables in cylindrical polar coordinates:

−u′′ +
(
ν2 − 1

4

)
1

x2
u = λu 0 < x <∞

where 0 ≤ ν <∞ is a parameter. One pair of solutions is

x1/2Jν

(√
λx
)
, x1/2Yν

(√
λx
)

where Jν , Yν are Bessel functions of the order ν.

8.2. Legendre equations

The Legendre and associated Legendre equations arise in solving the Laplace equa-
tion in spherical polar coordinates, and give an expression for the spherical harmonic
functions. The Legendre equation is

−
[(

1− x2
)
u′
]′

+
1

4
u = λu −1 < x < 1

The associated Legendre equation is

−
[(

1− x2
)
u′
]′

+
µ2

1− x2
u = λu − 1 < x < 1.

8.3. Laguerre equations

The Laguerre polynomials arise in solutions of the three-dimensional Schrödinger
equation with an inverse-square potential, and in Gaussian integration. The La-
guerre equation is

−
(
xα+1e−xu′

)′
= λxαe−xu 0 < x <∞,

where −∞ < α <∞.





LECTURE 5

Stochastic Processes

We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at a
certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it
would embrace in a single formula the movements of the greatest
bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the
past would be present before its eyes.1

In many problems that involve modeling the behavior of some system, we lack
sufficiently detailed information to determine how the system behaves, or the be-
havior of the system is so complicated that an exact description of it becomes
irrelevant or impossible. In that case, a probabilistic model is often useful.

Probability and randomness have many different philosophical interpretations,
but, whatever interpretation one adopts, there is a clear mathematical formulation
of probability in terms of measure theory, due to Kolmogorov.

Probability is an enormous field with applications in many different areas. Here
we simply aim to provide an introduction to some aspects that are useful in applied
mathematics. We will do so in the context of stochastic processes of a continuous
time variable, which may be thought of as a probabilistic analog of deterministic
ODEs. We will focus on Brownian motion and stochastic differential equations,
both because of their usefulness and the interest of the concepts they involve.

Before discussing Brownian motion in Section 3, we provide a brief review of
some basic concepts from probability theory and stochastic processes.

1. Probability

Mathematicians are like Frenchmen: whatever you say to them
they translate into their own language and forthwith it is some-
thing entirely different.2

A probability space (Ω,F , P ) consists of: (a) a sample space Ω, whose points
label all possible outcomes of a random trial; (b) a σ-algebra F of measurable
subsets of Ω, whose elements are the events about which it is possible to obtain
information; (c) a probability measure P : F → [0, 1], where 0 ≤ P (A) ≤ 1 is the
probability that the event A ∈ F occurs. If P (A) = 1, we say that an event A

1Pierre Simon Laplace, in A Philosophical Essay on Probabilities.
2Johann Goethe. It has been suggested that Goethe should have said “Probabilists are like
Frenchmen (or Frenchwomen).”
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occurs almost surely. When the σ-algebra F and the probability measure P are
understood from the context, we will refer to the probability space as Ω.

In this definition, we say thatF is σ-algebra on Ω if it is is a collection of subsets
of Ω such that ∅ and Ω belong to F , the complement of a set in F belongs to F , and
a countable union or intersection of sets in F belongs to F . A probability measure
P on F is a function P : F → [0, 1] such that P (∅) = 0, P (Ω) = 1, and for any
sequence {An} of pairwise disjoint sets (meaning that Ai ∩ Aj = ∅ for i 6= j) we
have

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An) .

Example 5.1. Let Ω be a set and F a σ-algebra on Ω. Suppose that

{ωn ∈ Ω : n ∈ N}
is a countable subset of Ω and {pn} is a sequence of numbers 0 ≤ pn ≤ 1 such that
p1 + p2 + p3 + · · · = 1. Then we can define a probability measure P : F → [0, 1] by

P (A) =
∑
ωn∈A

pn.

If E is a collection of subsets of a set Ω, then the σ-algebra generated by E ,
denoted σ(E), is the smallest σ-algebra that contains E .

Example 5.2. The open subsets of R generate a σ-algebra B called the Borel σ-
algebra of R. This algebra is also generated by the closed sets, or by the collection
of intervals. The interval [0, 1] equipped with the σ-algebra B of its Borel subsets
and Lebesgue measure, which assigns to an interval a measure equal to its length,
forms a probability space. This space corresponds to the random trial of picking a
uniformly distributed real number from [0, 1].

1.1. Random variables

A function X : Ω → R defined on a set Ω with a σ-algebra F is said to be F-
measurable, or simply measurable when F is understood, if X−1(A) ∈ F for every
Borel set A ∈ B in R. A random variable on a probability space (Ω,F , P ) is a
real-valued F-measurable function X : Ω → R. Intuitively, a random variable is a
real-valued quantity that can be measured from the outcome of a random trial.

If f : R→ R is a Borel measurable function, meaning that f−1(A) ∈ B for every
A ∈ B, and X is a random variable, then Y = f ◦X, defined by Y (ω) = f (X(ω)),
is also a random variable.

We denote the expected value of a random variable X with respect to the
probability measure P by EP [X], or E[X] when the measure P is understood.
The expected value is a real number which gives the mean value of the random
variable X. Here, we assume that X is integrable, meaning that the expected value
E[ |X| ] < ∞ is finite. This is the case if large values of X occur with sufficiently
low probability.

Example 5.3. If X is a random variable with mean µ = E[X], the variance σ2 of
X is defined by

σ2 = E
[
(X − µ)

2
]
,

assuming it is finite. The standard deviation σ provides a measure of the departure
of X from its mean µ. The covariance of two random variables X1, X2 with means
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µ1, µ2, respectively, is defined by

cov (X1, X2) = E [(X1 − µ1) (X2 − µ2)] .

We will also loosely refer to this quantity as a correlation function, although strictly
speaking the correlation function of X1, X2 is equal to their covariance divided by
their standard deviations.

The expectation is a linear functional on random variables, meaning that for
integrable random variables X, Y and real numbers c we have

E [X + Y ] = E [X] + E [Y ] , E [cX] = cE [X] .

The expectation of an integrable random variable X may be expressed as an
integral with respect to the probability measure P as

E[X] =

∫
Ω

X(ω) dP (ω).

In particular, the probability of an event A ∈ F is given by

P (A) =

∫
A

dP (ω) = E [1A]

where 1A : Ω→ {0, 1} is the indicator function of A,

1A(ω) =

{
1 if ω ∈ A,
0 if ω /∈ A.

We will say that two random variables are equal P -almost surely, or almost surely
when P is understood, if they are equal on an event A such that P (A) = 1. Sim-
ilarly, we say that a random variable X : A ⊂ Ω → R is defined almost surely
if P (A) = 1. Functions of random variables that are equal almost surely have
the same expectations, and we will usually regard such random variables as being
equivalent.

Suppose that {Xλ : λ ∈ Λ} is a collection of functions Xλ : Ω → R. The
σ-algebra generated by {Xλ : λ ∈ Λ}, denoted σ (Xλ : λ ∈ Λ), is the smallest σ-
algebra G such that Xλ is G-measurable for every λ ∈ Λ. Equivalently, G = σ (E)
where E =

{
X−1
λ (A) : λ ∈ Λ, A ∈ B(R)

}
.

1.2. Absolutely continuous and singular measures

Suppose that P,Q : F → [0, 1] are two probability measures defined on the same
σ-algebra F of a sample space Ω.

We say thatQ is absolutely continuous with respect to P is there is an integrable
random variable f : Ω→ R such that for every A ∈ F we have

Q (A) =

∫
A

f(ω)dP (ω).

We will write this relation as

dQ = fdP,

and call f the density of Q with respect to P . It is defined P -almost surely. In that
case, if EP and EQ denote the expectations with respect to P and Q, respectively,
and X is a random variable which is integrable with respect to Q, then

EQ[X] =

∫
Ω

X dQ =

∫
Ω

fX dP = EP [fX].
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We say that probability measures P and Q on F are singular if there is an
event A ∈ F such that P (A) = 1 and Q (A) = 0 (or, equivalently, P (Ac) = 0
and Q (Ac) = 1). This means that events which occur with finite probability with
respect to P almost surely do not occur with respect to Q, and visa-versa.

Example 5.4. Let P be the Lebesgue probability measure on ([0, 1],B) described
in Example 5.2. If f : [0, 1]→ [0,∞) is a nonnegative, integrable function with∫ 1

0

f(ω) dω = 1,

where dω denotes integration with respect to Lebesgue measure, then we can define
a measure Q on ([0, 1],B) by

Q(A) =

∫
A

f(ω) dω.

The measure Q is absolutely continuous with respect to P with density f . Note
that P is not necessarily absolutely continuous with respect to Q; this is the case
only if f 6= 0 almost surely and 1/f is integrable. If R is a measure on ([0, 1],B)
of the type given in Example 5.1 then R and P (or R and Q) are singular because
the Lebesgue measure of any countable set is equal to zero.

1.3. Probability densities

The distribution function F : R→ [0, 1] of a random variable X : Ω→ R is defined
by F (x) = P {ω ∈ Ω : X(ω) ≤ x} or, in more concise notation,

F (x) = P {X ≤ x} .
We say that a random variable is continuous if the probability measure it

induces on R is absolutely continuous with respect to Lebesgue measure.3 Most of
the random variables we consider here will be continuous.

If X is a continuous random variable with distribution function F , then F is
differentiable and

p(x) = F ′(x)

is the probability density function of X. If A ∈ B(R) is a Borel subset of R, then

P {X ∈ A} =

∫
A

p(x) dx.

The density satisfies p(x) ≥ 0 and∫ ∞
−∞

p(x) dx = 1.

Moreover, if f : R → R is any Borel-measurable function such that f(X) is inte-
grable, then

E[f(X)] =

∫ ∞
−∞

f(x)p(x) dx.

Example 5.5. A random variable X is Gaussian with mean µ and variance σ2 if
it has the probability density

p (x) =
1√

2πσ2
e−(x−µ)2/(2σ2).

3This excludes, for example, counting-type random variables that take only integer values.
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We say that random variables X1, X2, . . . Xn : Ω→ R are jointly continuous if
there is a joint probability density function p (x1, x2, . . . , xn) such that

P {X1 ∈ A1, X1 ∈ A1,. . . , Xn ∈ An} =

∫
A

p (x1, x2 . . . , xn) dx1dx2 . . . dxn.

where A = A1 ×A2 × · · · ×An. Then p (x1, x2, . . . , xn) ≥ 0 and∫
Rn
p (x1, x2, . . . , xn) dx1dx2 . . . dxn = 1.

Expected values of functions of the Xi are given by

E [f (X1, X2, . . . , Xn)] =

∫
Rn
f (x1, x2, . . . , xn) p (x1, x2, . . . , xn) dx1dx2 . . . dxn.

We can obtain the joint probability density of a subset of the Xi’s by integrating
out the other variables. For example, if p(x, y) is the joint probability density of
random variables X and Y , then the marginal probability densities pX(x) and pY (y)
of X and Y , respectively, are given by

pX(x) =

∫ ∞
−∞

p(x, y) dy, pY (y) =

∫ ∞
−∞

p(x, y) dx.

Of course, in general, we cannot obtain the joint density p(x, y) from the marginal
densities pX(x), pY (y), since the marginal densities do not contain any information
about how X and Y are related.

Example 5.6. A random vector ~X = (X1, . . . , Xn) is Gaussian with mean ~µ =
(µ1, . . . , µn) and invertible covariance matrix C = (Cij), where

µi = E [Xi] , Cij = E [(Xi − µi) (Xj − µj)] ,
if it has the probability density

p (~x) =
1

(2π)n/2(detC)1/2
exp

{
−1

2
(~x− ~µ)

>
C−1 (~x− ~µ)

}
.

Gaussian random variables are completely specified by their mean and covariance.

1.4. Independence

Random variables X1, X2, . . . , Xn : Ω→ R are said to be independent if

P {X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An}
= P {X1 ∈ A1}P {X2 ∈ A2} . . . P {Xn ∈ An}

for arbitrary Borel sets A1, A2,. . . ,A3 ⊂ R. If X1, X2,. . . , Xn are independent
random variables, then

E [f1 (X1) f2 (X2) . . . fn (Xn)] = E [f1 (X1)] E [f2 (X2)] . . .E [fn (Xn)] .

Jointly continuous random variables are independent if their joint probability den-
sity distribution factorizes into a product:

p (x1, x2, . . . , xn) = p1 (x1) p2 (x2) . . . pn (xn) .

If the densities pi = pj are the same for every 1 ≤ i, j ≤ n, then we say that
X1,X2,. . . , Xn are independent, identically distributed random variables.

Heuristically, each random variable in a collection of independent random vari-
ables defines a different ‘coordinate axis’ of the probability space on which they are
defined. Thus, any probability space that is rich enough to support a countably infi-
nite collection of independent random variables is necessarily ‘infinite-dimensional.’
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Example 5.7. The Gaussian random variables in Example 5.6 are independent if
and only if the covariance matrix C is diagonal.

The sum of independent Gaussian random variables is a Gaussian random vari-
able whose mean and variance are the sums of those of the independent Gaussians.
This is most easily seen by looking at the characteristic function of the sum,

E
[
eiξ(X1+···+Xn)

]
= E

[
eiξX1

]
. . .E

[
eiξXn

]
,

which is the Fourier transform of the density. The characteristic function of a

Gaussian with mean µ and variance σ2 is eiξµ−σ
2ξ2/2, so the means and variances

add when the characteristic functions are multiplied. Also, a linear transformations
of Gaussian random variables is Gaussian.

1.5. Conditional expectation

Conditional expectation is a somewhat subtle topic. We give only a brief discussion
here. See [45] for more information and proofs of the results we state here.

First, suppose that X : Ω→ R is an integrable random variable on a probability
space (Ω,F , P ). Let G ⊂ F be a σ-algebra contained in F . Then the conditional
expectation of X given G is a G-measurable random variable

E [X | G] : Ω→ R

such that for all bounded G-measurable random variables Z

E [ E [X | G]Z ] = E [XZ] .

In particular, choosing Z = 1B as the indicator function of B ∈ G, we get

(5.1)

∫
B

E [X | G] dP =

∫
B

X dP for all B ∈ G.

The existence of E [X | G] follows from the Radon-Nikodym theorem or by a
projection argument. The conditional expectation is only defined up to almost-sure
equivalence, since (5.1) continues to hold if E[X | G] is modified on an event in G
that has probability zero. Any equations that involve conditional expectations are
therefore understood to hold almost surely.

Equation (5.1) states, roughly, that E [X | G] is obtained by averaging X over
the finer σ-algebra F to get a function that is measurable with respect to the coarser
σ-algebra G. Thus, one may think of E [X | G] as providing the ‘best’ estimate of
X given information about the events in G.

It follows from the definition that ifX, XY are integrable and Y is G-measurable
then

E [XY | G] = YE [X | G] .

Example 5.8. The conditional expectation given the full σ-algebra F , correspond-
ing to complete information about events, is E [X | F ] = X. The conditional ex-
pectation given the trivial σ-algebra M = {∅,Ω}, corresponding to no information
about events, is the constant function E [X | G] = E[X].

Example 5.9. Suppose that G = {∅, B,Bc,Ω} where B is an event such that
0 < P (B) < 1. This σ-algebra corresponds to having information about whether
or not the event B has occurred. Then

E [X | G] = p1B + q1Bc
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where p, q are the expected values of X on B, Bc, respectively

p =
1

P (B)

∫
B

X dP, q =
1

P (Bc)

∫
Bc
X dP.

Thus, E [X | G] (ω) is equal to the expected value of X given B if ω ∈ B, and the
expected value of X given Bc if ω ∈ Bc.

The conditional expectation has the following ‘tower’ property regarding the
collapse of double expectations into a single expectation: If H ⊂ G are σ-algebras,
then

(5.2) E [E [X | G] | H] = E [E [X | H] | G] = E [X | H] ,

sometimes expressed as ‘the coarser algebra wins.’
If X,Y : Ω → R are integrable random variables, we define the conditional

expectation of X given Y by

E [X | Y ] = E [X | σ(Y )] .

This random variable depends only on the events that Y defines, not on the values
of Y themselves.

Example 5.10. Suppose that Y : Ω→ R is a random variable that attains count-
ably many distinct values yn. The sets Bn = Y −1(yn), form a countable disjoint
partition of Ω. For any integrable random variable X, we have

E [X | Y ] =
∑
n∈N

zn 1Bn

where 1Bn is the indicator function of Bn, and

zn =
E [1BnX]

P (Bn)
=

1

P (Bn)

∫
Bn

X dP

is the expected value of X on Bn. Here, we assume that P (Bn) 6= 0 for every n ∈ N.
If P (Bn) = 0 for some n, then we omit that term from the sum, which amounts
to defining E [X | Y ] (ω) = 0 for ω ∈ Bn. The choice of a value other than 0 for
E [X | Y ] on Bn would give an equivalent version of the conditional expectation.
Thus, if Y (ω) = yn then E [X | Y ] (ω) = zn where zn is the expected value of X (ω′)
over all ω′ such that Y (ω′) = yn. This expression for the conditional expectation
does not apply to continuous random variables Y , since then P{Y = y} = 0
for every y ∈ R, but we will give analogous results below for continuous random
variables in terms of their probability densities.

If Y, Z : Ω → R are random variables such that Z is measurable with respect
to σ(Y ), then one can show that there is a Borel function ϕ : R → R such that
Z = ϕ(Y ). Thus, there is a Borel function ϕ : R→ R such that

E [X | Y ] = ϕ(Y ).

We then define the conditional expectation of X given that Y = y by

E [X | Y = y] = ϕ(y).

Since the conditional expectation E[X | Y ] is, in general, defined almost surely, we
cannot define E [X | Y = y] unambiguously for all y ∈ R, only for y ∈ A where A
is a Borel subset of R such that P{Y ∈ A} = 1.
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More generally, if Y1, . . . , Yn are random variables, we define the conditional
expectation of an integrable random variable X given Y1, . . . , Yn by

E [X | Y1, . . . , Yn] = E [X | σ (Y1, . . . , Yn)] .

This is a random variable E [X | Y1, . . . , Yn] : Ω → R which is measurable with
respect to σ (Y1, . . . , Yn) and defined almost surely. As before, there is a Borel
function ϕ : Rn → R such that E [X | Y1, . . . , Yn] = ϕ (Y1, . . . , Yn). We denote the
corresponding conditional expectation of X given that Y1 = y1, . . . , Yn = yn by

E [X | Y1 = y1, . . . , Yn = yn] = ϕ (y1, . . . , yn) .

Next we specialize these results to the case of continuous random variables.
Suppose that X1, . . . , Xm, Y1, . . . , Yn are random variables with a joint probability
density p (x1, x2, . . . xm, y1, y2, . . . , yn). The conditional joint probability density of
X1, X2,. . . , Xm given that Y1 = y1, Y2 = y2,. . . , Yn = yn, is

(5.3) p (x1, x2, . . . xm | y1, y2, . . . , yn) =
p (x1, x2, . . . xm, y1, y2, . . . , yn)

pY (y1, y2, . . . , yn)
,

where pY is the marginal density of the (Y1, . . . , Yn),

pY (y1, . . . , yn) =

∫
Rm

p (x1, . . . , xm, y1, . . . , yn) dx1 . . . dxm.

The conditional expectation of f (X1, . . . , Xm) given that Y1 = y1, . . . , Yn = yn is

E [f (X1, . . . , Xm) | Y1 = y1, . . . , Yn = yn]

=

∫
Rm

f (x1, . . . , xm) p (x1, . . . xm | y1, . . . , yn) dx1, . . . , dxm.

The conditional probability density p (x1, . . . xm | y1, . . . , yn) in (5.3) is defined
for (y1, . . . , yn) ∈ A, where A = {(y1, . . . , yn) ∈ Rn : pY (y1, . . . , yn) > 0}. Since

P {(Y1, . . . , Yn) ∈ Ac} =

∫
Ac
pY (y1, . . . , yn) dy1 . . . dyn = 0

we have P{(Y1, . . . , Yn) ∈ A} = 1.

Example 5.11. If X, Y are random variables with joint probability density p(x, y),
then the conditional probability density of X given that Y = y, is defined by

p(x | y) =
p(x, y)

pY (y)
, pY (y) =

∫ ∞
−∞

p(x, y) dx,

provided that pY (y) > 0. Also,

E [f(X,Y ) | Y = y] =

∫ ∞
−∞

f(x, y)p(x | y) dx =

∫∞
−∞ f(x, y)p(x, y) dx

pY (y)
.

2. Stochastic processes

Consider a real-valued quantity that varies ‘randomly’ in time. For example, it
could be the brightness of a twinkling star, a velocity component of the wind at
a weather station, a position or velocity coordinate of a pollen grain in Brownian
motion, the number of clicks recorded by a Geiger counter up to a given time, or
the value of the Dow-Jones index.

We describe such a quantity by a measurable function

X : [0,∞)× Ω→ R
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where Ω is a probability space, and call X a stochastic process. The quantity
X(t, ω) is the value of the process at time t for the outcome ω ∈ Ω. When it is
not necessary to refer explicitly to the dependence of X(t, ω) on ω, we will write
the process as X(t). We consider processes that are defined on 0 ≤ t < ∞ for
definiteness, but one can also consider processes defined on other time intervals,
such as [0, 1] or R. One can also consider discrete-time processes with t ∈ N, or
t ∈ Z, for example. We will consider only continuous-time processes.

We may think of a stochastic process in two different ways. First, fixing ω ∈ Ω,
we get a function of time

Xω : t 7→ X(t, ω),

called a sample function (or sample path, or realization) of the process. From this
perspective, the process is a collection of functions of time {Xω : ω ∈ Ω}, and the
probability measure is a measure on the space of sample functions.

Alternatively, fixing t ∈ [0,∞), we get a random variable

Xt : ω 7→ X(t, ω)

defined on the probability space Ω. From this perspective, the process is a collection
of random variables {Xt : 0 ≤ t < ∞} indexed by the time variable t. The
probability measure describes the joint distribution of these random variables.

2.1. Distribution functions

A basic piece of information about a stochastic process X is the probability dis-
tribution of the random variables Xt for each t ∈ [0,∞). For example if Xt is
continuous, we can describe its distribution by a probability density p(x, t). These
one-point distributions do not, however, tell us how the values of the process at
different times are related.

Example 5.12. Let X be a process such that with probability 1/2, we have Xt = 1
for all t, and with probability 1/2, we have Xt = −1 for all t. Let Y be a process
such that Yt and Ys are independent random variables for t 6= s, and for each t, we
have Yt = 1 with probability 1/2 and Yt = −1 with probability 1/2. Then Xt, Yt
have the same distribution for each t ∈ R, but they are different processes, because
the values of X at different times are completely correlated, while the values of
Y are independent. As a result, the sample paths of X are constant functions,
while the sample paths of Y are almost surely discontinuous at every point (and
non-Lebesgue measurable). The means of these processes, EXt = EYt = 0, are
equal and constant, but they have different covariances

E [XsXt] = 1, E [YsYt] =

{
1 if t = s,
0 otherwise.

To describe the relationship between the values of a process at different times,
we need to introduce multi-dimensional distribution functions. We will assume that
the random variables associated with the process are continuous.

Let 0 ≤ t1 < t2 < · · · < tn be a sequence times, and A1, A2,. . .An a sequence
of Borel subsets R. Let E be the event

E =
{
ω ∈ Ω : Xtj (ω) ∈ Aj for 1 ≤ j ≤ n

}
.
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Then, assuming the existence of a joint probability density p (xn, t; . . . ;x2, t2;x1, t1)
for Xt1 , Xt2 ,. . . , Xtn , we can write

P{E} =

∫
A

p (xn, tn; . . . ;x2, t2;x1, t1) dx1dx2 . . . dxn

where A = A1 × A2 × · · · × An ⊂ Rn. We adopt the convention that times are
written in increasing order from right to left in p.

These finite-dimensional densities must satisfy a consistency condition relating
the (n+1)-dimensional densities to the n-dimensional densities: If n ∈ N, 1 ≤ i ≤ n
and t1 < t2 < · · · < ti < · · · < tn, then∫ ∞

−∞
p (xn+1, tn+1; . . . ;xi+1, ti+1;xi, ti;xi−1, ti−1; . . . ;x1, t1) dxi

= p (xn+1, tn+1; . . . ;xi+1, ti+1;xi−1, ti−1; . . . ;x1, t1) .

We will regard these finite-dimensional probability densities as providing a full
description of the process. For continuous-time processes this requires an assump-
tion of separability, meaning that the process is determined by its values at count-
ably many times. This is the case, for example, if its sample paths are continuous,
so that they are determined by their values at all rational times.

Example 5.13. To illustrate the inadequacy of finite-dimensional distributions for
the description of non-separable processes, consider the process X : [0, 1]× Ω→ R
defined by

X(t, ω) =

{
1 if t = ω,
0 otherwise,

where Ω = [0, 1] and P is Lebesgue measure on Ω. In other words, we pick a point
ω ∈ [0, 1] at random with respect to a uniform distribution, and change Xt from
zero to one at t = ω. The single time distribution of Xt is given by

P {Xt ∈ A} =

{
1 if 0 ∈ A,
0 otherwise,

since the probability that ω = t is zero. Similarly,

P {Xt1 ∈ A1, . . . , Xtn ∈ An} =

{
1 if 0 ∈

⋂n
i=1Ai,

0 otherwise,

since the probability that ω = ti for some 1 ≤ i ≤ n is also zero. Thus, X has
the same finite-dimensional distributions as the trivial zero-process Z(t, ω) = 0.
If, however, we ask for the probability that the realizations are continuous, we get
different answers:

P {Xω is continuous on [0, 1]} = 0, P {Zω is continuous on [0, 1]} = 1.

The problem here is that in order to detect the discontinuity in a realization Xω

of X, one needs to look at its values at an uncountably infinite number of times.
Since measures are only countably additive, we cannot determine the probability
of such an event from the probability of events that depend on the values of Xω at
a finite or countably infinite number of times.
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2.2. Stationary processes

A process Xt, defined on −∞ < t < ∞, is stationary if Xt+c has the same distri-
bution as Xt for all −∞ < c < ∞; equivalently this means that all of its finite-
dimensional distributions depend only on time differences. ‘Stationary’ here is used
in a probabilistic sense; it does not, of course, imply that the individual sample
functions do not vary in time. For example, if one considers the fluctuations of a
thermodynamic quantity, such as the pressure exerted by a gas on the walls of its
container, this quantity varies in time even when the system is in thermodynamic
equilibrium. The one-point probability distribution of the quantity is independent
of time, but the two-point correlation at different times depends on the time differ-
ence.

2.3. Gaussian processes

A process is Gaussian if all of its finite-dimensional distributions are multivariate
Gaussian distributions. A separable Gaussian process is completely determined by
the means and covariance matrices of its finite-dimensional distributions.

2.4. Filtrations

Suppose that X : [0,∞) × Ω → R is a stochastic process on a probability space Ω
with σ-algebra F . For each 0 ≤ t <∞, we define a σ-algebra Ft by

(5.4) Ft = σ (Xs : 0 ≤ s ≤ t) .

If 0 ≤ s < t, then Fs ⊂ Ft ⊂ F . Such a family of σ-fields {Ft : 0 ≤ t <∞} is called
a filtration of F .

Intuitively, Ft is the collection of events whose occurrence can be determined
from observations of the process up to time t, and an Ft-measurable random variable
is one whose value can be determined by time t. If X is any random variable, then
E [X | Ft ] is the ‘best’ estimate of X based on observations of the process up to
time t.

The properties of conditional expectations with respect to filtrations define
various types of stochastic processes, the most important of which for us will be
Markov processes.

2.5. Markov processes

A stochastic process X is said to be a Markov process if for any 0 ≤ s < t and any
Borel measurable function f : R → R such that f(Xt) has finite expectation, we
have

E [f (Xt) | Fs] = E [f (Xt) | Xs] .

Here Fs is defined as in (5.4). This property means, roughly, that ‘the future is
independent of the past given the present.’ In anthropomorphic terms, a Markov
process only cares about its present state, and has no memory of how it got there.

We may also define a Markov process in terms of its finite-dimensional distri-
butions. As before, we consider only processes for which the random variables Xt

are continuous, meaning that their distributions can be described by probability
densities. For any times

0 ≤ t1 < t2 < · · · < tm < tm+1 < · · · < tn,
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the conditional probability density that Xti = xi for m + 1 ≤ i ≤ n given that
Xti = xi for 1 ≤ i ≤ m is given by

p (xn, tn; . . . ;xm+1, tm+1 | xm, tm; . . . ;x1, t1) =
p (xn, tn; . . . ;x1, t1)

p (xm, tm; . . . ;x1, t1)
.

The process is a Markov process if these conditional densities depend only on the
conditioning at the most recent time, meaning that

p (xn+1, tn+1 | xn, tn; . . . ;x2, t2;x1, t1) = p (xn+1, tn+1 | xn, tn) .

It follows that, for a Markov process,

p (xn, tn; . . . ;x2, t2 | x1, t1) = p (xn, tn | xn−1, tn−1) . . . p (x2, t2 | x1, t1) .

Thus, we can determine all joint finite-dimensional probability densities of a con-
tinuous Markov process Xt in terms of the transition density p (x, t | y, s) and the
probability density p0(x) of its initial value X0. For example, the one-point density
of Xt is given by

p(x, t) =

∫ ∞
−∞

p (x, t | y, 0) p0(y) dy.

The transition probabilities of a Markov process are not arbitrary and satisfy
the Chapman-Kolmogorov equation. In the case of a continuous Markov process,
this equation is

(5.5) p(x, t | y, s) =

∫ ∞
−∞

p(x, t | z, r)p(z, r | y, s) dz for any s < r < t,

meaning that in going from y at time s to x at time t, the process must go though
some point z at any intermediate time r.

A continuous Markov process is time-homogeneous if

p(x, t | y, s) = p(x, t− s | y, 0),

meaning that its stochastic properties are invariant under translations in time.
For example, a stochastic differential equation whose coefficients do not depend
explicitly on time defines a time-homogeneous continuous Markov process. In that
case, we write p(x, t | y, s) = p(x, t− s | y) and the Chapman-Kolmogorov equation
(5.5) becomes

(5.6) p(x, t | y) =

∫ ∞
−∞

p(x, t− s | z)p(z, s | y) dz for any 0 < s < t.

Nearly all of the processes we consider will be time-homogeneous.

2.6. Martingales

Martingales are fundamental to the analysis of stochastic processes, and they have
important connections with Brownian motion and stochastic differential equations.
Although we will not make use of them, we give their definition here.

We restrict our attention to processes M with continuous sample paths on a
probability space (Ω,Ft, P ), where Ft = σ (Mt : t ≥ 0) is the filtration induced by
M . Then M is a martingale4 if Mt has finite expectation for every t ≥ 0 and for

4The term ‘martingale’ was apparently used in 18th century France as a name for the roulette

betting ‘strategy’ of doubling the bet after every loss. If one were to compile a list of nondescriptive
and off-putting names for mathematical concepts, ‘martingale’ would almost surely be near the

top.
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any 0 ≤ s < t,
E [Mt | Fs ] = Ms.

Intuitively, a martingale describes a ‘fair game’ in which the expected value of a
player’s future winnings Mt is equal to the player’s current winnings Ms. For more
about martingales, see [46], for example.

3. Brownian motion

The grains of pollen were particles...of a figure between cylindri-
cal and oblong, perhaps slightly flattened...While examining the
form of these particles immersed in water, I observed many of
them very evidently in motion; their motion consisting not only
of a change in place in the fluid manifested by alterations in
their relative positions...In a few instances the particle was seen
to turn on its longer axis. These motions were such as to satisfy
me, after frequently repeated observations, that they arose nei-
ther from currents in the fluid, nor from its gradual evaporation,
but belonged to the particle itself.5

In 1827, Robert Brown observed that tiny pollen grains in a fluid undergo a
continuous, irregular movement that never stops. Although Brown was perhaps not
the first person to notice this phenomenon, he was the first to study it carefully,
and it is now known as Brownian motion.

The constant irregular movement was explained by Einstein (1905) and the
Polish physicist Smoluchowski (1906) as the result of fluctuations caused by the
bombardment of the pollen grains by liquid molecules. (It is not clear that Ein-
stein was initially aware of Brown’s observations — his motivation was to look for
phenomena that could provide evidence of the atomic nature of matter.)

For example, a colloidal particle of radius 10−6 m in a liquid, is subject to
approximately 1020 molecular collisions each second, each of which changes its
velocity by an amount on the order of 10−8 m s−1. The effect of such a change is
imperceptible, but the cumulative effect of an enormous number of impacts leads
to observable fluctuations in the position and velocity of the particle.6

Einstein and Smoluchowski adopted different approaches to modeling this prob-
lem, although their conclusions were similar. Einstein used a general, probabilistic
argument to derive a diffusion equation for the number density of Brownian par-
ticles as a function of position and time, while Smoluchowski employed a detailed
kinetic model for the collision of spheres, representing the molecules and the Brow-
nian particles. These approaches were partially connected by Langevin (1908) who
introduced the Langevin equation, described in Section 5 below.

Perrin (1908) carried out experimental observations of Brownian motion and
used the results, together with Einstein’s theoretical predictions, to estimate Avo-
gadro’s number NA; he found NA ≈ 7 × 1023 (see Section 6.2). Thus, Brownian
motion provides an almost direct observation of the atomic nature of matter.

Independently, Louis Bachelier (1900), in his doctoral dissertation, introduced
Brownian motion as a model for asset prices in the French bond market. This work
received little attention at the time, but there has been extensive subsequent use of

5Robert Brown, from Miscellaneous Botanical Works Vol. I, 1866.
6Deutsch (1992) suggested that these fluctuations are in fact too small for Brown to have observed

them with contemporary microscopes, and that the motion Brown saw had some other cause.
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the theory of stochastic processes to model financial markets, especially following
the development of the Black-Scholes-Merton (1973) model for options pricing (see
Section 8).

Wiener (1923) gave the first construction of Brownian motion as a measure
on the space of continuous functions, now called Wiener measure. Wiener did
this by several different methods, including the use of Fourier series with random
coefficients (c.f. (5.7) below). This work was further developed by Wiener and
many others, especially Lévy (1939).

3.1. Definition

Standard (one-dimensional) Brownian motion starting at 0, also called the Wiener
process, is a stochastic process B(t, ω) with the following properties:

(1) B(0, ω) = 0 for every ω ∈ Ω;
(2) for every 0 ≤ t1 < t2 < t3 < · · · < tn, the increments

Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −Btn−1

are independent random variables;
(3) for each 0 ≤ s < t < ∞, the increment Bt − Bs is a Gaussian random

variable with mean 0 and variance t− s;
(4) the sample paths Bω : [0,∞) → R are continuous functions for every

ω ∈ Ω.

The existence of Brownian motion is a non-trivial fact. The main issue is to
show that the Gaussian probability distributions, which imply that B(t+∆t)−B(t)

is typically of the order
√

∆t, are consistent with the continuity of sample paths. We
will not give a proof here, or derive the properties of Brownian motion, but we will
describe some results which give an idea of how it behaves. For more information
on the rich mathematical theory of Brownian motion, see for example [15, 46].

The Gaussian assumption must, in fact, be satisfied by any process with inde-
pendent increments and continuous sample sample paths. This is a consequence of
the central limit theorem, because each increment

Bt −Bs =

n∑
i=0

(
Bti+1 −Bti

)
s = t0 < t1 < · · · < tn = t,

is a sum of arbitrarily many independent random variables with zero mean; the
continuity of sample paths is sufficient to ensure that the hypotheses of the central
limit theorem are satisfied. Moreover, since the means and variances of independent
Gaussian variables are additive, they must be linear functions of the time difference.
After normalization, we may assume that the mean of Bt − Bs is zero and the
variance is t− s, as in standard Brownian motion.

Remark 5.14. A probability distribution F is said to be infinitely divisible if, for
every n ∈ N, there exists a probability distribution Fn such that if X1,. . .Xn are
independent, identically distributed random variables with distribution Fn, then
X1 + · · ·+Xn has distribution F . The Gaussian distribution is infinitely divisible,
since a Gaussian random variable with mean µ and variance σ2 is a sum of n
independent, identically distributed random variables with mean µ/n and variance
σ2/n, but it is not the only such distribution; the Poisson distribution is another
basic example. One can construct a stochastic process with independent increments
for any infinitely divisible probability distribution. These processes are called Lévy
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processes [5]. Brownian motion is, however, the only Lévy process whose sample
paths are almost surely continuous; the paths of other Lévy processes contain jump
discontinuities in any time interval with nonzero probability.

Since Brownian motion is a sum of arbitrarily many independent increments in
any time-interval, it has a random fractal structure in which any part of the motion,
after rescaling, has the same distribution as the original motion (see Figure 1).
Specifically, if c > 0 is a constant, then

B̃t =
1

c1/2
Bct

has the same distribution as Bt, so it is also a Brownian motion. Moreover, we
may translate a Brownian motion Bt from any time s back to the origin to get a
Brownian motion B̂t = Bt+s −Bs, and then rescale the translated process.

Figure 1. A sample path for Brownian motion, and a rescaling
of it near the origin to illustrate the random fractal nature of the
paths.

The condition of independent increments implies that Brownian motion is a
Gaussian Markov process. It is not, however, stationary; for example, the variance
t of Bt is not constant and grows linearly in time. We will discuss a closely related
process in Section 5, called the stationary Ornstein-Uhlenbeck process, which is a
stationary, Gaussian, Markov process (in fact, it is the only such process in one
space dimension with continuous sample paths).

One way to think about Brownian motion is as a limit of random walks in
discrete time. This provides an analytical construction of Brownian motion, and
can be used to simulate it numerically. For example, consider a particle on a line
that starts at x = 0 when t = 0 and moves as follows: After each time interval of
length ∆t, it steps a random distance sampled from independent, identically dis-
tributed Gaussian distributions with mean zero and variance ∆t. Then, according
to Donsker’s theorem, the random walk approaches a Brownian motion in distri-
bution as ∆t → 0. A key point is that although the total distance moved by the
particle after time t goes to infinity as ∆t→ 0, since it takes roughly on the order
of 1/∆t steps of size

√
∆t, the net distance traveled remains finite almost surely
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because of the cancelation between forward and backward steps, which have mean
zero.

Another way to think about Brownian motion is in terms of random Fourier
series. For example, Wiener (1923) showed that if A0, A1, . . . , An, . . . are indepen-
dent, identically distributed Gaussian variables with mean zero and variance one,
then the Fourier series

(5.7) B(t) =
1√
π

(
A0t+ 2

∞∑
n=1

An
sinnt

n

)
almost surely has a subsequence of partial sums that converges uniformly to a
continuous function. Furthermore, the resulting process B is a Brownian motion
on [0, π]. The nth Fourier coefficient in (5.7) is typically of the order 1/n, so the
uniform convergence of the series depends essentially on the cancelation between
terms that results from the independence of their random coefficients.

3.2. Probability densities and the diffusion equation

Next, we consider the description of Brownian motion in terms of its finite-dimensional
probability densities. Brownian motion is a time-homogeneous Markov process,
with transition density

(5.8) p(x, t | y) =
1√
2πt

e−(x−y)2/2t for t > 0.

As a function of (x, t), the transition density satisfies the diffusion, or heat, equation

(5.9)
∂p

∂t
=

1

2

∂2p

∂x2
,

and the initial condition
p(x, 0 | y) = δ(x− y).

The one-point probability density for Brownian motion starting at 0 is the
Green’s function of the diffusion equation,

p(x, t) =
1√
2πt

e−x
2/2t.

More generally, if a Brownian motion Bt does not start almost surely at 0 and the
initial value B0 is a continuous random variable, independent of the rest of the
motion, with density p0(x), then the density of Bt for t > 0 is given by

(5.10) p(x, t) =
1√
2πt

∫
e−(x−y)2/2tp0(y) dy.

This is the Green’s function representation of the solution of the diffusion equation
(5.9) with initial data p(x, 0) = p0(x).

One may verify explicitly that the transition density (5.8) satisfies the Chapman-
Kolmogorov equation (5.6). If we introduce the solution operators of (5.9),

Tt : p0(·) 7→ p(·, t)
defined by (5.10), then the Chapman-Kolmogorov equation is equivalent to the
semi-group property TtTs = Tt+s. We use the term ‘semi-group’ here, because we
cannot, in general, solve the diffusion equation backward in time, so Tt does not
have an inverse (as would be required in a group).

The covariance function of Brownian motion is given by

(5.11) E [BtBs] = min(t, s).
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To see this, suppose that s < t. Then the increment Bt −Bs has zero mean and is
independent of Bs, and Bs has variance s, so

E [BsBt] = E [(Bt −Bs)Bs] + E
[
B2
s

]
= s.

Equivalently, we may write (5.11) as

E [BsBt] =
1

2
(|t|+ |s| − |t− s|) .

Remark 5.15. One can a define a Gaussian process Xt, depending on a parameter
0 < H < 1, called fractional Brownian motion which has mean zero and covariance
function

E [XsXt] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

The parameter H is called the Hurst index of the process. When H = 1/2, we get
Brownian motion. This process has similar fractal properties to standard Brownian
motion because of the scaling-invariance of its covariance [17].

3.3. Sample path properties

Although the sample paths of Brownian motion are continuous, they are almost
surely non-differentiable at every point.

We can describe the non-differentiablity of Brownian paths more precisely. A
function F : [a, b]→ R is Hölder continuous on the interval [a, b] with exponent γ,
where 0 < γ ≤ 1, if there exists a constant C such that

|F (t)− F (s)| ≤ C|t− s|γ for all s, t ∈ [a, b].

For 0 < γ < 1/2, the sample functions of Brownian motion are almost surely Hölder
continuous with exponent γ on every bounded interval; but for 1/2 ≤ γ ≤ 1, they
are almost surely not Hölder continuous with exponent γ on any bounded interval.

One way to understand these results is through the law of the iterated loga-
rithm, which states that, almost surely,

lim sup
t→0+

Bt(
2t log log 1

t

)1/2 = 1, lim inf
t→0+

Bt(
2t log log 1

t

)1/2 = −1.

Thus, although the typical fluctuations of Brownian motion over times ∆t are of
the order

√
∆t, there are rare deviations which are larger by a very slowly growing,

but unbounded, double-logarithmic factor of
√

2 log log(1/∆t).
Although the sample paths of Brownian motion are almost surely not Hölder

continuous with exponent 1/2, there is a sense in which Brownian motion satisfies a
stronger condition probabilistically: When measured with respect to a given, non-
random set of partitions, the quadratic variation of a Brownian path on an interval
of length t is almost surely equal to t. This property is of particular significance in
connection with Itô’s theory of stochastic differential equations (SDEs).

In more detail, suppose that [a, b] is any time interval, and let {Πn : n ∈ N} be
a sequence of non-random partitions of [a, b],

Πn = {t0, t1, . . . , tn} , a = t0 < t1 < · · · < tn = b.

To be specific, suppose that Πn is obtained by dividing [a, b] into n subintervals
of equal length (the result is independent of the choice of the partitions, provided
they are not allowed to depend on ω ∈ Ω so they cannot be ‘tailored’ to fit each
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realization individually). We define the quadratic variation of a sample function Bt
on the time-interval [a, b] by

QV ba (Bt) = lim
n→∞

n∑
i=1

(
Bti −Bti−1

)2
.

The n terms in this sum are independent, identically distributed random variables
with mean (b − a)/n and variance 2(b − a)2/n2. Thus, the sum has mean (b − a)
and variance proportional to 1/n. Therefore, by the law of large numbers, the limit
exists almost surely and is equal to (b − a). By contrast, the quadratic variation
of any continuously differentiable function, or any function of bounded variation,
is equal to zero.

This property of Brownian motion leads to the formal rule of the Itô calculus
that

(5.12) (dB)
2

= dt.

The apparent peculiarity of this formula, that the ‘square of an infinitesimal’ is
another first-order infinitesimal, is a result of the nonzero quadratic variation of
the Brownian paths.

The Hölder continuity of the Brownian sample functions for 0 < γ < 1/2
implies that, for any α > 2, the α-variation is almost surely equal to zero:

lim
n→∞

n∑
i=1

∣∣Bti −Bti−1

∣∣α = 0.

3.4. Wiener measure

Brownian motion defines a probability measure on the space C[0,∞) of continuous
functions, called Wiener measure, which we denote by W .

A cylinder set C is a subset of C[0,∞) of the form

(5.13) C =
{
B ∈ C[0,∞) : Btj ∈ Aj for 1 ≤ j ≤ n

}
where 0 < t1 < · · · < tn and A1, . . . , An are Borel subsets of R. We may define
W : F → [0, 1] as a probability measure on the σ-algebra F on C[0,∞) that is
generated by the cylinder sets.

It follows from (5.8) that the Wiener measure of the set (5.13) is given by

W{C} = Cn

∫
A

exp

[
−1

2

{
(xn − xn−1)2

(tn − tn−1)
+ · · ·+ (x1 − x0)2

(t1 − t0)

}]
dx1dx2 . . . dxn

where A = A1 ×A2 × · · · ×An ⊂ Rn, x0 = 0, t0 = 0, and

Cn =
1√

2π(tn − tn−1) . . . (t1 − t0))
.

If we suppose, for simplicity, that ti − ti−1 = ∆t, then we may write this
expression as

W{C} = Cn

∫
A

exp

[
−∆t

2

{(
xn − xn−1

∆t

)2

+ · · ·+
(
x1 − x0

∆t

)2
}]

dx1dx2 . . . dxn

Thus, formally taking the limit as n→∞, we get the expression given in (3.89)

(5.14) dW = C exp

[
−1

2

∫ t

0

ẋ2(s) ds

]
Dx
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for the density of Wiener measure with respect to the (unfortunately nonexistent)
‘flat’ measure Dx. Note that, since Wiener measure is supported on the set of
continuous functions that are nowhere differentiable, the exponential factor in (5.14)
makes no more sense than the ‘flat’ measure.

It is possible interpret (5.14) as defining a Gaussian measure in an infinite
dimensional Hilbert space, but we will not consider that theory here. Instead, we
will describe some properties of Wiener measure suggested by (5.14) that are, in
fact, true despite the formal nature of the expression.

First, as we saw in Section 14.3, Kac’s version of the Feynman-Kac formula is
suggested by (5.14). Although it is difficult to make sense of Feynman’s expression
for solutions of the Schrödinger equation as an oscillatory path integral, Kac’s
formula for the heat equation with a potential makes perfect sense as an integral
with respect to Wiener measure.

Second, (5.14) suggests the Cameron-Martin theorem, which states that the
translation x(t) 7→ x(t) + h(t) maps Wiener measure W to a measure Wh that is
absolutely continuous with respect to Wiener measure if and only if h ∈ H1(0, t)
has a square integrable derivative. A formal calculation based on (5.14), and the
idea that, like Lebesgue measure, Dx should be invariant under translations gives

dWh = C exp

[
−1

2

∫ t

0

{
ẋ(s)− ḣ(s)

}2

ds

]
Dx

= C exp

[∫ t

0

ẋ(s)ḣ(s) ds− 1

2

∫ t

0

ḣ2(s) ds

]
exp

[
−1

2

∫ t

0

ẋ2(s) ds

]
Dx

= exp

[∫ t

0

ẋ(s)ḣ(s) ds− 1

2

∫ t

0

ḣ2(s) ds

]
dW.

The integral

〈x, h〉 =

∫ t

0

ẋ(s)ḣ(s) ds =

∫ t

0

ḣ(s) dx(s)

may be defined as a Payley-Wiener-Zygmund integral (5.47) for any h ∈ H1. We
then get the Cameron-Martin formula

(5.15) dWh = exp

[
〈x, h〉 − 1

2

∫ t

0

ḣ2(s) ds

]
dW.

Despite the formal nature of the computation, the result is correct.
Thus, although Wiener measure is not translation invariant (which is impossible

for probability measures on infinite-dimensional linear spaces) it is ‘almost’ trans-
lation invariant in the sense that translations in a dense set of directions h ∈ H1

give measures that are mutually absolutely continuous. On the other hand, if one
translates Wiener measure by a function h /∈ H1, one gets a measure that is singu-
lar with respect to the original Wiener measure, and which is supported on a set
of paths with different continuity and variation properties.

These results reflect the fact that Gaussian measures on infinite-dimensional
spaces are concentrated on a dense set of directions, unlike the picture we have of a
finite dimensional Gaussian measure with an invertible covariance matrice (whose
density is spread out over an ellipsoid in all direction).
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4. Brownian motion with drift

Brownian motion is a basic building block for the construction of a large class of
Markov processes with continuous sample paths, called diffusion processes.

In this section, we discuss diffusion processes that have the same ‘noise’ as
standard Brownian motion, but differ from it by a mean ‘drift.’ These process are
defined by a stochastic ordinary differential equation (SDE) of the form

(5.16) Ẋ = b (X) + ξ(t),

where b : R → R is a given smooth function and ξ(t) = Ḃ(t) is, formally, the time
derivative of Brownian motion, or ‘white noise.’ Equation (5.16) may be thought

of as describing either a Brownian motion Ẋ = ξ perturbed by a drift term b(X),

or a deterministic ODE Ẋ = b(X) perturbed by an additive noise.
We begin with a heuristic discussion of white noise, and then explain more

precisely what meaning we give to (5.16).

4.1. White noise

Although Brownian paths are not differentiable pointwise, we may interpret their
time derivative in a distributional sense to get a generalized stochastic process called
white noise. We denote it by

ξ(t, ω) = Ḃ(t, ω).

We also use the notation ξdt = dB. The term ‘white noise’ arises from the spectral
theory of stationary random processes, according to which white noise has a ‘flat’
power spectrum that is uniformly distributed over all frequencies (like white light).
This can be observed from the Fourier representation of Brownian motion in (5.7),
where a formal term-by-term differentiation yields a Fourier series all of whose
coefficients are Gaussian random variables with same variance.

Since Brownian motion has Gaussian independent increments with mean zero,
its time derivative is a Gaussian stochastic process with mean zero whose values at
different times are independent. (See Figure 2.) As a result, we expect the SDE
(5.16) to define a Markov process X. This process is not Gaussian unless b(X) is
linear, since nonlinear functions of Gaussian variables are not Gaussian.

Figure 2. A numerical realization of an approximation to white noise.
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To make this discussion more explicit, consider a finite difference approximation
of ξ using a time interval of width ∆t,

ξ∆t(t) =
B(t+ ∆t)−B(t)

∆t
.

Then ξ∆t is a Gaussian stochastic process with mean zero and variance 1/∆t. Using
(5.11), we compute that its covariance is given by

E [ξ∆t(t)ξ∆t(s)] = δ∆t(t− s)
where δ∆t(t) is an approximation of the δ-function given by

δ∆t(t) =
1

∆t

(
1− |t|

∆t

)
if |t| ≤ ∆t, δ∆t(t) = 0 otherwise.

Thus, ξ∆t has a small but nonzero correlation time. Its power spectrum, which is the
Fourier transform of its covariance, is therefore not flat, but decays at sufficiently
high frequencies. We therefore sometimes refer to ξ∆t as ‘colored noise.’

We may think of white noise ξ as the limit of this colored noise ξ∆t as ∆t→ 0,
namely as a δ-correlated stationary, Gaussian process with mean zero and covari-
ance

(5.17) E [ξ(t)ξ(s)] = δ(t− s).
In applications, the assumption of white noise is useful for modeling phenomena in
which the correlation time of the noise is much shorter than any other time-scales
of interest. For example, in the case of Brownian motion, the correlation time of
the noise due to the impact of molecules on the Brownian particle is of the order
of the collision time of the fluid molecules with each other. This is very small in
comparison with the time-scales over which we use the SDE to model the motion
of the particle.

4.2. Stochastic integral equations

While it is possible to define white noise as a distribution-valued stochastic process,
we will not do so here. Instead, we will interpret white noise as a process whose
time-integral is Brownian motion. Any differential equation that depends on white
noise will be rewritten as an integral equation that depends on Brownian motion.

Thus, we rewrite (5.16) as the integral equation

(5.18) X(t) = X(0) +

∫ t

0

b (X(s)) ds+B(t).

We use the differential notation

dX = b(X)dt+ dB

as short-hand for the integral equation (5.18); it has no further meaning.
The standard Picard iteration from the theory of ODEs,

Xn+1(t) = X(0) +

∫ t

0

b (Xn(s)) ds+B(t),

implies that (5.18) has a unique continuous solution X(t) for every continuous
function B(t), assuming that b(x) is a Lipschitz-continuous function of x. Thus, if
B is Brownian motion, the mapping B(t) 7→ X(t) obtained by solving (5.18) ‘path
by path’ defines a stochastic process X with continuous sample paths. We call X
a Brownian motion with drift.
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Remark 5.16. According to Girsanov’s theorem [46], the probability measure
induced by X on C[0,∞) is absolutely continuous with respect to the Wiener
measure induced by B, with density

exp

[∫ t

0

b (X(s)) dX(s)− 1

2

∫ t

0

b2 (X(s)) ds

]
.

This is a result of the fact that the processes have the same ‘noise,’ so they are
supported on the same paths; the drift changes only the probability density on
those paths c.f. the Cameron-Martin formula (5.15).

4.3. The Fokker-Planck equation

We observed above that the transition density p(x, t | y) of Brownian motion satis-
fies the diffusion equation (5.9). We will give a direct derivation of a generalization
of this result for Brownian motion with drift.

We fix y ∈ R and write the conditional expectation given that X(0) = y as

Ey [ · ] = E [ · |X(0) = y] .

Equation (5.18) defines a Markov process X(t) = Xt with continuous paths. More-
over, as ∆t→ 0+, the increments of X satisfy

Ey [Xt+∆t −Xt | Xt] = b (Xt) ∆t+ o (∆t) ,(5.19)

Ey

[
(Xt+∆t −Xt)

2 | Xt

]
= ∆t+ o (∆t) ,(5.20)

Ey

[
|Xt+∆t −Xt|3 | Xt

]
= o(∆t),(5.21)

where o(∆t) denotes a term which approaches zero faster than ∆t, meaning that

lim
∆t→0+

o(∆t)

∆t
= 0.

For example, to derive (5.19) we subtract (5.18) evaluated at t + ∆t from (5.18)
evaluated at t to get

∆X =

∫ t+∆t

t

b (Xs) ds+ ∆B

where

∆X = Xt+∆t −Xt, ∆B = Bt+∆t −Bt.
Using the smoothness of b and the continuity of Xt, we get

∆X =

∫ t+∆t

t

[b (Xt) + o(1)] ds+ ∆B

= b (Xt) ∆t+ ∆B + o(∆t).

Taking the expected value of this equation conditioned on Xt, using the fact that
E[∆B] = 0, and assuming we can exchange expectations with limits as ∆t→ 0+, we
get (5.19). Similarly, Taylor expanding to second order, we find that the dominant
term in E[(∆X)2] is E[(∆B)2] = ∆t, which gives (5.20). Equation (5.21) follows
from the corresponding property of Brownian motion.

Now suppose that ϕ : R → R is any smooth test function with uniformly
bounded derivatives, and let

e(t) =
d

dt
Ey [ϕ (Xt)] .
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Expressing the expectation in terms of the transition density p(x, t | y) of Xt,
assuming that the time-derivative exists and that we may exchange the order of
differentiation and expectation, we get

e(t) =
d

dt

∫
ϕ(x)p(x, t | y) dx =

∫
ϕ(x)

∂p

∂t
(x, t | y) dx.

Alternatively, writing the time derivative as a limit of difference quotients, and
Taylor expanding ϕ(x) about x = Xt, we get

e(t) = lim
∆t→0+

1

∆t
Ey [ϕ (Xt+∆t)− ϕ (Xt)]

= lim
∆t→0+

1

∆t
Ey

[
ϕ′ (Xt) (Xt+∆t −Xt) +

1

2
ϕ′′ (Xt) (Xt+∆t −Xt)

2
+ rt(∆t)

]
where the remainder rt satisfies

|rt(∆t)| ≤M |Xt+∆t −Xt|3

for some constant M . Using the ‘tower’ property of conditional expectation (5.2)
and (5.19), we have

Ey [ϕ′ (Xt) (Xt+∆t −Xt)] = Ey [ Ey [ϕ′ (Xt) (Xt+∆t −Xt) | Xt] ]

= Ey [ϕ′ (Xt) Ey [Xt+∆t −Xt | Xt] ]

= Ey [ϕ′ (Xt) b (Xt)] ∆t.

Similarly

Ey

[
ϕ′′ (Xt) (Xt+∆t −Xt)

2
]

= Ey [ϕ′′ (Xt) ] ∆t.

Hence,

e(t) = Ey

[
ϕ′ (Xt) b (Xt) +

1

2
ϕ′′ (Xt)

]
.

Rewriting this expression in terms of the transition density, we get

e(t) =

∫
R

[
ϕ′(x)b(x) +

1

2
ϕ′′(x)

]
p (x, t | y) dx.

Equating the two different expressions for e(t) we find that,∫
R
ϕ(x)

∂p

∂t
(x, t | y) dx =

∫
R

[
ϕ′(x)b(x) +

1

2
ϕ′′(x)

]
p (x, t | y) dx.

This is the weak form of an advection-diffusion equation for the transition density
p(x, t | y) as a function of (x, t). After integrating by parts with respect to x, we
find that, since ϕ is an arbitrary test function, smooth solutions p satisfy

(5.22)
∂p

∂t
= − ∂

∂x
(bp) +

1

2

∂2p

∂x2
.

This PDE is called the Fokker-Planck, or forward Kolmogorov equation, for the
diffusion process of Brownian motion with drift. When b = 0, we recover (5.9).



152

5. The Langevin equation

A particle such as the one we are considering, large relative to the
average distance between the molecules of the liquid and moving
with respect to the latter at the speed ξ, experiences (according
to Stokes’ formula) a viscous resistance equal to −6πµaξ. In
actual fact, this value is only a mean, and by reason of the irreg-
ularity of the impacts of the surrounding molecules, the action
of the fluid on the particle oscillates around the preceding value,
to the effect that the equation of motion in the direction x is

m
d2x

dt2
= −6πµa

dx

dt
+X.

We know that the complementary force X is indifferently posi-
tive and negative and that its magnitude is such as to maintain
the agitation of the particle, which, given the viscous resistance,
would stop without it.7

In this section, we describe a one-dimensional model for the motion of a Brown-
ian particle due to Langevin. A three-dimensional model may be obtained from the
one-dimensional model by assuming that a spherical particle moves independently
in each direction. For non-spherical particles, such as the pollen grains observed by
Brown, rotational Brownian motion also occurs.

Suppose that a particle of mass m moves along a line, and is subject to two
forces: (a) a frictional force that is proportional to its velocity; (b) a random white
noise force. The first force models the average force exerted by a viscous fluid on
a small particle moving though it; the second force models the fluctuations in the
force about its mean value due to the impact of the fluid molecules.

This division could be questioned on the grounds that all of the forces on
the particle, including the viscous force, ultimately arise from molecular impacts.
One is then led to the question of how to derive a mesoscopic stochastic model
from a more detailed kinetic model. Here, we will take the division of the force
into a deterministic mean, given by macroscopic continuum laws, and a random
fluctuating part as a basic hypothesis of the model. See Keizer [30] for further
discussion of such questions.

We denote the velocity of the particle at time t by V (t). Note that we consider
the particle velocity here, not its position. We will consider the behavior of the
position of the particle in Section 6. According to Newton’s second law, the velocity
satisfies the ODE

(5.23) mV̇ = −βV + γξ(t),

where ξ = Ḃ is white noise, β > 0 is a damping constant, and γ is a constant that
describes the strength of the noise. Dividing the equation by m, we get

(5.24) V̇ = −bV + cξ(t),

where b = β/m > 0 and c = γ/m are constants. The parameter b is an inverse-time,
so [b] = T−1. Standard Brownian motion has dimension T 1/2 since E

[
B2(t)

]
= t,

so white noise ξ has dimension T−1/2, and therefore [c] = LT−3/2.

7P. Langevin, Comptes rendus Acad. Sci. 146 (1908).
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We suppose that the initial velocity of the particle is given by

(5.25) V (0) = v0,

where v0 is a fixed deterministic quantity. We can obtain the solution for random
initial data that is independent of the future evolution of the process by conditioning
with respect to the initial value.

Equation (5.24) is called the Langevin equation. It describes the effect of noise
on a scalar linear ODE whose solutions decay exponentially to the globally asymp-
totically stable equilibrium V = 0 in the absence of noise. Thus, it provides a
basic model for the effect of noise on any system with an asymptotically stable
equilibrium.

As explained in Section 4.2, we interpret (5.24)–(5.25) as an integral equation

(5.26) V (t) = v0 − b
∫ t

0

V (s) ds+ cB(t),

which we write in differential notation as

dV = −bV dt+ cdB.

The process V (t) defined by (5.26) is called the Ornstein-Uhlenbeck process, or the
OU process, for short.

We will solve this problem in a number of different ways, which illustrate dif-
ferent methods. In doing so, it is often convenient to use the formal properties of
white noise; the correctness of any results we derive in this way can be verified
directly.

One of the most important features of the solution is that, as t → ∞, the
process approaches a stationary process, called the stationary Ornstein-Uhlenbeck
process. This corresponds physically to the approach of the Brownian particle to
thermodynamic equilibrium in which the fluctuations caused by the noise balance
the dissipation due to the damping terms. We will discuss the stationary OU
process further in Section 6.

5.1. Averaging the equation

Since (5.24) is a linear equation for V (t) with deterministic coefficients and an ad-
ditive Gaussian forcing, the solution is also Gaussian. It is therefore determined by
its mean and covariance. In this section, we compute these quantities by averaging
the equation.

Let

µ(t) = E [V (t)] .

Then, taking the expected value of (5.24), and using the fact that ξ(t) has zero
mean, we get

(5.27) µ̇ = −bµ.

From (5.25), we have µ(0) = v0, so

(5.28) µ(t) = v0e
−bt.

Thus, the mean value of the process decays to zero in exactly the same way as the
solution of the deterministic, damped ODE, V̇ = −bV .

Next, let

(5.29) R (t, s) = E [{V (t)− µ(t)} {V (s)− µ(s)}]
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denote the covariance of the OU process. Then, assuming we may exchange the
order of time-derivatives and expectations, and using (5.24) and (5.27), we compute
that

∂2R

∂t∂s
(t, s) = E

[{
V̇ (t)− µ̇(t)

}{
V̇ (s)− µ̇(s)

}]
= E [{−b [V (t)− µ(t)] + cξ(t)} {−b [V (s)− µ(s)] + cξ(s)}] .

Expanding the expectation in this equation and using (5.17), (5.29), we get

(5.30)
∂2R

∂t∂s
= b2R− bc {L(t, s) + L(s, t)}+ c2δ(t− s)

where
L(t, s) = E [{V (t)− µ(t)} ξ(s)] .

Thus, we also need to derive an equation for L. Note that L(t, s) need not vanish
when t > s since then V (t) depends on ξ(s).

Using (5.24), (5.27), and (5.17), we find that

∂L

∂t
(t, s) = E

[{
˙V (t)− µ̇(t)

}
ξ(s)

]
= −bE [{V (t)− µ(t)} ξ(s)] + cE [ξ(t)ξ(s)]

= −bL(t, s) + cδ(t− s).
From the initial condition (5.25), we have

L(0, s) = 0 for s > 0.

The solution of this equation is

(5.31) L(t, s) =

{
ce−b(t−s) for t > s,
0 for t < s.

This function solves the homogeneous equation for t 6= s, and jumps by c as t
increases across t = s.

Using (5.31) in (5.30), we find that R(t, s) satisfies the PDE

(5.32)
∂2R

∂t∂s
= b2R− bc2e−b|t−s| + c2δ(t− s).

From the initial condition (5.25), we have

(5.33) R(t, 0) = 0, R(0, s) = 0 for t, s > 0.

The second-order derivatives in (5.32) are the one-dimensional wave operator writ-
ten in characteristic coordinates (t, s). Thus, (5.32)–(5.33) is a characteristic initial
value problem for R(t, s).

This problem has a simple explicit solution. To find it, we first look for a
particular solution of the nonhomogeneous PDE (5.32). We observe that, since

∂2

∂t∂s

(
e−b|t−s|

)
= −b2e−b|t−s| + 2bδ(t− s),

a solution is given by

Rp(t, s) =
c2

2b
e−b|t−s|.

Then, writing R = Rp + R̃, we find that R̃(t, s) satisfies

∂2R̃

∂t∂s
= b2R̃, R̃(t, 0) = − c

2

2b
e−bt, R̃(0, s) = − c

2

2b
e−bs.
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This equation has the solution

R̃(t, s) = − c
2

2b
e−b(t+s).

Thus, the covariance function (5.29) of the OU process defined by (5.24)–(5.25)
is given by

(5.34) R(t, s) =
c2

2b

(
e−b|t−s| − e−b(t+s)

)
.

In particular, the variance of the process,

σ2(t) = E
[
{V (t)− µ(t)}2

]
,

or σ2(t) = R(t, t), is given by

(5.35) σ2(t) =
c2

2b

(
1− e−2bt

)
,

and the one-point probability density of the OU process is given by the Gaussian
density

(5.36) p(v, t) =
1√

2πσ2(t)
exp

{
− [v − µ(t)]

2

2σ2(t)

}
.

The success of the method used in this section depends on the fact that the
Langevin equation is linear with additive noise. For nonlinear equations, or equa-
tions with multiplicative noise, one typically encounters the ‘closure’ problem, in
which higher order moments appear in equations for lower order moments, lead-
ing to an infinite system of coupled equations for averaged quantities. In some
problems, it may be possible to use a (more or less well-founded) approximation to
truncate this infinite system to a finite system.

5.2. Exact solution

The SDE (5.24) is sufficiently simple that we can solve it exactly. A formal solution
of (5.24) is

(5.37) V (t) = v0e
−bt + c

∫ t

0

e−b(t−s)ξ(s) ds.

Setting ξ = Ḃ, and using a formal integration by parts, we may rewrite (5.37) as

(5.38) V (t) = v0e
−bt + bc

(
B(t)−

∫ t

0

e−b(t−s)B(s) ds

)
.

This last expression does not involve any derivatives of B(t), so it defines a con-
tinuous function V (t) for any continuous Brownian sample function B(t). One can
verify by direct calculation that (5.38) is the solution of (5.26).

The random variable V (t) defined by (5.38) is Gaussian. Its mean and covari-
ance may be computed most easily from the formal expression (5.37), and they
agree with the results of the previous section.
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For example, using (5.37) in (5.29) and simplifying the result by the use of
(5.17), we find that the covariance function is

R(t, s) = c2E

[{∫ t

0

e−b(t−t
′)ξ (t′) dt′

}{∫ s

0

e−b(s−s
′)ξ (s′) ds′

}]
= c2

∫ t

0

∫ s

0

e−b(t+s−t
′−s′)E [ξ (t′) ξ (s′)] ds′dt′

= c2
∫ t

0

∫ s

0

e−b(t+s−t
′−s′)δ (t′ − s′) ds′dt′

=
c2

2b

{
e−b|t−s| − e−b(t+s)

}
.

In more complicated problems, it is typically not possible to solve a stochastic
equation exactly for each realization of the random coefficients that appear in it, so
we cannot compute the statistical properties of the solution by averaging the exact
solution. We may, however, be able to use perturbation methods or numerical
simulations to obtain approximate solutions whose averages can be computed.

5.3. The Fokker-Planck equation

The final method we use to solve the Langevin equation is based on the Fokker-
Planck equation. This method depends on a powerful and general connection be-
tween diffusion processes and parabolic PDEs.

From (5.22), the transition density p(v, t | w) of the Langevin equation (5.24)
satisfies the diffusion equation

(5.39)
∂p

∂t
=

∂

∂v
(bvp) +

1

2
c2
∂2p

∂v2
.

Note that the coefficient of the diffusion term is proportional to c2 since the
Brownian motion cB associated with the white noise cξ has quadratic variation
E
[
(c∆B)2

]
= c2∆t.

To solve (5.39), we write it in characteristic coordinates associated with the
advection term. (An alternative method is to Fourier transform the equation with
respect to v, which leads to a first-order PDE for the transform since the variable
coefficient term involves only multiplication by v. This PDE can then be solved by
the method of characteristics.)

The sub-characteristics of (5.39) are defined by

dv

dt
= −bv,

whose solution is v = ṽe−bt. Making the change of variables v 7→ ṽ in (5.39), we
get

∂p

∂t
= bp+

1

2
c2e2bt ∂

2p

∂ṽ2
,

which we may write as

∂

∂t

(
e−btp

)
=

1

2
c2e2bt ∂

2

∂ṽ2

(
e−btp

)
.

To simplify this equation further, we define

p̃ = e−btp, t̃ =
c2

2b

(
e2bt − 1

)
,
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which gives the standard diffusion equation

∂p̃

∂t̃
=

1

2

∂2p̃

∂ṽ2
.

The solution with initial condition

p̃ (ṽ, 0) = δ (ṽ − v0)

is given by

p̃
(
ṽ, t̃
)

=
1

(2πt̃)1/2
e−(ṽ−v0)2/(2t̃).

Rewriting this expression in terms of the original variables, we get (5.36).
The corresponding expression for the transition density is

p (v, t | v0) =
1√

2πσ2(t)
exp

{
−
[
v − v0e

−bt]2
2σ2(t)

}
where σ is given in (5.35).

Remark 5.17. It is interesting to note that the Ornstein-Uhlenbeck process is
closely related to the ‘imaginary’ time version of the quantum mechanical simple
harmonic oscillator. The change of variable

p(v, t) = exp

(
1

2
bx2 − bt

)
ψ(x, t) v = cx,

transforms (5.39) to the diffusion equation with a quadratic potential

∂ψ

∂t
=

1

2

∂2ψ

∂x2
− 1

2
b2x2ψ.

6. The stationary Ornstein-Uhlenbeck process

As t→∞, the Ornstein-Uhlenbeck process approaches a stationary Gaussian pro-
cess with zero mean, called the stationary Ornstein-Uhlenbeck process. This ap-
proach occurs on a time-scale of the order b−1, which is the time-scale for solutions
of the deterministic equation V̇ = −bV to decay to zero.

From (5.36) and (5.35), the limiting probability density for v is a Maxwellian
distribution,

(5.40) p(v) =
1√

2πσ2
e−v

2/(2σ2)

with variance

(5.41) σ2 =
c2

2b
.

We can also obtain (5.40) by solving the ODE for steady solutions of (5.39)

1

2
c2
d2p

dv2
+ b

d

dv
(vp) = 0.

Unlike Brownian paths, whose fluctatations grow with time, the stationary OU
paths consist of fluctuations that are typically of the order σ, although larger fluc-
tuations occur over long enough times.

The stationary OU process is the exact solution of the SDE (5.24) if, instead of
taking deterministic initial conditions, we suppose that V (0) is a Gaussian random
variable with the stationary distribution (5.40).



158

Taking the limit as t → ∞ in (5.34), we find that the covariance function of
the stationary OU process is

(5.42) R(t− s) = σ2 e−b|t−s|.

The covariance function depends only on the time-difference since the process is
stationary. Equation (5.42) shows that the values of the stationary OU process
become uncorrelated on the damping time-scale b−1.

6.1. Parameter values for Brownian motion

Before we use use the OU process to determine the spatial diffusion of a Brownian
particle, we give some typical experimental parameters for Brownian motion [38]
and discuss their implications.

A typical radius of a spherical Brownian particle in water (for example, a
polystyrene microsphere) is a = 10−6 m. Assuming that the density of the particle
is close to the density of water, its mass is approximately m = 4 × 10−15 Kg.
According to Stokes law (2.24), at low Reynolds numbers, the viscous drag on a
sphere of radius a moving with velocity v through a fluid with viscosity µ is equal
to 6πµav. Thus, in (5.23), we take

β = 6πµa.

The viscosity of water at standard conditions is approximately µ = 10−3 Kg m−1s−1,
which gives β = 2× 10−8 Kg s−1.

The first conclusion from these figures is that the damping time,

1

b
=
m

β
≈ 2× 10−7 s,

is very small compared with the observation times of Brownian motion, which
are typically on the order of seconds. Thus, we can assume that the Brownian
particle velocity is in thermodynamic equilibrium and is distributed according to
the stationary OU distribution. It also follows that the stationary OU fluctuations
are very fast compared with the time scales of observation.

Although b−1 is small compared with macroscopic time-scales, it is large com-
pared with molecular time scales; the time for water molecules to collide with each
other is of the order of 10−11 s or less. Thus, it is appropriate to use white noise to
model the effect of fluctuations in the molecular impacts.

We can determine the strength of the noise in (5.23) by an indirect argument.
According to statistical mechanics, the equilibrium probability density of a Brown-
ian particle is proportional to exp(−E/kT ), where E = 1

2mv
2 is the kinetic energy

of the particle, k is Boltzmann’s constant, and T is the absolute temperature. This
agrees with (5.40) if

(5.43) σ2 =
kT

m
.

At standard conditions, we have kT = 4 × 10−21 J, which gives σ = 10−3 ms−1.
This is the order of magnitude of the thermal velocity fluctuations of the particle.
The corresponding Reynolds numbers R = Ua/ν are of the order 10−3 which is
consistent with the use of Stokes’ law.

Remark 5.18. It follows from (5.41) and (5.43) that

γ2 = 2kTβ.
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This equation is an example of a fluctuation-dissipation theorem. It relates the
macroscopic damping coefficient β in (5.23) to the strength γ2 of the fluctuations
when the system in thermodynamic equilibrium at temperature T .

6.2. The spatial diffusion of Brownian particles

Let us apply these results to the spatial diffusion of Brownian particles. We assume
that the particles are sufficiently dilute that we can neglect any interactions between
them.

Let X(t) be the position at time t of a particle in Brownian motion measured
along some coordinate axis. We assume that its velocity V (t) satisfies the Langevin
equation (5.23). Having solved for V (t), we can obtain X by an integration

X(t) =

∫ t

0

V (s) ds.

Since X(t) is a linear function of the Gaussian process V (t), it is also Gaussian. The
stochastic properties of X may be determined exactly from those of V , for example
by averaging this equation to find its mean and covariance. We can, however,
simplify the calculation when the parameters have the order of magnitude of the
experimental ones given above.

On the time-scales over which we want to observe X(t), the velocity V (t) is a
rapidly fluctuating, stationary Gaussian process with zero mean and a very short
correlation time b−1. We may therefore approximate it by white noise. From (5.42),
the covariance function R(t− s) = E [V (t)V (s)] of V is given by

E [V (t)V (s)] =
2σ2

b

(
be−b|t−s|

2

)
As b → ∞, we have be−b|t|/2 ⇀ δ(t). Thus, from (5.17), if bt � 1, we may make
the approximation

V (t) =

√
2σ2

b
ξ(t)

where ξ(t) is a standard white noise.
It then follows that the integral of V (t) is given in terms of a standard Brownian

motion B(t) by

X(t) =

√
2σ2

b
B(t).

The probability distribution of X(t), which we denote p(x, t), therefore satisfies the
diffusion equation

∂p

∂t
= D

∂2p

∂2x

where, D = σ2/b, or by use of (5.43),

(5.44) D =
kT

β

This is the result derived by Einstein (1905).
As Einstein observed, one can use (5.44) to determine Avogadro’s number NA,

the number of molecules in one mole of gas, by measuring the diffusivity of Brownian
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particles. Boltzmann’s constant k is related to the macroscopically measurable gas
constant R by R = kNA; at standard conditions, we have RT ≈ 2, 400 J. Thus,

NA =
RT

βD

For the experimental values given above, with β = 2 × 10−8 Kg s−1, the diffu-
sivity of Brownian particles is found to be approximately 2×10−13 m2 s−1, meaning
that the particles diffuse a distance on the order of a micron over a few seconds [38].
This gives NA ≈ 6×1023, consistent with the accepted value of NA = 6.02214×1023,
measured more accurately by other methods.

7. Stochastic differential equations

In this section, we discuss SDEs that are driven by white noise whose strength
depends on the solution. Our aim here is to introduce some of the main ideas,
rather than give a full discussion, and we continue to consider scalar SDEs. The
ideas generalize to systems of SDEs, as we briefly explain in Section 7.5. For a more
detailed introduction to the theory of SDEs, see [19]. For the numerical solution
of SDEs, see [32]

The SDE (5.16) considered in Section 4 contains white noise with a constant
strength. If the strength of the white noise depends on the solution, we get an SDE
of the form

(5.45) Ẋ = b(X, t) + σ(X, t)ξ(t),

where b, σ : R × [0,∞) → R are smooth coefficient functions, which describe the
drift and diffusion, respectively. We allow the coefficients to depend explicitly on t.

As we will explain, there is a fundamental ambiguity in how to interpret an
SDE such as (5.45) which does not arise when σ is constant.

First, we rewrite (5.45) as an integral equation for X(t),

(5.46) X(t) = X(0) +

∫ t

0

b (X(s), s) ds+

∫ t

0

σ (X(s), s) dB(s),

or, in differential notation, as

dX = b(X, t) dt+ σ(X, t) dB.

We interpret (5.45) as the corresponding integral equation (5.46). In order to do
so, we need to define the stochastic integral∫ t

0

σ (X(s), s) dB(s).

When σ = 1, we made the obvious definition that this integral is to equal B(t).
More generally, if F (t) is a stochastic process with smooth sample paths, we can
define the integral of F against dB by use of a formal integration by parts:∫ t

0

F (s)dB(s) = F (t)B(t)−
∫ t

0

Ḟ (s)B(s) ds.

For deterministic integrands, we can relax the smoothness condition and define
a stochastic integral for any f ∈ L2(0, t) such that∫ t

0

f2(s) ds <∞.
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If f(s) is smooth and f(t) = 0, then (by a formal white-noise computation, which
is easy to verify [19])

E

[{∫ t

0

f(s)dB(s)

}2
]

=

∫ t

0

∫ t

0

f(s)f(r)E [ξ(s)ξ(r)] dsdr

=

∫ t

0

∫ t

0

f(s)f(r)δ(s− r) dsdr

=

∫ t

0

f2(s) ds.

If f ∈ L2(0, t), then we choose a sequence of smooth functions fn such that fn → f
with respect to the L2-norm. We then define

(5.47)

∫ t

0

f(s)dB(s) = lim
n→∞

∫ t

0

fn(s)dB(s),

where, from the preceding estimate, the integrals converge in the sense of mean-
square expectation,

lim
n→∞

E

[{∫ t

0

fn(s)dB(s)−
∫ t

0

f(s)dB(s)

}2
]

= 0.

This definition of a stochastic integral is due to Payley, Wiener, and Zygmund
(1933).

None of these definitions work, however, if F is a stochastic process with con-
tinuous but non-differentiable paths, such as a function of B or X of (5.46), which
is exactly the case we are interested in.

In the next section, we illustrate the difficulties that arise for such integrals. We
will then indicate how to define the Itô integral, which includes the above definitions
as special cases.

7.1. An illustrative stochastic integral

Let B(t) be a standard Brownian motion starting at 0. Consider, as a specific
example, the question of how to define the integral

(5.48) J(t) =

∫ t

0

B(s) dB(s)

by the use of Riemann sums. We will give two different definitions, corresponding
to the Strantonovich and Itô integral, respectively.

Let 0 = s0 < s1 < · · · < sn < sn+1 = t be a non-random partition of [0, t].
The Strantonovich definition of (5.48) corresponds to a limit of centered Riemann
sums, such as

J (S)
n =

n∑
i=0

1

2
[B (si+1) +B (si)] [B (si+1)−B (si)] .

This gives a telescoping series with the sum

J (S)
n =

1

2

n∑
i=0

[
B2 (si+1)−B2 (si)

]
=

1

2

[
B2 (sn+1)−B2 (s0)

]
.
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Thus, we get the Strantonovich integral

(5.49)

∫ t

0

(S)

B(s) dB(s) =
1

2
B2(t),

as in the usual calculus. The Strantonovich definition of the integral is, however,
not well-suited to the Markov and martingale properties of stochastic processes.
For example, the expected value of the Strantonovich integral in (5.49) is nonzero
and equal to t/2.

The Itô definition of (5.48) corresponds to a limit of forward-differenced Rie-
mann sums, such as

J (I)
n =

n∑
i=0

B (si) [B (si+1)−B (si)] .

We can rewrite this equation as

J (I)
n =

1

2

n∑
i=0

[{B (si+1) +B (si)} − {B (si+1)−Bi (si)}] [B (si+1)−B (si)]

=
1

2

n∑
i=0

[
B2 (si+1)−B2 (si)

]
− 1

2

n∑
i=0

[B (si+1)−B (si)]
2
.

The first sum gives B2(t), as for the Strantonovich integral, while the second sum
converges almost surely to t as n → ∞ by the quadratic-variation property of
Brownian motion.

The Itô integral is therefore

(5.50)

∫ t

0

(I)

B(s) dB(s) =
1

2

[
B2(t)− t

]
.

This definition has powerful stochastic properties; for example, it defines a martin-
gale, consistent with the fact that the expected value of the Itô integral in (5.50) is
equal to zero.

If we use the Itô definition, however, the usual rules of calculus must be modified
to include (5.12). For example, the differential form of (5.50) may be derived
formally as follows:

(5.51) d

(
1

2
B2

)
=

1

2

[
(B + dB)

2 −B2
]

= BdB +
1

2
(dB)2 = BdB +

1

2
dt.

As this example illustrates, there is an inherent ambiguity in how one defines
stochastic integrals such as (5.48). This ambiguity is caused by the sensitivity of
the values of the Riemann sums to the location of the point where one evaluates
the integrand, which is a result of the unbounded total variation of the Brownian
sample paths.

We will use the Itô definition, but it should be emphasized that this choice is
a matter of mathematical convenience. For instance, one can express the Itô and
Strantonovich integrals in terms of each other.

7.2. The Itô integral

We will not define the Itô’s integral in detail, but we will give a brief summary of
some of the main points. Evans [19] or Varadhan [46] give proofs of most of the
results stated here.
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A stochastic process

F : [0,∞)× Ω→ R
is said to be adapted to a Brownian motion B(t) if, for each t ≥ 0, F (t) is measurable
with respect to the σ-algebra Ft generated by the random variables {B(s) : 0 ≤
s ≤ t}. Roughly speaking, this means that F (t) is a function of {B(s) : 0 ≤ s ≤ t}.

If F (t) is an adapted process with almost surely continuous sample paths and∫ t

0

E
[
F 2(s)

]
ds <∞,

then we can define the stochastic Itô integral of F with respect to B as a limit in
mean-square expectation of forward-differenced Riemann sums∫ t

0

F (s) dB(s) = lim
n→∞

n∑
i=0

F (si) [B (si+1)−B (si)] ,

or, in general, as a limit of integrals of adapted simple functions.
An important property of the Itô integral is that, as in (5.50),

(5.52) E

[∫ t

0

F (s) dB(s)

]
= 0.

This follows because F (t) is independent of B(t + ∆t) − B(t) for ∆t > 0, since F
is adapted, so

E [F (si) {B (si+1)−B (si)}] = E [F (si)] E [B (si+1)−B (si)] = 0.

Since Brownian motion has independent increments, one can see by a similar argu-
ment that the Itô integral

(5.53) M(t) = M0 +

∫ t

0

F (s) dB(s)

defines a martingale, meaning that E [M(t) | Fs] = M(s) for 0 ≤ s < t.
We then define the Itô SDE

(5.54) dX = b(X, t) dt+ σ(X, t) dB

by (5.46), where the integral is understood to be an Itô integral. The initial data

(5.55) X(0) = X0

is a given F0-measurable random variable. Here, we allow the initial value B(0) of
the Brownian motion to be a random variable, and F0 = σ (B(0)).

For the SDE (5.18) with constant noise, we can define solutions ‘path by path.’
For (5.46), the definition of a solution depends on a probabilistic convergence of
the integral. Thus, it is essentially stochastic in nature.

It can be shown that the SDE (5.54)–(5.55) has a unique adapted solution X(t)
with continuous paths defined for all 0 ≤ t ≤ T if, for example:

(1) the functions b, σ : R× [0, T ]→ R are continuous, globally Lipschitz in x,
and uniformly bounded in t, meaning that there exists a constant K such
that for all x, y ∈ R, t ∈ [0, T ]

|b(x, t)− b(y, t)| ≤ K|x− y|, |σ(x, t)− σ(y, t)| ≤ K|x− y|,
|b(x, t)| ≤ K (1 + |x|) , |σ(x, t)| ≤ K (1 + |x|) ;
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(2) the initial data satisfies

(5.56) E
[
X2

0

]
<∞.

Such solutions are called strong solutions. It is also possible to define weak solutions
of that satisfy the SDE in a distributional sense, and which exist even if the coef-
ficient functions are not Lipschitz continuous, but we will not use weak solutions
here.

7.3. Itô’s formula

As we saw above, it is necessary to modify the usual rules of calculus if one uses
Itô integrals. The key result is a version of the chain rule called Itô’s formula.

Suppose that X(t) is a solution of the Itô SDE (5.54), and f(X, t) is a smooth
function f : R × [0,∞) → R. Here, we abuse notation slightly and use the same
symbol for the argument of f and the process. Define

Y (t) = f (X(t), t) .

Then Itô’s formula states that Y satisfies the SDE

dY =

[
∂f

∂t
(X, t) + b(X, t)

∂f

∂X
(X, t) +

1

2
σ2(X, t)

∂2f

∂X2
(X, t)

]
dt

+ σ(X, t)
∂f

∂X
(X, t) dB.

(5.57)

This equation stands, of course, for the corresponding stochastic integral equation.
Equation (5.57) is what one would obtain from the usual chain rule with an addi-
tional term in the drift proportional to the second x-derivative of f . In particular,
if X = B, then b = 0, σ = 1, and Itô’s formula becomes

(5.58) df(B, t) =

[
∂f

∂t
(B, t) +

1

2

∂f2

∂B2
(B, t)

]
dt+

∂f

∂B
(B, t) dB.

For a proof of (5.57), see [19].
Itô’s formula may be motivated by a formal computation using (5.54) and

(5.12). For example, when Y = f(X) we get, denoting X-derivatives by primes,

dY = f ′(X)dX +
1

2
f ′′(X)dX2

= f ′(X) [b(X, t) dt+ σ(X, t) dB] +
1

2
f ′′(X)σ2(X, t) (dB)

2

=

[
f ′(X)b(X, t) +

1

2
f ′′(X)σ2(X, t)

]
dt+ f ′(X)σ(X, t) dB.

Example 5.19. Itô’s formula (5.58) gives, as in (5.51),

d

(
1

2
B2

)
=

1

2
dt+BdB.

Example 5.20. If f(B) = eσB , where σ is a constant, then (5.58) implies that

deσB =
1

2
σ2eσB dt+ σeσB dB.

Taking expected values of this equation, and using the martingale property (5.52)
of the Itô integral, we find that

dE
[
eσB

]
=

1

2
σ2E

[
eσB

]
.



LECTURE 5. STOCHASTIC PROCESSES 165

Solving this equation, and assuming that B(t) starts at 0, we find that

(5.59) E
[
eσB

]
= eσ

2t/2.

7.4. The Fokker-Planck equation

Itô’s formula provides a quick and efficient way to derive the Fokker-Planck equa-
tion. Suppose that X(t) satisfies

dX = b(X, t) dt+ σ(X, t) dB.

Taking the expectation of Itô’s formula (5.57) and using the martingale property
(5.52), we find that for any smooth function f : R→ R,

E [f (X(t))] =

∫ t

0

E

[
f ′ (X(s)) b (X(s), s) +

1

2
f ′′ (X(s))σ2 (X(s), s)

]
ds.

Differentiating this equation with respect to t, we get

d

dt
E [f (X(t))] = E

[
f ′ (X(t)) b (X(t), t) +

1

2
f ′′ (X(t))σ2 (X(t), t)

]
.

Writing this equation in terms of the probability density p(x, t), or the transition
density p(x, t | y, s) if we condition on X(s) = y, we get

d

dt

∫
f (x) p(x, t) dx =

∫ [
f ′ (x) b (x, t) +

1

2
f ′′ (x)σ2 (x, t)

]
p(x, t) dx,

which is the weak form of the Fokker-Planck equation,

(5.60)
∂p

∂t
= − ∂

∂x
(b (x, t) p) +

1

2

∂2

∂2x

(
σ2 (x, t) p

)
.

7.5. Systems of SDEs

A system of SDEs for a vector-valued stochastic process ~X(t) = (X1(t), . . . , Xn(t))
may be written as

(5.61) d ~X = ~b
(
~X, t
)
dt+ σ

(
~X, t
)
d ~B.

In (5.61), the vector ~B(t) = (B1(t), . . . , Bn(t)) is an n-dimensional Brownian motion
whose components Bi(t) are independent one-dimensional Brownian motions such
that

E [Bi(t)Bj(s)] =

{
min (t, s) if i = j,
0 if i 6= j.

The coefficient functions in (5.61) are a drift vector ~b = (b1, . . . , bn) and a diffusion
matrix σ = (σij)

~b : Rn × [0,∞)→ Rn, σ : Rn × [0,∞)→ Rn×n,

which we assume satisfy appropriate smoothness conditions.
The differential form of the SDE (5.61) is short-hand for the integral equation

~X(t) = ~X0 +

∫ t

0

~b
(
~X(s), s

)
ds+

∫ t

0

σ
(
~X(s), s

)
d ~B(s),
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or, in component form,

Xi(t) = Xi0 +

∫ t

0

bi (X1(s), . . . , Xn(s), s) ds

+

n∑
j=1

∫ t

0

σij (X1(s), . . . , Xn(s), s) dBj(s) for 1 ≤ i ≤ n.

The integrals here are understood as Itô integrals.
If f : Rn × [0,∞)→ R is a smooth function f(X1, . . . , Xn, t), and

Y (t) = f (X1(t), . . . , Xn(t), t)

where ~X(t) = (X1(t), . . . , Xn(t)) is a solution of (5.61), then Itô’s formula is

(5.62) dY =

∂f
∂t

+

n∑
i=1

bi
∂f

∂Xi
+

1

2

n∑
i,j,k=1

σikσjk
∂2f

∂Xi∂Xj

 dt+

n∑
i,j=1

σij
∂f

∂Xi
dBj .

This result follows formally from the generalization of (5.12) to the ‘rule’

dBi dBj =

{
dt if i = j,
0 if i 6= j.

The coefficients of the resulting drift terms in (5.62) are

aij =

n∑
k=1

σikσjk.

Thus, A = (aij) is given by A = σσ>.
The Fokker-Planck equation for the transition density p (~x, t | ~y, s) may be de-

rived in the same way as in the scalar case. The result is that

∂p

∂t
= −

n∑
i=1

∂

∂xi
(bip) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
(aijp) ,

with the initial condition p (~x, s | ~y, s) = δ (~x− ~y).

7.6. Strantonovich SDEs

Suppose that X satisfies the Strantonovich SDE

(5.63) dX = b(X, t) dt+ σ(X, t) ∂B

where the notation ∂B indicates that the corresponding integral in (5.46) is to be
interpreted as a Strantonovich integral. Then the normal rules of calculus apply,
and Y = f(X) satisfies

dY = f ′(X)b(X, t) dt+ f ′(X)σ(X, t) ∂B.

The derivation of the Fokker-Planck equation is not as simple as for the Itô SDE,
since the expected value of a Strantonovich integral is, in general, nonzero, but one
can show that the Fokker-Planck equation for (5.63) is

∂p

∂t
= − ∂

∂x
(b (x, t) p) +

1

2

∂

∂x

[
σ(x, t)

∂

∂x
(σ (x, t) p)

]
= − ∂

∂x

{[
b (x, t) +

1

2
σ (x, t)

∂σ

∂x
(x, t)

]
p

}
+

1

2

∂2

∂2x

[
σ2(x, t)p

]
.



LECTURE 5. STOCHASTIC PROCESSES 167

If σ is not constant, this PDE has a different drift term than the one in (5.60)
arising from the Itô SDE (5.54).

Equivalently, the solution X(t) of the Strantonovich SDE (5.63) is the same as
the solution of the Itô SDE

dX =

[
b(X, t) +

1

2
σ(X, t)

∂σ

∂X
(X, t)

]
dt+ σ(X) dB

with a corrected drift. Thus, the difference in drifts is simply a consequence of the
difference in the definitions of the Itô and Strantonovich integrals, and it has no
other significance. Of course, in using an SDE to model a system, one must choose
an appropriate drift and noise, The drift will therefore depend on what definition
of the stochastic integral one uses (see Remark 5.21).

8. Financial models

In this section we describe a basic SDE models of a financial market and derive the
Black-Scholes formula for options pricing.

8.1. Stock prices

A simple model for the dynamics of the price S(t) > 0 of a stock at time t, intro-
duced by Samuelson (1965), is provided by the Itô SDE

(5.64) dS = µS dt+ σS dB

where µ and σ are constant parameters.
The drift-constant µ in (5.64) is the expected rate of return of the stock; in

the absence of noise, S(t) = S0e
µt. The noise term describes random fluctuations

in the stock price due to the actions of many individual investors. The strength of
the noise is σS since we expect that the fluctuations in the price of a stock should
be proportional to its price. The diffusion-constant σ is called the volatility of the
stock; it is larger for more speculative stocks. Typical values for σ are in the range

0.2–0.4 in units of (years)
1/2

, corresponding to a standard deviation in the relative
stock price of 20–40 percent per annum.

The dependence of the noise in (5.64) on the solution S differs from the con-
stant noise in the Ornstein-Uhlenbeck SDE, which describes physical systems in
thermodynamic equilibrium where the noise is fixed by the temperature.

As can be verified by the use of Itô’s formula, the exact solution of (5.64) is

(5.65) S(t) = S0 exp

[(
µ− 1

2
σ2

)
t+ σB(t)

]
where S0 is the initial value of S. The process (5.65) is called geometric Brownian
motion. The logarithm of S(t) is Gaussian, meaning that S(t) is lognormal. From
(5.65) and (5.59), the expected value of S(t) is

E [S(t)] = E [S0] eµt,

consistent with what one obtains by averaging (5.64) directly.

Remark 5.21. We could equally well model the stock price by use of a Strantonovich
SDE with a corrected value for the drift

(5.66) dS =

(
µ− 1

2
σ2

)
S dt+ σS ∂B.
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The growth rate of the drift term in this equation is lower than the growth rate of
the drift term in the corresponding Itô equation. This is because the Strantonovich
noise contributes to the mean growth rate. Favorable fluctuations in the stock price
increase the growth rate due to noise, and this outweighs the effect of unfavorable
fluctuations that decrease the growth rate. The noise term in the Itô equation is
defined so that its mean effect is zero. The solution of (5.66), which is found by
the usual rules of calculus, is the same as the solution (5.65) of the corresponding
Itô equation.

8.2. An ideal market

Consider, as an idealized model, a financial market that consists of single stock
whose price S(t) satisfies (5.64), and a risk-free security, such as a bond, whose
price R(t) satisfies the deterministic equation

(5.67) dR = rR dt.

Thus, the value of the risk-free security is unaffected by random fluctuations in the
stock market, and is assumed to have a fixed constant rate of return r.

We will refer to any item that is traded on the market, such as the stock, the
bond, or a derivative, as a security. The prices, or values, of securities and the
amounts owned by different traders are stochastic processes that are adapted to
the filtration {Ft : t ≥ 0} generated by the Brownian motion B(t) in (5.64). This
means that we cannot look into the future.

We assume that all processes have continuous sample paths. We further assume,
for simplicity, that we can trade continuously without cost or restriction, that stocks
and bonds are infinitely divisible, and that we can neglect any other complicating
factors, such as dividends.

A portfolio is a collection of investments. If a portfolio consists of ai(t) units
of securities with values Vi(t), where 1 ≤ i ≤ n, the value Π(t) of the portfolio is

(5.68) Π =

n∑
i=1

aiVi.

The value of the portfolio satisfies an SDE of the form

dΠ = b dt+ c dB.

We say that the portfolio is risk-free if c = 0, meaning that its value is not directly
affected by random fluctuations in the market. Without further assumptions, how-
ever, the growth rate b could depend on B.

We say that the portfolio is self-financing if

(5.69) dΠ =

n∑
i=1

ai dVi.

As usual, this equation stands for the corresponding Itô integral equation. The
condition (5.69) means that the change in the value of the portfolio is entirely due
to the change in value of the securities it contains. Therefore, after the initial
investment, no money flows in or out of the portfolio.

We will take as a basic assumption that the market allows no arbitrage opportu-
nities in which traders can make a guaranteed profit through multiple transactions.
Specifically, we assume that the value Π(t) of any self-financing, risk-free security
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must satisfy the ODE

(5.70) dΠ = rΠ dt

where r is the risk-free rate of return in (5.67).
If there were a self-financing, risk-free portfolio whose instantaneous rate of

return was higher (or lower) than the prevailing rate r, then traders could make a
guaranteed profit by continuously buying (or selling) the securities in the portfolio.
This would rapidly drive the rate of return of the portfolio and the prevailing
rate r to the same value, which is the theoretical justification of the no-arbitrage
assumption.

8.3. Derivatives

It is a recipe for disaster to give one or two people complete
authority to trade derivatives without a close monitoring of the
risks being taken.8

Next, let us use this model to study the pricing of derivatives such as stock
options. A derivative is a financial instrument that derives its value from some
underlying asset. The asset could be almost anything, from pork bellies to next
season’s snowfall at a ski resort. Here, we consider derivatives that are contingent
on the price of a stock.

We assume that the value V (t) of the derivative is a deterministic function of
the stock price S(t) and the time t,

V (t) = f (S(t), t) , f : (0,∞)× [0,∞)→ R.
Our aim is to determine what functions f(S, t) provide values for a derivative that
are consistent with the no-arbitrage assumption. The idea, following Black-Scholes
(1973) and Merton (1973), is to construct a risk-free portfolio whose value replicates
the value of the derivative.

Suppose that we sell, or write, one derivative, and form a portfolio that consists
of:

(1) the derivative (whose value is a liability to us);
(2) a quantity a(t) of the risk-free security with price R(t);
(3) a quantity b(t) of stock with price S(t).

The value Π(t) of the portfolio is given by

(5.71) Π = aR+ bS − V,
where R satisfies (5.67) and S satisfies (5.64).

We will choose a(t), b(t) so that the portfolio is self-financing and risk-free. In
that case, its value must grow at the risk-free rate of return, and this will tell us
how the value of the derivative V (t) changes in terms of the price S(t) of the stock.

The role of R(t) is simply to provide a source of funds within the portfolio
which allows us to adjust the stock holding as the value of the derivative fluctuates
in order to maintain a risk-free position (this is called ‘hedging’); R does not appear
in the final result. If we did not include R in the portfolio, we would need to move
funds in and out of the portfolio to make it risk-free.

From (5.69) and (5.71), the portfolio is self-financing if

(5.72) dΠ = a dR+ b dS − dV.

8J. C. Hull, Options Futures and Other Derivatives, 4th ed., 2000.
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Writing V (t) = f (S(t), t), then using Itô’s formula and (5.64), we get

dV =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+

∂f

∂S
dS.

Using this result and (5.67) in (5.72), we find that

dΠ =

(
raR− ∂f

∂t
− 1

2
σ2S2 ∂

2f

∂S2

)
dt+

(
b− ∂f

∂S

)
dS.

Hence, the portfolio is risk-free if

(5.73) b =
∂f

∂S
,

in which case

dΠ =

(
raR− ∂f

∂t
− 1

2
σ2S2 ∂

2f

∂S2

)
dt.

The no-arbitrage assumption (5.70) then implies that

dΠ = rΠ dt.

Equating these expressions for dΠ, using (5.71) and (5.73), and simplifying the
result, we find that

(5.74)
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf.

This is a PDE for f(S, t), called the Black-Scholes PDE.
It is interesting to note that the rate of return µ of the stock in (5.64) does not

appear in (5.74). The equation involves only the volatility σ of the stock and the
risk-free rate of return r.

Equation (5.74) is a backward diffusion equation. In principle, any solution
provides a feasible value-function for a derivative that is contingent on the stock.
In the next section, we use (5.74) to determine the pricing of an option. The value
of an option is known at the time when it comes to maturity, and this provides a
final condition for (5.74). Solving the PDE backward in time then determines the
initial price of the option. As we will see, although (5.74) has variable coefficients,
we can obtain explicit solutions by transforming it to a constant coefficient heat
equation.

8.4. Options

An option gives the holder the right, but not the obligation, to buy or sell an
underlying asset for a specified price by a specified date. Options are primarily used
to hedge against future risks or, perhaps more frequently, as a means of speculation.

The first reported use of options9 seems to be by Thales who, after predicting
a large olive crop by astronomical or astrological means, purchased one winter
the right to use all the olive presses in Miletus and Chios for the coming harvest.
When the large crop materialized, Thales was able to resell his rights for much
more than they had cost him. Later on, tulip bulb options were heavily traded
in Holland during the tulip mania of 1636 (until the market collapsed in 1637).
Options were first traded on an organized exchange in 1973, on the Chicago Board
Options Exchange. Since then the trading of options has developed into a global
financial market of enormous volume.

9Aristotle, Politics I xi, 332 B.C.
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There are two main types of options: a call option gives the holder the right
to buy the underlying asset, while a put option give the holder the right to sell
the asset. In an American option this right can be exercised at any time up to
the expiration date; in a European option, the right can be exercised only on the
expiration date itself.

Any options contract has two parties. The party who buys the option, is said to
take the long position, while the party who sells, or writes, the option is said to take
the short position. The writer receives cash up front, but has potential liabilities
later on if the holder exercises the option. The holder incurs an immediate cost,
but has the potential for future gains.

Let us consider, as an example, a European call option which gives the holder
the right to buy a unit of stock at a prearranged price K > 0, called the strike
price, at a future time T > 0. In this case, the value, or payoff, of the option at the
expiration time T for stock price S is

(5.75) f (S, T ) = max {S −K, 0} .
If S ≤ K, the option is worthless, and the holder lets it expire; if S > K, the holder
exercises the option and makes a profit equal to the difference between the actual
price of the stock at time T and the strike price. We want to compute the fair value
of the option at an earlier time.

To do this, we solve the Black-Scholes PDE (5.74) for t ≤ T subject to the final
condition (5.75). We can find the solution explicitly by transforming (5.74) into
the heat equation.

The change of independent variables (S, t) 7→ (x, τ) given by

(5.76) S = Kex, t = T − 1

σ2
τ

transforms (5.74) into the constant-coefficient equation

(5.77)
∂f

∂τ
=

1

2

∂2f

∂x2
+ q

∂f

∂x
−
(
q +

1

2

)
f

where

(5.78) q =
r

σ2
− 1

2
.

Since 0 < S <∞, we have −∞ < x <∞. We have also reversed the time-direction,
so that the final time t = T corresponds to the initial time τ = 0. The change of
dependent variable in (5.77)

(5.79) f(x, τ) = Ke−qx−(q+1)2τ/2u(x, τ)

gives the heat equation

(5.80)
∂u

∂τ
=

1

2

∂2u

∂x2
.

Rewriting (5.75) in terms of the transformed variables, we get the initial condition

(5.81) u(x, 0) =

{
e(q+1)x − eqx if x > 0,
0 if x ≤ 0.

The Green’s function representation of the solution of (5.80)–(5.81) is

u(x, τ) =
1√
2πτ

∫ ∞
0

exp

[
− (x− y)2

2τ

] [
e(q+1)y − eqy

]
dy.
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This integral is straightforward to evaluate by completing the square. For example,∫ ∞
0

exp

[
− (x− y)2

2τ

]
eqy dy = exp

[
qx+

1

2
q2τ

] ∫ ∞
0

exp

[
(y − x− qτ)2

2τ

]
dy

=
√
τ exp

[
qx+

1

2
q2τ

] ∫ (
x+qτ√
τ

)
−∞

e−z
2/2 dz

=
√

2πτ exp

[
qx+

1

2
q2τ

]
Φ

(
x+ qτ√

τ

)
where Φ is the distribution function of the standard Gaussian,

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz.

The function Φ is given in terms of the error function erf by

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
, erf(x) =

2√
π

∫ x

0

e−z
2

dz.

It follows that

u(x, τ) = exp

[
(q + 1)x+

1

2
(q + 1)2τ

]
Φ

(
x+ (q + 1)τ√

τ

)
− exp

(
qx+

1

2
q2τ

)
Φ

(
x+ qτ√

τ

)
.

Using this equation in (5.79), then using (5.76) and (5.78) to rewrite the result
in terms of the original independent variables (S, t), we get

(5.82) f(S, t) = SΦ (a(S, t))−Ke−r(T−t)Φ (b(S, t))

where

a(S, t) =
1

σ
√
T − t

[
log

(
S

K

)
+

(
r +

1

2
σ2

)
(T − t)

]
,

b(S, t) =
1

σ
√
T − t

[
log

(
S

K

)
+

(
r − 1

2
σ2

)
(T − t)

]
.

(5.83)

Equation (5.82)–(5.83) is the Black-Scholes formula for the value f(S, t), at stock-
price S and time t, of a European call option with strike price K and expiration
time T . It also involves the risk-free rate of return r of the market and the volatility
σ of the underlying stock.

Other types of options can be analyzed in a similar way. American options are,
however, more difficult to analyze than European options since the time, if any, at
which they are exercised is not known a priori.
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[14] J. Dieudonné, Foundations of Mathematical Analysis, Vol.1, Academic Press, 1969.

[15] R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press, 1996.
[16] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic

Press, 1973.

[17] P. Embrechts and M. Maejima, Selfsimilar Processes Princeton University Press, 2002.
[18] L. C. Evans, Partial Differential Equations, AMS, 1998.
[19] L. C. Evans, An Introduction to Stochastic Differential Equations, available at:

http://math.berkeley.edu/ evans/SDE.course.pdf.
[20] G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence,

Rev. Modern Phys. 78 (2006), 87-135.

[21] R. Feynman, and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, 1965.
[22] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 353369.

[23] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.
[24] H. Goldstein, Classical Mechanics.
[25] M. E. Gurtin, Introduction to Continuum Mechanics, Academic Press, New York, 1981.

[26] D. D. Holm, Geometric Mechanics, Imperical College Press, 2008.
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