
LECTURE 2

Dimensional Analysis, Scaling, and Similarity

1. Systems of units

The numerical value of any quantity in a mathematical model is measured with
respect to a system of units (for example, meters in a mechanical model, or dollars
in a financial model). The units used to measure a quantity are arbitrary, and a
change in the system of units (for example, from meters to feet) cannot change the
model.

A crucial property of a quantitative system of units is that the value of a
dimensional quantity may be measured as some multiple of a basic unit. Thus, a
change in the system of units leads to a rescaling of the quantities it measures, and
the ratio of two quantities with the same units does not depend on the particular
choice of the system. The independence of a model from the system of units used to
measure the quantities that appear in it therefore corresponds to a scale-invariance
of the model.

Remark 2.1. Sometimes it is convenient to use a logarithmic scale of units instead
of a linear scale (such as the Richter scale for earthquake magnitudes, or the stellar
magnitude scale for the brightness of stars) but we can convert this to an underlying
linear scale. In other cases, qualitative scales are used (such as the Beaufort wind
force scale), but these scales (“leaves rustle” or “umbrella use becomes difficult”)
are not susceptible to a quantitative analysis (unless they are converted in some
way into a measurable linear scale). In any event, we will take connection between
changes in a system of units and rescaling as a basic premise.

A fundamental system of units is a set of independent units from which all
other units in the system can be derived. The notion of independent units can be
made precise in terms of the rank of a suitable matrix [7, 10] but we won’t give
the details here.

The choice of fundamental units in a particular class of problems is not unique,
but, given a fundamental system of units, any other derived unit may be constructed
uniquely as a product of powers of the fundamental units.

Example 2.2. In mechanical problems, a fundamental set of units is mass, length,
time, or M , L, T , respectively, for short. With this fundamental system, velocity
V = LT−1 and force F = MLT−2 are derived units. We could instead use, say,
force F , length L, and time T as a fundamental system of units, and then mass
M = FL−1T 2 is a derived unit.

Example 2.3. In problems involving heat flow, we may introduce temperature
(measured, for example, in Kelvin) as a fundamental unit. The linearity of temper-
ature is somewhat peculiar: although the ‘zeroth law’ of thermodynamics ensures
that equality of temperature is well defined, it does not say how temperatures can

11



12

be ‘added.’ Nevertheless, empirical temperature scales are defined, by convention,
to be linear scales between two fixed points, while thermodynamics temperature is
an energy, which is additive.

Example 2.4. In problems involving electromagnetism, we may introduce current
as a fundamental unit (measured, for example, in Ampères in the SI system) or
charge (measured, for example, in electrostatic units in the cgs system). Unfortu-
nately, the officially endorsed SI system is often less convenient for theoretical work
than the cgs system, and both systems remain in use.

Not only is the distinction between fundamental and derived units a matter of
choice, or convention, the number of fundamental units is also somewhat arbitrary.
For example, if dimensional constants are present, we may reduce the number of
fundamental units in a given system by setting the dimensional constants equal to
fixed dimensionless values.

Example 2.5. In relativistic mechanics, if we use M , L, T as fundamental units,
then the speed of light c is a dimensional constant (c = 3× 108 ms−1 in SI-units).
Instead, we may set c = 1 and use M , T (for example) as fundamental units. This
means that we measure lengths in terms of the travel-time of light (one nanosecond
being a convenient choice for everyday lengths).

2. Scaling

Let (d1, d2, . . . , dr) denote a fundamental system of units, such as (M,L, T ) in
mechanics, and a a quantity that is measurable with respect to this system. Then
the dimension of a, denoted [a], is given by

(2.1) [a] = dα1
1 dα2

2 . . . dαrr

for suitable exponents (α1, α2, . . . , αr).
Suppose that (a1, a2, . . . , an) denotes all of the dimensional quantities appearing

in a particular model, including parameters, dependent variables, and independent
variables. We denote the dimension of ai by

(2.2) [ai] = d
α1,i

1 d
α2,i

2 . . . dαr,ir .

The invariance of the model under a change in units dj 7→ λjdj implies that it
is invariant under the scaling transformation

ai → λ
α1,i

1 λ
α2,i

2 . . . λαr,ir ai i = 1, . . . , n

for any λ1, . . . λr > 0.
Thus, if

a = f (a1, . . . , an)

is any relation between quantities in the model with the dimensions in (2.1) and
(2.2), then f must have the scaling property that

λα1
1 λα2

2 . . . λαrr f (a1, . . . , an) = f
(
λ
α1,1

1 λ
α2,1

2 . . . λαr,1r a1, . . . , λ
α1,n

1 λ
α2,n

2 . . . λαr,nr an
)
.

A particular consequence of this invariance is that any two quantities that are
equal must have the same dimension (otherwise a change in units would violate the
equality). This fact is often useful in finding the dimension of some quantity.
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Example 2.6. According to Newton’s second law,

force = rate of change of momentum with respect to time.

Thus, if F denotes the dimension of force and P the dimension of momentum,
then F = P/T . Since P = MV = ML/T , we conclude that F = ML/T 2 (or
mass× acceleration).

3. Nondimensionalization

Scale-invariance implies that we can reduce the number of quantities appearing in
a problem by introducing dimensionless quantities.

Suppose that (a1, . . . , ar) are a set of quantities whose dimensions form a fun-
damental system of units. We denote the remaining quantities in the model by
(b1, . . . , bm), where r + m = n. Then, for suitable exponents (β1,i, . . . , βr,i) deter-
mined by the dimensions of (a1, . . . , ar) and bi, the quantity

Πi =
bi

a
β1,i

1 . . . a
βr,i
r

is dimensionless, meaning that it is invariant under the scaling transformations
induced by changes in units.

A dimensionless parameter Πi can typically be interpreted as the ratio of two
quantities of the same dimension appearing in the problem (such as a ratio of
lengths, times, diffusivities, and so on). In studying a problem, it is crucial to know
the magnitude of the dimensionless parameters on which it depends, and whether
they are small, large, or roughly of the order one.

Any dimensional equation

a = f(a1, . . . , ar, b1, . . . , bm)

is, after rescaling, equivalent to the dimensionless equation

Π = f(1, . . . , 1,Π1, . . . ,Πm).

Thus, the introduction of dimensionless quantities reduces the number of variables
in the problem by the number of fundamental units. This fact is called the ‘Bucking-
ham Pi-theorem.’ Moreover, any two systems with the same values of dimensionless
parameters behave in the same way, up to a rescaling.

4. Fluid mechanics

To illustrate the ideas of dimensional analysis, we describe some applications in
fluid mechanics.

Consider the flow of a homogeneous fluid with speed U and length scale L. We
restrict our attention to incompressible flows, for which U is much smaller that the
speed of sound c0 in the fluid, meaning that the Mach number

M =
U

c0

is small. The sound speed in air at standard conditions is c0 = 340 ms−1. The
incompressibility assumption is typically reasonable when M ≤ 0.2.
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The physical properties of a viscous, incompressible fluid depend upon two
dimensional parameters, its mass density ρ0 and its (dynamic) viscosity µ. The
dimension of the density is

[ρ0] =
M

L3
.

The dimension of the viscosity, which measures the internal friction of the fluid, is
given by

(2.3) [µ] =
M

LT
.

To derive this result, we explain how the viscosity arises in the constitutive equation
of a Newtonian fluid relating the stress and the strain rate.

4.1. The stress tensor

The stress, or force per unit area, ~t exerted across a surface by fluid on one side of
the surface on fluid on the other side is given by

~t = T~n

where T is the Cauchy stress tensor and ~n is a unit vector to the surface. It is
a fundamental result in continuum mechanics, due to Cauchy, that ~t is a linear
function of ~n; thus, T is a second-order tensor [25].

The sign of ~n is chosen, by convention, so that if ~n points into fluid on one side
A of the surface, and away from fluid on the other side B, then T~n is the stress
exerted by A on B. A reversal of the sign of ~n gives the equal and opposite stress
exerted by B on A.

The stress tensor in a Newtonian fluid has the form

(2.4) T = −pI + 2µD

where p is the fluid pressure, µ is the dynamic viscosity, I is the identity tensor,
and D is the strain-rate tensor

D =
1

2

(
∇~u+∇~u>

)
.

Thus, D is the symmetric part of the velocity gradient ∇~u.
In components,

Tij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
where δij is the Kronecker-δ,

δij =

{
1 if i = j,
0 if i 6= j.

Example 2.7. Newton’s original definition of viscosity (1687) was for shear flows.
The velocity of a shear flow with strain rate σ is given by

~u = σx2~e1

where ~x = (x1, x2, x3) and ~ei is the unit vector in the ith direction. The velocity
gradient and strain-rate tensors are

∇~u =

 0 σ 0
0 0 0
0 0 0

 , D =
1

2

 0 σ 0
σ 0 0
0 0 0

 .
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The viscous stress ~tv = 2µD~n exerted by the fluid in x2 > 0 on the fluid in x2 < 0
across the surface x2 = 0, with unit normal ~n = ~e2 pointing into the region x2 > 0,
is ~tv = σµ~e1. (There is also a normal pressure force ~tp = −p~e1.) Thus, the frictional
viscous stress exerted by one layer of fluid on another is proportional the strain rate
σ and the viscosity µ.

4.2. Viscosity

The dynamic viscosity µ is a constant of proportionality that relates the strain-rate
to the viscous stress.

Stress has the dimension of force/area, so

[T] =
ML

T 2

1

L2
=

M

LT 2
.

The strain-rate has the dimension of a velocity gradient, or velocity/length, so

[D] =
L

T

1

L
=

1

T
.

Since µD has the same dimension as T, we conclude that µ has the dimension in
(2.3).

The kinematic viscosity ν of the fluid is defined by

ν =
µ

ρ0
.

It follows from (2.3) that ν has the dimension of a diffusivity,

[ν] =
L2

T
.

The kinematic viscosity is a diffusivity of momentum; viscous effects lead to the
diffusion of momentum in time T over a length scale of the order

√
νT .

The kinematic viscosity of water at standard conditions is approximately 1 mm2/s,
meaning that viscous effects diffuse fluid momentum in one second over a distance
of the order 1 mm. The kinematic viscosity of air at standard conditions is approxi-
mately 15 mm2/s; it is larger than that of water because of the lower density of air.
These values are small on every-day scales. For example, the timescale for viscous
diffusion across room of width 10 m is of the order of 6× 106 s, or about 77 days.

4.3. The Reynolds number

The dimensional parameters that characterize a fluid flow are a typical velocity U
and length L, the kinematic viscosity ν, and the fluid density ρ0. Their dimensions
are

[U ] =
L

T
, [L] = L, [ν] =

L2

T
, [ρ0] =

M

L3
.

We can form a single independent dimensionless parameter from these dimensional
parameters, the Reynolds number

(2.5) R =
UL

ν
.

As long as the assumptions of the original incompressible model apply, the behavior
of a flow with similar boundary and initial conditions depends only on its Reynolds
number.
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The inertial term in the Navier-Stokes equation has the order of magnitude

ρ0~u · ∇~u = O

(
ρ0U

2

L

)
,

while the viscous term has the order of magnitude

µ∆~u = O

(
µU

L2

)
.

The Reynolds number may therefore be interpreted as a ratio of the magnitudes of
the inertial and viscous terms.

The Reynolds number spans a large range of values in naturally occurring flows,
from 10−20 in the very slow flows of the earth’s mantle, to 10−5 for the motion of
bacteria in a fluid, to 106 for air flow past a car traveling at 60 mph, to 1010 in
some large-scale geophysical flows.

Example 2.8. Consider a sphere of radius L moving through an incompressible
fluid with constant speed U . A primary quantity of interest is the total drag force
D exerted by the fluid on the sphere. The drag is a function of the parameters on
which the problem depends, meaning that

D = f(U,L, ρ0, ν).

The drag D has the dimension of force (ML/T 2), so dimensional analysis implies
that

D = ρ0U
2L2F

(
UL

ν

)
.

Thus, the dimensionless drag

(2.6)
D

ρ0U2L2
= F (R)

is a function of the Reynolds number (2.5), and dimensional analysis reduces the
problem of finding a function f of four variables to finding a function F of one
variable.

The function F (R) has a complicated dependence on R which is difficult to
determine theoretically, especially for large values of the Reynolds number. Never-
theless, experimental measurements of the drag for a wide variety of values of U ,
L, ρ0 and ν agree well with (2.6)

4.4. The Navier-Stokes equations

The flow of an incompressible homogeneous fluid with density ρ0 and viscosity µ is
described by the incompressible Navier-Stokes equations,

ρ0 (~ut + ~u · ∇~u) +∇p = µ∆~u,

∇ · ~u = 0.
(2.7)

Here, ~u (~x, t) is the velocity of the fluid, and p (~x, t) is the pressure. The first
equation is conservation of momentum, and the second equation is conservation of
volume.

Remark 2.9. It remains an open question whether or not the three-dimensional
Navier-Stokes equations, with arbitrary smooth initial data and appropriate bound-
ary conditions, have a unique, smooth solution that is defined for all positive times.
This is one of the Clay Institute Millenium Prize Problems.
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Let U , L be a typical velocity scale and length scale of a fluid flow, and define
dimensionless variables by

~u∗ =
~u

U
, p∗ =

p

ρU2
, ~x∗ =

~x

L
, t∗ =

Ut

L
.

Using these expressions in (2.7), and dropping the stars on the dimensionless vari-
ables, we get

~ut + ~u · ∇~u+∇p =
1

R
∆~u,

∇ · ~u = 0,
(2.8)

where R is the Reynolds number defined in (2.5).

4.5. Euler equations

The nondimensionalized equation (2.8) suggests that for flows with high Reynolds
number, we may neglect the viscous term on the right hand side of the momentum
equation, and approximate the Navier-Stokes equation by the incompressible Euler
equations

~ut + ~u · ∇~u+∇p = 0,

∇ · ~u = 0.

The Euler equations are difficult to analyze because, like the Navier-Stokes
equations, they are nonlinear. Moreover, the approximation of the Navier-Stokes
equation by the Euler equations is problematic. High-Reynolds number flows de-
velop complicated small-scale structures (for instance, boundary layers and turbu-
lence) and, as a result, it is not always possible to neglect the second-order spatial
derivatives ∆~u in the viscous term in comparison with the first-order spatial deriva-
tives ~u · ∇~u in the inertial term, even though the viscous term is multiplied by a
small coefficient.

4.6. Stokes equations

At low Reynolds numbers a different nondimensionalization of the pressure, based
on the viscosity rather than the inertia, is appropriate. Using

~u∗ =
~u

U
, p∗ =

p

ρU2
, ~x∗ =

~x

L
, t∗ =

Ut

L
,

in (2.7), and dropping the stars on the dimensionless variables, we get

R (~ut + ~u · ∇~u) +∇p = ∆~u,

∇ · ~u = 0.

Setting R = 0 in these equations, we get the Stokes equations,

(2.9) ∇p = ∆~u, ∇ · ~u = 0.

These equations provide a good approximation for low Reynolds number flows (al-
though nonuniformities arise in using them on unbounded domains). They are
much simpler to analyze than the full Navier-Stokes equations because they are
linear.
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5. Stokes formula for the drag on a sphere

As an example of the solution of the Stokes equations for low Reynolds number
flows, we will derive Stokes’ formula (1851) for the drag on a sphere moving at
constant velocity through a highly viscous fluid.

It is convenient to retain dimensional variables, so we consider Stokes equations
(2.9) in dimensional form

(2.10) µ∆~u = ∇p, ∇ · ~u = 0.

We note for future use that we can eliminate the pressure from (2.10) by taking the
curl of the momentum equation, which gives

(2.11) ∆ curl ~u = 0.

Before considering axisymmetric Stokes flow past a sphere, it is useful to look
at the two-dimensional equations. Using Cartesian coordinates with ~x = (x, y) and
~u = (u, v), we may write (2.10) as 3× 3 system for (u, v, p):

µ∆u = px, µ∆v = py, ux + vy = 0.

Here, ∆ = ∂2
x + ∂2

y is the two-dimensional Laplacian. In a simply connected region,
the incompressibility condition implies that we may introduce a streamfunction
ψ(x, y) such that u = ψy and v = −ψx. The momentum equation then becomes

µ∆ψy = px, ∆ψx = −py.

The elimination of p by cross-differentiation implies that ψ satisfies the biharmonic
equation

∆2ψ = 0.

Thus, the two-dimensional Stokes equations reduce to the biharmonic equation.
Similar considerations apply to axisymmetric flows, although the details are

more complicated. We will therefore give a direct derivation of the solution for flow
past a sphere, following Landau and Lifshitz [34].

We denote the radius of the sphere by a, and adopt a reference frame moving
with the sphere. In this reference frame, the sphere is at rest and the fluid velocity

far away from the sphere approaches a constant velocity ~U . The pressure also
approaches a constant, which we may take to be zero without loss of generality.

The appropriate boundary condition for the flow of a viscous fluid past a solid,
impermeable boundary is the no-slip condition that the velocity of the fluid is
equal to the velocity of the body. Roughly speaking, this means that a viscous
fluid ‘sticks’ to a solid boundary.

Let ~x denote the position vector from the center of the sphere and r = |~x| the
distance. We want to solve the Stokes equations (2.10) for ~u(~x), p(~x) in the exterior
of the sphere a < r <∞, subject to the no-slip condition on the sphere,

(2.12) ~u(~x) = 0 at r = a,

and the uniform-flow condition at infinity,

(2.13) ~u(~x) ∼ ~U, p(~x)→ 0 as r →∞.

First, we will solve for the velocity. Since ~u is divergence free and the exterior
of a sphere is simply connected, we can write it as

(2.14) ~u (~x) = ~U + curl ~A (~x)
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where ~A is a vector-streamfunction for the deviation of the flow from the uniform
flow. We can always choose ~A to be divergence free, and we require that the

derivatives of ~A approach zero at infinity so that ~u approaches ~U .

We will show that we can obtain the solution by choosing ~A to be of the form

(2.15) ~A (~x) = ∇f(r)× ~U

for a suitable scalar valued function f(r) which we will determine. This form for
~A is dictated by linearity and symmetry considerations: since the Stokes equations

are linear, the solution must be linear in the velocity ~U ; and the solution must be

invariant under rotations about the axis parallel to ~U through the center of the

sphere, and under rotations of ~U .
Using the vector identity

curl
(
f ~F
)

= ∇f × ~F + f curl ~F ,

and the fact that ~U is constant, we may also write (2.15) as

(2.16) ~A = curl
(
f ~U
)
,

which shows, in particular, that ∇ · ~A = 0.
By use of the vector identity

(2.17) curl curl ~F = ∇
(
∇ · ~F

)
−∆~F ,

and (2.15), we find that

curl ~u = curl curl ~A = −∆ ~A = −∆
(
∇f × ~U

)
.

Using this result in (2.11), we find that

∆2
(
∇f × ~U

)
= 0.

Since ~U is constant, it follows that

∇
(
∆2f

)
× ~U = 0.

Since f depends only on r, this equation implies that ∇
(
∆2f

)
= 0, so ∆2f is

constant. Since the derivatives of ~A decay at infinity, ∆2f must also decay, so the
constant is zero, and therefore f satisfies the biharmonic equation

(2.18) ∆2f = 0.

Writing g = ∆f , which is a function of r = |~x|, and using the expression for
the three-dimensional Laplacian in spherical-polar coordinates, we get

1

r2

d

dr

(
r2 dg

dr

)
= 0.

Integrating this equation, we get g(r) = 2b/r+ c where b, c are constant of integra-
tion. Since ∆f → 0 as r →∞, we must have c = 0, so

∆f =
1

r2

d

dr

(
r2 df

dr

)
=

2b

r
.
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Integrating this equation and neglecting an additive constant, which involves no

loss of generality because ~A depends only on ∇f , we get

(2.19) f(r) = br +
c

r

where c is another constant of integration.
Using this expression for f in (2.15), then using the result in (2.14), we find

that

(2.20) ~u (~x) = ~U − b

r

[
~U +

1

r2

(
~U · ~x

)
~x

]
+

c

r3

[
3

r2

(
~U · ~x

)
~x− ~U

]
.

This velocity field satisfies the boundary condition at infinity (2.13). Imposing the
boundary condition (2.12) on the sphere, we get(

1− b

a
− c

a3

)
~U +

1

a3

(
3c

a2
− b
)(

~U · ~x
)
~x = 0 when |~x| = a.

This condition is satisfied only if the coefficient of each term vanishes, which gives

b =
3a

4
, c =

a3

4
.

Thus, from (2.19), the solution for f is

(2.21) f(r) =
3ar

4

(
1 +

a2

3r2

)
,

and, from (2.20), the solution for the velocity field is

(2.22) ~u (~x) =

(
1− 3a

4r
− a3

4r3

)
~U +

1

r2

(
3a3

4r3
− 3a

4r

)(
~U · ~x

)
~x.

Remark 2.10. A noteworthy feature of this solution is its slow decay to the uniform
flow. The difference

~U − ~u (~x) ∼ 3a

4r

[
~U +

1

r2

(
~U · ~x

)
~x

]
is of the order 1/r as r →∞. This makes the analysis of nondilute suspensions of
particles difficult, even with linearity of the Stokes equations, because the hydro-
dynamic interactions between particles have a long range.

To get the pressure, we first compute ∆~u. Using (2.16) in (2.14), and applying
the vector identity (2.17), we get

~u = ~U + curl curl
(
f ~U
)

= ~U +∇
[
∇ ·
(
f ~U
)]
− (∆f) ~U.

Taking the Laplacian of this equation, then using the identity ∇ ·
(
f ~U
)

= ~U · ∇f
and the fact that f satisfies the biharmonic equation (2.18), we get

∆~u = ∇∆
(
~U · ∇f

)
.

Use of this expression in the momentum equation in (2.10) gives

∇
[
µ∆

(
~U · ∇f

)
− p
]

= 0.
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It follows that the expression inside the gradient is constant, and from (2.13) the
constant is zero. Therefore,

p = µ∆
(
~U · ∇f

)
.

Using (2.21) in this equation, we find the explicit expression

(2.23) p = −
(

3µa

2r3

)
~U · ~x.

Thus, (2.22) and (2.23) is the solution of (2.10) subject to the boundary conditions
(2.13)–(2.12).

A primary quantity of interest is the drag force F exerted by the fluid on the
sphere. This force is given by integrating the stress over the surface ∂Ω of the
sphere:

~F =

∫
∂Ω

T~n dS.

Here, ~n is the unit outward normal to the sphere, and T is the Cauchy stress tensor,
given from (2.4) by

T = −pI + µ
(
∇~u+∇~u>

)
.

A direct calculation, whose details we omit, shows that the force is in the direction

of ~U with magnitude

(2.24) F = 6πµaU,

where U is the magnitude of ~U .
This expression for the drag on a spherical particle is found to be in excellent

agreement with experimental results if R < 0.5, where

R =
2aU

ν

is the Reynolds numbers based on the particle diameter, and ν = µ/ρ0 is the
kinematic viscosity, as before.

For example, consider a particle of radius a and density ρp falling under gravity
in a fluid of density ρ0. At the terminal velocity U , the viscous drag must balance
the gravitational buoyancy force, so

6πµaU =
4

3
πa3 (ρp − ρ0) g

where g is the acceleration due to gravity. This gives

U =
2a2g

9ν

(
ρp
ρ0
− 1

)
The corresponding Reynolds number is

R =
4a3g

9ν2

(
ρp
ρ0
− 1

)
.

For a water droplet falling through air [9], we have ρp/ρ0 ≈ 780 and ν ≈
15 mm s−1. This gives a Reynolds number of approximately 1.5 × 104 a3 where
a is measured in mm. Thus, Stokes formula is applicable when a ≤ 0.04 mm,
corresponding to droplets in a fine mist.
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6. Kolmogorov’s 1941 theory of turbulence

Finally, if we are to list the reasons for studying homogeneous
turbulence, we should add that it is a profoundly interesting
physical phenomenon which still defies satisfactory mathematical
analysis; this is, of course, the most compelling reason.1

High-Reynolds number flows typically exhibit an extremely complicated behav-
ior called turbulence. In fact, Reynolds first introduced the Reynolds number in
connection with his studies on transition to turbulence in pipe flows in 1895. The
analysis and understanding of turbulence remains a fundamental challenge. There
is, however, no precise definition of fluid turbulence, and there are many different
kinds of turbulent flows, so this challenge is likely to be one with many different
parts.

In 1941, Kolmogorov proposed a simple dimensional argument that is one of
the basic results about turbulence. To explain his argument, we begin by describing
an idealized type of turbulence called homogeneous, isotropic turbulence.

6.1. Homogeneous, isotropic turbulence

Following Batchelor [8], let us imagine an infinite extent of fluid in turbulent motion.
This means, first, that the fluid velocity depends on a large range of length scales;
we denote the smallest length scale (the ‘dissipation’ length scale) by λd and the
largest length scale (the ‘integral’ length scale) by L. And, second, that the fluid
motion is apparently random and not reproducible in detail from one experiment
to the next.

We therefore adopt a probabilistic description, and suppose that a turbulent
flow is described by a probability measure on solutions of the Navier-Stokes equa-
tions such that expected values of the fluid variables with respect to the measure
agree with appropriate averages of the turbulent flow.

This probabilistic description is sometimes interpreted as follows: we have an
‘ensemble’ of many different fluid flows — obtained, for example, by repeating
the same experiment many different times — and each member of the ensemble
corresponds to a flow chosen ‘at random’ with respect to the probability measure.

A turbulent flow is said to be homogeneous if its expected values are invariant
under spatial translations — meaning that, on average, it behaves the same way at
each point in space — and isotropic if its expected values are also independent of
spatial rotations. Similarly, the flow is stationary if its expected values are invariant
under translations in time. Of course, any particular realization of the flow varies
in space and time.

Homogeneous, isotropic, stationary turbulence is rather unphysical. Turbu-
lence is typically generated at boundaries, and the properties of the flow vary
with distance from the boundary or other large-scale features of the flow geom-
etry. Moreover, turbulence dissipates energy at a rate which appears to be nonzero
even in the limit of infinite Reynolds number. Thus, some sort of forcing (usually
at the integral length scale) that adds energy to the fluid is required to maintain
stationary turbulence. Nevertheless, appropriate experimental configurations (for
example, high-Reynolds number flow downstream of a metal grid) and numerical
configurations (for example, direct numerical simulations on a ‘box’ with periodic

1G. K. Batchelor, The Theory of Homogeneous Turbulence.
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boundary conditions and a suitable applied force) provide a good approximation to
homogeneous, isotropic turbulence.

6.2. Correlation functions and the energy spectrum

We denote expected values by angular brackets 〈·〉. In a homogeneous flow the
two-point correlation

(2.25) Q = 〈~u (~x, t) · ~u (~x+ ~r, t)〉
is a function of the spatial displacement ~r, and independent of ~x. In a stationary
flow it is independent of t. Furthermore, in an isotropic flow, Q is a function only
of the magnitude r = |~r| of the displacement vector.

Note, however, that even in isotropic flow the general correlation tensor

Q (~r) = 〈~u (~x, t)⊗ ~u (~x+ ~r, t)〉 ,
with components Qij = 〈uiuj〉, depends on the vector ~r, not just its magnitude,
because a rotation of ~r also induces a rotation of ~u.

For isotropic turbulence, one can show [8] that the two-point correlation (2.25)
has the Fourier representation

Q (r) = 2

∫ ∞
0

sin kr

kr
E(k) dk

where E(k) is a nonnegative function of the wavenumber magnitude k.
In particular, it follows that

(2.26)
1

2
〈~u (~x, t) · ~u (~x, t)〉 =

∫ ∞
0

E(k) dk.

Thus, E(k) may be interpreted as the mean kinetic energy density of the turbulent
flow as a function of the wavenumber 0 ≤ k <∞.

6.3. The five-thirds law

In fully developed turbulence, there is a wide range of length scales λd � λ � L
that are much greater than the dissipation length scale and much less than the
integral length scale. This range is called the inertial range. The corresponding
wavenumbers are k = 2π/λ, with dimension

[k] =
1

L
.

It appears reasonable to assume that the components of a turbulent flow which
vary over length scales in the inertial range do not depend on the viscosity ν of the
fluid or on the integral length scale and velocity.

Kolmogorov proposed that, in the inertial range, the flow statistics depend only
on the mean rate per unit mass ε at which the turbulent flow dissipates energy. It
would not make any difference if we used instead the mean rate of energy dissipation
per unit volume, since we would have to nondimensionalize this by the fluid density,
to get the mean energy dissipation rate per unit mass. The dimension of this rate
is is

[ε] =
ML2

T 2
· 1

T
· 1

M
=
L2

T 3
.

From (2.26), the spectral energy density has dimension

[E(k)] =
L3

T 2
.
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If the only quantities on which E(k) depends are the energy dissipation rate ε and
the wavenumber k itself, then, balancing dimensions, we must have

(2.27) E(k) = Cε2/3k−5/3,

where C is a dimensionless constant, called the Kolmogorov constant.
Thus, Kolmogorov’s 1941 (K41) theory predicts that the energy spectrum of a

turbulent flow in the inertial range has a power-law decay as a function of wavenum-
ber with exponent −5/3; this is the “five-thirds law.”

The spectral result (2.27) was, in fact, first stated by Oboukhov (1941). Kol-
mogorov gave a closely related result for spatial correlations:〈

|~u (~x+ ~r, t)− ~u (~x, t)|2
〉

= Cε2/3r2/3.

This equation suggests that the velocity of a turbulent flow has a ‘rough’ spatial
dependence in the inertial range, similar to that of a non-differentiable Hölder-
continuous function with exponent 1/3.

Onsager rediscovered this result in 1945, and in 1949 suggested that turbulent
dissipation might be described by solutions of the Euler equation that are not suf-
ficiently smooth to conserve energy [20]. The possible relationship of non-smooth,
weak solutions of the incompressible Euler equations (which are highly non-unique
and can even increase in kinetic energy without some kind of additional admis-
sibility conditions) to turbulent solutions of the Navier-Stokes equations remains
unclear.

6.4. The Kolmogorov length scale

The only length scale that can be constructed from the dissipation rate ε and the
kinematic viscosity ν, called the Kolmogorov length scale, is

η =

(
ν3

ε

)1/4

.

The K41 theory implies that the dissipation length scale is of the order η.
If the energy dissipation rate is the same at all length scales, then, neglecting

order one factors, we have

ε =
U3

L
where L, U are the integral length and velocity scales. Denoting by RL the Reynolds
number based on these scales,

RL =
UL

ν
,

it follows that
L

η
= R

3/4
L .

Thus, according to this dimensional analysis, the ratio of the largest (integral)

length scale and the smallest (dissipation) length scale grows like R
3/4
L as RL →∞.

In order to resolve the finest length scales of a three-dimensional flow with
integral-scale Reynolds number RL, we therefore need on the order of

NL = R
9/4
L

independent degrees of freedom (for example, NL Fourier coefficients of the velocity
components). The rapid growth of NL with RL limits the Reynolds numbers that
can be attained in direct numerical simulations of turbulent flows.
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6.5. Validity of the five-thirds law

Experimental observations, such as those made by Grant, Stewart and Moilliet
(1962) in a tidal channel between islands off Vancouver, agree well with the five-
thirds law for the energy spectrum, and give C ≈ 1.5 in (2.27). The results of DNS
on periodic ‘boxes’, using up to 40963 grid points, are also in reasonable agreement
with this prediction.

Although the energy spectrum predicted by the K41 theory is close to what is
observed, there is evidence that it is not exactly correct. This would imply that
there is something wrong with its original assumptions.

Kolmogorov and Oboukhov proposed a refinement of Kolmogorov’s original
theory in 1962. It is, in particular, not clear that the energy dissipation rate ε
should be assumed constant, since the energy dissipation in a turbulent flow itself
varies over multiple length scales in a complicated fashion. This phenomenon,
called ‘intermittency,’ can lead to corrections in the five-thirds law [23]. All such
turbulence theories, however, depend on some kind of initial assumptions whose
validity can only be checked by comparing their predictions with experimental or
numerical observations.

6.6. The benefits and drawbacks of dimensional arguments

As the above examples from fluid mechanics illustrate, dimensional arguments can
lead to surprisingly powerful results, even without a detailed analysis of the under-
lying equations. All that is required is a knowledge of the quantities on which the
problem being studied depends together with their dimensions. This does mean,
however, one has to know the basic laws that govern the problem, and the dimen-
sional constants they involve. Thus, contrary to the way it sometimes appears,
dimensional analysis does not give something for nothing; it can only give what is
put in from the start.

This fact cuts both ways. Many of the successes of dimensional analysis, such
as Kolmogorov’s theory of turbulence, are the result of an insight into which dimen-
sional parameters play an crucial role in a problem and which parameters can be
ignored. Such insights typical depend upon a great deal of intuition and experience,
and they may be difficult to justify or prove.2

Conversely, it may happen that some dimensional parameters that appear to
be so small they can be neglected have a significant effect, in which case scaling
laws derived on the basis of dimensional arguments that ignore them are likely to
be incorrect.

7. Self-similarity

If a problem depends on more fundamental units than the number of dimensional
parameters, then we must use the independent or dependent variables themselves
to nondimensionalize the problem. For example, we did this when we used the
wavenumber k to nondimensionalize the K41 energy spectrum E(k) in (2.27). In

2As Bridgeman ([10], p. 5) puts it in his elegant 1922 book on dimensional analysis (well worth

reading today): “The untutored savage in the bushes would probably not be able to apply the

methods of dimensional analysis to this problem and obtain results that would satisfy us.” Hope-
fully, whatever knowledge may have been lost since then in the area of dimensional analysis has

been offset by some gains in cultural sensitivity.
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that case, we obtain self-similar solutions that are invariant under the scaling trans-
formations induced by a change in the system of units. For example, in a time-
dependent problem the spatial profile of a solution at one instant of time might be
a rescaling of the spatial profile at any other time.

These self-similar solutions are often among the few solutions of nonlinear equa-
tions that can be obtained analytically, and they can provide valuable insight into
the behavior of general solutions. For example, the long-time asymptotics of solu-
tions, or the behavior of solutions at singularities, may be given by suitable self-
similar solutions.

As a first example, we use dimensional arguments to find the Green’s function
of the heat equation.

7.1. The heat equation

Consider the following IVP for the Green’s function of the heat equation in Rd:

ut = ν∆u,

u(x, 0) = Eδ(x).

Here δ is the delta-function, representing a unit point source at the origin. Formally,
we have ∫

Rd
δ(x) dx = 1, δ(x) = 0 for x 6= 0.

The dimensioned parameters in this problem are the diffusivity ν and the energy
E of the point source. The only length and times scales are those that come from
the independent variables (x, t), so the solution is self-similar.

We have [u] = θ, where θ denotes a unit of temperature. Furthermore, since∫
Rd
u(x, 0) dx = E,

we have [E] = θLd. The rotational invariance of the Laplacian, and the uniqueness
of the solution, implies that the solution must be spherically symmetric. Dimen-
sional analysis then gives

u(x, t) =
E

(νt)d/2
f

(
|x|√
νt

)
.

Using this expression for u(x, t) in the PDE, we get an ODE for f(ξ),

f ′′ +

(
ξ

2
+
d− 1

ξ

)
f ′ +

d

2
f = 0.

We can rewrite this equation as a first-order ODE for f ′ + ξ
2f ,(

f ′ +
ξ

2
f

)′
+
d− 1

ξ

(
f ′ +

ξ

2
f

)
= 0.

Solving this equation, we get

f ′ +
ξ

2
f =

b

ξd−1
,

where b is a constant of integration. Solving for f , we get

f(ξ) = ae−ξ
2/4 + be−ξ

2/4

∫
e−ξ

2

ξd−1
dξ,
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where a s another constant of integration. In order for f to be integrable, we must
set b = 0. Then

u(x, t) =
aE

(νt)d/2
exp

(
−|x|

2

4νt

)
.

Imposing the requirement that ∫
Rd
u(x, t) dx = E,

and using the standard integral∫
Rd

exp

(
−|x|

2

2c

)
dx = (2πc)

d/2
,

we find that a = (4π)−d/2, and

u(x, t) =
E

(4πνt)d/2
exp

(
−|x|

2

4νt

)
.

8. The porous medium equation

In this section, we will further illustrate the use of self-similar solutions by describing
a problem for point-source solutions of the porous medium equation, taken from
Barenblatt [7]. This solution is a one-dimensional version of the radially symmetric
self-similar solution of the porous medium equation

ut = ∇ · (u∇u)

found by Zeldovich and Kompaneets (1950) and Barenblatt (1952).
We consider the flow under gravity of an incompressible fluid in a porous

medium, such as groundwater in a rock formation. We suppose that the porous
medium sits above a horizontal impermeable stratum, and, to simplify the dis-
cussion, that the flow is two-dimensional. It is straightforward to treat three-
dimensional flows in a similar way.

Let x and z denote horizontal and vertical spatial coordinates, respectively,
where the impermeable stratum is located at z = 0. Suppose that the porous
medium is saturated with fluid for 0 ≤ z ≤ h(x, t) and dry for z > h(x, t). If the
wetting front z = h(x, t) has small slope, we may use a quasi-one dimensional ap-
proximation in which we neglect the z-velocity components of the fluid and average
x-velocity components with respect to z.

The volume of fluid (per unit length in the transverse y-direction) in a ≤ x ≤ b
is given by ∫ b

a

nh(x, t) dx

where n is the porosity of the medium. That is, n is the ratio of the open volume
in the medium that can be occupied by fluid to the total volume. Typical values of
n are 0.3–0.7 for clay, and 0.01, or less, for dense crystalline rocks. We will assume
that n is constant, in which case it will cancel from the equations.

Let u(x, t) denote the depth-averaged x-component of the fluid velocity. Con-
servation of volume for an incompressible fluid implies that for any x-interval [a, b]

d

dt

∫ b

a

nh(x, t) dx = − [nhu]
b
a .
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In differential form, we get

(2.28) ht = − (hu)x

For slow flows, we can assume that the pressure p in the fluid is equal to the
hydrostatic pressure

p = ρ0g (h− z) .
It follows that the total pressure ‘head’, defined by

p

ρ0g
+ z,

is independent of z and equal to h(x, t).
According to Darcy’s law, the volume-flux (or velocity) of a fluid in a porous

medium is proportional to the gradient of the pressure head, meaning that

(2.29) u = −khx,

where k is the permeability, or hydraulic conductivity, of the porous medium.

Remark 2.11. Henri Darcy was a French water works engineer. He published his
law in 1856 after conducting experiments on the flow of water through columns of
sand, which he carried out in the course of investigating fountains in Dijon.

The permeability k in (2.29) has the dimension of L2/(HT ), where H is the
dimension of the head h. Since we measure h in terms of vertical height, k has
the dimension of velocity. Typical values of k for consolidated rocks range from
10−9 m/day for unfractured metamorphic rocks, to 103 m/day for karstic limestone.

Using (2.29) in (2.28), we find that h(x, t) satisfies the porous medium equation

(2.30) ht = k (hhx)x .

We may alternatively write (2.30) as

ht =
1

2
k
(
h2
)
xx
.

This equation was first considered by Boussinesq (1904).
The porous medium equation is an example of a degenerate diffusion equation.

It has a nonlinear diffusivity equal to kh which vanishes when h = 0. As we will
see, this has the interesting consequence that (2.30) has solutions (corresponding to
wetting fronts) that propagate into a region with h = 0 at finite speed — behavior
one would expect of a wave equation, but not at first sight of a diffusion equation.

8.1. A point source solution

Consider a solution h(x, t) of the porous medium equation (2.30) that approaches
an initial point source:

h(x, t)→ Iδ(x), t→ 0+,

where δ(x) denotes the Dirac delta ‘function.’ Explicitly, this means that we require

h(x, t)→ 0 as t→ 0+ if x 6= 0,

lim
t→0+

∫ ∞
−∞

h(x, t) dx = I.
(2.31)
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The delta-function is a distribution, rather than a function. We will not discuss
distribution theory here (see [44] for an introduction and [27] for a detailed ac-
count). Instead, we will define the delta-function formally as a ‘function’ δ with
the properties that

δ(x) = 0 for x 6= 0,∫ ∞
−∞

f(x)δ(x) dx = f(0)

for any continuous function f .
The solution of the porous medium with the initial data (2.31) describes the

development of of wetting front due to an instantaneous ‘flooding’ at the origin by
a volume of water I. It provides the long time asymptotic behavior of solutions of
the porous medium equation with a concentrated non-point source initial condition
h(x, t) = h0(x) where h0 is a compactly supported function with integral I.

The dimensional parameters at our disposal in solving this problem are k and
I. A fundamental system of units is L, T , H where H is a unit for the pressure
head. Since we measure the pressure head h in units of length, it is reasonable to
ask why we should use different units for h and x. The explanation is that the units
of vertical length used to measure the head play a different role in the model than
the units used to measure horizontal lengths, and we should be able to rescale x
and z independently.

Equating the dimension of different terms in (2.30), we find that

[k] =
L2

HT
, [I] = LH.

Since we assume that the initial data is a point source, which does not define a
length scale, there are no other parameters in the problem.

Two parameters k, I are not sufficient to nondimensionalize a problem with
three fundamental units. Thus, we must also use one of the variables to do so.
Using t, we get [

(kIt)
1/3
]

= L, [t] = T,

[
I2/3

(kt)
1/3

]
= H

Dimensional analysis then implies that

h(x, t) =
I2/3

(kt)
1/3

F

(
x

(kIt)
1/3

)
where F (ξ) is a dimensionless function.

Using this similarity form in (2.30), we find that F (ξ) satisfies the ODE

(2.32) −1

3
(ξF ′ + F ) = (FF ′)

′
.

Furthermore, (2.31) implies that

F (ξ)→ 0 as |ξ| → ∞,(2.33) ∫ ∞
−∞

F (ξ) dξ = 1.(2.34)
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Integrating (2.32), we get

(2.35) −1

3
ξF + C = FF ′

where C is a constant of integration.
The condition (2.33) implies that C = 0. It then follows from (2.35) that either

F = 0, or

F ′ = −1

3
ξ,

which implies that

F (ξ) =
1

6

(
a2 − ξ2

)
where a is a constant of integration.

In order to get a solution that is continuous and approaches zero as |ξ| → ∞,
we choose

F (ξ) =

{ (
a2 − ξ2

)
/6 if |ξ| < a,

0 if |ξ| ≥ a.

The condition (2.34) then implies that

a =

(
9

2

)1/3

.

Thus, the solution of (2.30)–(2.31) is given by

h(x, t) =
I2/3

6 (kt)
1/3

[(
9

2

)2/3

− x2

(kIt)
2/3

]
if |x| < (9kIt/2)1/3

with h(x, t) = 0 otherwise.
This solution represents a saturated region of finite width which spreads out

at finite speed. The solution is not a classical solution of (2.30) since its derivative
hx has a jump discontinuity at x = ±(9kIt/2)1/3. It can be understood as a weak
solution in an appropriate sense, but we will not discuss the details here.

The fact that the solution has length scale proportional to t1/3 after time t
could have been predicted in advance by dimensional analysis, since L = (kIt)1/3

is the only horizontal length scale in the problem. The numerical factors, and the
fact that the solution has compact support, depend upon the detailed analytical
properties of the porous medium equation equation; they could not be shewn by
dimensional analysis.

8.2. A pedestrian derivation

Let us consider an alternative method for finding the point source solution that
does not require dimensional analysis, but is less systematic.

First, we remove the constants in (2.30) and (2.31) by rescaling the variables.
Defining

u (x, t̄) =
1

I
h (x, t) , t̄ = kIt,

and dropping the bars on t̄, we find that u(x, t) satisfies

(2.36) ut = (uux)x .
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The initial condition (2.31) becomes

u(x, t)→ 0 as t→ 0+ if x 6= 0,

lim
t→0+

∫ ∞
−∞

u(x, t) dx = 1.
(2.37)

We seek a similarity solution of (2.36)–(2.37) of the form

(2.38) u(x, t) =
1

tm
f
( x
tn

)
for some exponents m, n. In order to obtain such a solution, the PDE for u(x, t)
must reduce to an ODE for f(ξ). As we will see, this is the case provided that m,
n are chosen appropriately.

Remark 2.12. Equation (2.38) is a typical form of a self-similar solution that is
invariant under scaling transformations, whether or not they are derived from a
change in units. Dimensional analysis of this problem allowed us to deduce that
the solution is self-similar. Here, we simply seek a self-similar solution of the form
(2.38) and hope that it works.

Defining the similarity variable

ξ =
x

tn

and using a prime to denote the derivative with respect to ξ, we find that

ut = − 1

tm+1
(mf + nξf ′)

(uux)x =
1

t2m+2n
(ff ′)

′
.

(2.39)

In order for (2.36) to be consistent with (2.38), the powers of t in (2.39) must
agree, which implies that

(2.40) m+ 2n = 1.

In that case, f(ξ) satisfies the ODE

(ff ′)
′
+ nξf ′ +mf = 0.

Thus, equation (2.36) has a one-parameter family of self-similar solutions. The
ODE for similarity solutions is easy to integrate when m = n, but it is not as
simple to solve when n 6= m.

To determine the value of m, n for the point source problem, we compute that,
for solutions of the form (2.38),∫ ∞

−∞
u(x, t) dx = tn−m

∫ ∞
−∞

f (ξ) dξ.

Thus, to get a nonzero, finite limit as t → 0+ in (2.37), we must take m = n, and
then (2.40) implies that m = n = 1/3. We therefore recover the same solution as
before.
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8.3. Scaling invariance

Let us consider the scaling invariances of the porous medium equation (2.36) in
more detail.

We consider a rescaling of the independent and dependent variables given by

(2.41) x̃ = αx, t̃ = βt, ũ = µu

where α, β, µ are positive constants. Writing u in terms of ũ in (2.36) and using
the transformation of derivatives

∂x = α∂x̃, ∂t = β∂t̃,

we find that ũ
(
x̃, t̃
)

satisfies the PDE

ũt̃ =
α2

βµ
(ũũx̃)x̃ .

Thus, the rescaling (2.41) leaves (2.36) invariant if α2 = βµ.
To reformulate this invariance in a more geometric way, let E = R2×R be the

space with coordinates (x, t, u). For α, β > 0 define the transformation

(2.42) g (α, β) : E → E, g(α, β) : (x, t, u) 7→
(
αx, βt,

α2

β
u

)
.

Then

(2.43) G = {g(α, β) : α, β > 0}
forms a two-dimensional Lie group of transformations of E:

g(1, 1) = I, g−1 (α, β) = g

(
1

α
,

1

β

)
,

g (α1, β1) g (α2, β2) = g (α1α2, β1β2)

where I denotes the identity transformation.
The group G is commutative (in general, Lie groups and symmetry groups are

not commutative) and is generated by the transformations

(2.44) (x, t, u) 7→
(
αx, t, α2u

)
, (x, t, u) 7→

(
x, βt,

1

β
u

)
.

Abusing notation, we use the same symbol to denote the coordinate u and the
function u(x, t). Then the action of g(α, β) in (2.42) on u(x, t) is given by

(2.45) u(x, t) 7→ α2

β
u

(
x

α
,
t

β

)
.

This map transforms solutions of (2.36) into solutions. Thus, the group G is a sym-
metry group of (2.36), which consist of the symmetries that arise from dimensional
analysis and the invariance of (2.36) under rescalings of its units.

8.4. Similarity solutions

In general, a solution of an equation is mapped to a different solution by elements
of a symmetry group. A similarity solution is a solution that is mapped to itself
by a nontrivial subgroup of symmetries. In other words, it is a fixed point of
the subgroup. Let us consider the case of similarity solutions of one-parameter
subgroups of scaling transformations for the porous medium equation; we will show
that these are the self-similar solutions considered above.
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The one-parameter subgroups of G in (2.43) are given by

Hn = {g (βn, β) : β > 0} for −∞ < n <∞,

and {g (α, 1) : α > 0}. From (2.45), a function u(x, t) is invariant under Hn if

u(x, t) = β2n−1u

(
x

βn
,
t

β

)
for every β > 0. Choosing β = t, we conclude that u(x, t) has the form (2.38) with
m = 1− 2n. Thus, we recover the self-similar solutions considered previously.

8.5. Translational invariance

A transformation of the space E of dependent and independent variables into it-
self is called a point transformation. The group G in (2.43) does not include all
the point transformations that leave (2.36) invariant. In addition to the scaling
transformations (2.44), the space-time translations

(2.46) (x, t, u) 7→ (x− δ, t, u) , (x, t, u) 7→ (x, t− ε, u) ,

where −∞ < δ, ε <∞, also leave (2.36) invariant, because the terms in the equation
do not depend explicitly on (x, t).

As we will show in Section 9.8, the transformations (2.44) and (2.46) generate
the full group of point symmetries of (2.36). Thus, the porous medium equation
does not have any point symmetries beyond the obvious scaling and translational
invariances. This is not always the case, however. Many equations have point
symmetries that would be difficult to find without using the theory of Lie algebras.

Remark 2.13. The one-dimensional subgroups of the two-dimensional group of
space-time translations are given by

(x, t, u) 7→ (x− cε, t− ε, u) ,

where c is a fixed constant (and also the space translations (x, t, u) 7→ (x− ε, t, u)).
The similarity solutions that are invariant under this subgroup are the traveling
wave solutions

u(x, t) = f(x− ct).

9. Continuous symmetries of differential equations

Dimensional analysis leads to scaling invariances of a differential equation. As we
have seen in the case of the porous medium equation, these invariances form a
continuous group, or Lie group, of symmetries of the differential equation.

The theory of Lie groups and Lie algebras provides a systematic method to
compute all continuous point symmetries of a given differential equation; in fact,
this is why Lie first introduced the the theory of Lie groups and Lie algebras.

Lie groups and algebras arise in many other contexts. In particular, as a result
of the advent of quantum mechanics in the early 20th-century, where symmetry
considerations are crucial, Lie groups and Lie algebras have become a central part
of mathematical physics.

We will begin by describing some basic ideas about Lie groups of transforma-
tions and their associated Lie algebras. Then we will describe their application to
the computation of symmetry groups of differential equations. See Olver [40, 41],
whose presentation we follow, for a full account.
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9.1. Lie groups and Lie algebras

A manifold of dimension d is a space that is locally diffeomorphic to Rd, although
its global topology may be different (think of a sphere, for example). This means
that the elements of the manifold may, locally, be smoothly parametrized by d
coordinates, say

(
ε1, ε2, . . . , εd

)
∈ Rd. A Lie group is a space that is both a manifold

and a group, such that the group operations (composition and inversion) are smooth
functions.

Lie groups almost always arise in applications as transformation groups acting
on some space. Here, we are interested in Lie groups of symmetries of a differential
equation that act as point transformations on the space whose coordinates are the
independent and dependent variables of the differential equation.

The key idea we want to explain first is this: the Lie algebra of a Lie group
of transformations is represented by the vector fields whose flows are the elements
of the Lie Group. As a result, elements of the Lie algebra are often referred to as
‘infinitesimal generators’ of elements of the Lie group.

Consider a Lie group G acting on a vector space E. In other words, each g ∈ G
is a map g : E → E. Often, one considers Lie groups of linear maps, which are a
subgroup of the general linear group GL(E), but we do not assume linearity here.

Suppose that E = Rn, and write the coordinates of x ∈ E as
(
x1, x2, . . . , xn

)
.

We denote the unit vectors in the coordinate directions by

∂x1 , ∂x2 , . . . , ∂xn .

That is, we identify vectors with their directional derivatives.
Consider a vector field

~v(x) = ξi(x)∂xi ,

where we use the summation convention in which we sum over repeated upper and
lower indices. The associated flow is a one-parameter group of transformations
obtained by solving the system of ODEs

dxi

dε
= ξi

(
x1, x2, . . . , xn

)
for 1 ≤ i ≤ n.

Explicitly, if x(ε) is a solution of this ODE, then the flow g(ε) : x(0) 7→ x(ε) maps
the initial data at ε = 0 to the solution at ‘time’ ε.

We denote the flow g(ε) generated by the vector field ~v by

g(ε) = eε~v.

Conversely, given a flow g(ε), we can recover the vector field that generates it from

~v(x) =
d

dε
g(ε) · x

∣∣∣∣
ε=0

.

That is, ~v(x) is the tangent, or velocity, vector of the solution curve through x.

Example 2.14. A linear vector field has the form

~v(x) = aijx
j∂xi .

Its flow is given by the usual exponential eε~v = eεA where the linear transformation
A has matrix

(
aij
)
.

The flow eε~v of a smooth linear vector field ~v is defined for all −∞ < ε < ∞.
The flow of a nonlinear vector field may exists only for sufficiently small values of
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ε, which may depend on the initial data. In that case we get a local Lie group of
flows. Since we only use local considerations here, we will ignore this complication.

9.2. The Lie bracket

In general, a Lie algebra g is a vector space with a bilinear, skew-symmetric bracket
operation

[·, ·] : g× g→ g

that satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

The Lie bracket of vector fields ~v, ~w is defined by their commutator

[~v, ~w] = ~v ~w − ~w~v,

where the vector fields are understood as differential operators. Explicitly, if

~v = ξi∂xi , ~w = ηi∂xi ,

then

[~v, ~w] =

(
ξj
∂ηi

∂xj
− ηj ∂ξ

i

∂xj

)
∂xi .

The Lie bracket of vector fields measures the non-commutativity of the correspond-
ing flows:

[~v, ~w] (x) =
1

2

d2

dε2

(
eε~veε~we−ε~ve−ε~w

)
x

∣∣∣∣
ε=0

.

One can show that the Lie bracket of any two vector field that generate elements
of a Lie group of transformations also generates an element of the Lie group. Thus,
the infinitesimal generators of the Lie group form a Lie algebra.

9.3. Transformations of the plane

As simple, but useful, examples of Lie transformation groups and their associated
Lie algebras, let us consider some transformations of the plane.

The rotations of the plane g(ε) : R2 → R2 are given by

g(ε) :

(
x
y

)
7→
(

cos ε − sin ε
sin ε cos ε

)(
x
y

)
where ε ∈ T.

These transformations form a representation of the one-dimensional Lie group
SO(2) on R2. They are the flow of the ODE

d

dε

(
x
y

)
=

(
−y
x

)
.

The vector field on the right hand side of this equation may be written as

~v(x, y) = −y∂x + x∂y,

and thus

g(ε) = eε~v.

The Lie algebra so(2) of SO(2) consists of the vector fields

{−εy∂x + εx∂y : ε ∈ R} .

The translations of the plane in the direction (a, b)

(x, y) 7→ (x− εa, y − εb)
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are generated by the constant vector field

a∂x + b∂y

The rotations and translations together form the orientation-preserving Euclidean
group of the plane, denoted by E+(2). The full Euclidean group E(2) is generated
by rotations, translations, and reflections.

The Euclidean group is not commutative since translations and rotations do
not commute. As a result, the corresponding Lie algebra e(2) is not trivial. For
example, if ~v = ∂x is an infinitesimal generator of translations in the x-direction,
and ~w = −y∂x + x∂y is an infinitesimal generator of rotations, then [~v, ~w] = ∂y is
the infinitesimal generator of translations in the y-direction.

The scaling transformations

(x, y) 7→ (eεrx, eεsy)

are generated by the vector field

rx∂x + sy∂y.

Together with the translations and rotations, the scaling transformations generate
the conformal group of angle preserving transformations of the plane.

Finally, as a nonlinear example, consider the vector field

~v(x, y) = x2∂x − y2∂y.

This generates the local flow

(x, y) 7→
(

x

1− εx
,

y

1 + εy

)
.

9.4. Transformations of function

Next, we want to consider the action of point transformations on functions.
Suppose that f : Rn → R. We denote the coordinates of the independent vari-

ables by x =
(
x1, x2, . . . , xn

)
∈ Rn, and the coordinate of the dependent variable by

u ∈ R. We assume that f is scalar-valued only to simplify the notation; it is straight-
forward to generalize the discussion to vector-valued functions f : Rn → Rm.

Let E = Rn×R be the space with coordinates
(
x1, . . . , xn, u

)
. Then the graph

Γf of f is the subset of E given by

Γf = {(x, u) ∈ E : u = f(x)} .
Consider a local one-parameter group of point transformations g(ε) : E → E on

the space of independent and dependent variables. These transformations induce a
local transformation of functions, which we denote in the same way,

g(ε) : f 7→ g(ε) · f
that maps the graph of f to the graph of g(ε) · f . The global image of the graph
of f under g(ε) need not be a graph; it is, however, locally a graph (that is, in a
sufficiently small neighborhood of a point x ∈ Rn and for small enough values of ε,
when g(ε) is sufficiently close to the identity).

To express the relationship between f and f̃ = g · f explicitly, we write g as

g(ε) : (x, u) 7→ (x̃, ũ) , x̃ = X̃(x, u, ε), ũ = Ũ(x, u, ε).

Then, since

g(ε) : {(x, u) : u = f(x)} 7→ {(x̃, ũ) : ũ = f̃(x̃, ε)},
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we have

Ũ (x, f(x), ε) = f̃
(
X̃(x, f(x), ε), ε

)
.

This is, in general, a complicated implicit equation for f̃ in terms of f .

Example 2.15. Suppose that f : R → R is the square function f : x 7→ x2 and
g(ε) : R× R→ R× R is the rotation

g(ε) · (x, u) = ((cos ε)x− (sin ε)u, (sin ε)x+ (cos ε)u) .

If u = f(x), then

x̃ = (cos ε)x− (sin ε)x2, ũ = (sin ε)x+ (cos ε)x2.

Solving the first equation for x in terms of x̃, then using the second equation to
express ũ in terms of x̃, we find that ũ = f̃ (x̃, ε) where

f̃ (x̃, ε) =
2x̃2 cos ε+ 2x̃ tan ε

1− 2x̃ sin ε+
√

1− 4x̃ sin ε/ cos2 ε

Thus, the image of the function x 7→ x2 under the rotation g(ε) is the function

x 7→ 2x2 cos ε+ 2x tan ε

1− 2x sin ε+
√

1− 4x sin ε/ cos2 ε
.

Note that this reduces to x 7→ x2 if ε = 0, and that the transformed function is
only defined locally if ε 6= 0.

9.5. Prolongation of transformations

In order to obtain the symmetries of a differential equation, we use a geometric
formulation of how the derivatives of a function transform under point transforma-
tions.

To do this, we introduce a space E(k), called the kth jet space, whose coordinates
are the independent variables, the dependent variable, and the derivatives of the
dependent variable of order less than or equal to k.

We will use multi-index notation for partial derivatives. A multi-index α is an
n-tuple

α = (α1, α2, . . . , αn)

where each αi = 0, 1, 2, . . . is a nonnegative integer. The α-partial derivative of a
function f : Rn → R is

∂αf = ∂α1

x1 ∂
α2

x2 . . . ∂αnxn f.

This partial derivative has order |α| where

|α| = α1 + α2 + · · ·+ αn.

We define E(k) to be the space with coordinates (x, u, ∂αu) where α runs over all
multi-indices with 1 ≤ |α| ≤ k. When convenient, we will use alternative notations
for the partial-derivative coordinates, such as uxi for ∂xiu and uα for ∂αu.

Example 2.16. Written out explicitly, the coordinates on the first-order jet space
E(1) are

(
x1, x2, . . . , xn, u, ux1 , ux2 , . . . , uxn

)
. Thus, E(1) has dimension (2n+ 1).

Example 2.17. For functions u = f(x, y) of two independent variables, the second-
order jet space E(2) has coordinates (x, y, u, ux, uy, uxx, uxy, uyy).
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Point transformations induce a map of functions to functions, and therefore
they induce maps of the derivatives of functions and of the jet spaces.

Specifically, suppose that g(ε) : E → E is a point transformation. We extend,
or prolong g(ε), to a transformation

pr(k)g(ε) : E(k) → E(k)

in the following way. Given a point (x, u, ∂αu) ∈ E(k), pick a function f : Rn → R
whose value at x is u and whose derivatives at x are ∂αu, meaning that

f(x) = u, ∂αf(x) = ∂αu for 1 ≤ |α| ≤ k.

For example, we could choose f to be a polynomial of degree k.
Suppose that g(ε) · (x, u) = (x̃, ũ) is the image of (x, u) ∈ E under g(ε) and

f̃ = g(ε)·f is the image of the function f . We define the image of the jet-coordinates
by

∂̃αu = ∂̃αf̃ (x̃) .

That is, they are the values of the derivatives of the transformed function f̃ (x̃).
One can show that these values do not depend on a particular choice of the function
f , so this gives a well-defined map pr(k)g(ε) on E(k) such that

pr(k)g(ε) : (x, u, ∂αu) 7→
(
x̃, ũ, ∂̃αu

)
.

9.6. Prolongation of vector fields

Suppose that g(ε) : E → E is generated by the vector field

(2.47) ~v(x, u) = ξi(x, u)∂xi + ϕ(x, u)∂u.

Then, writing the coordinates of E(k) as (x, u, uα), the prolonged transformation

pr(k)g(ε) : E(k) → E(k)

is generated by a vector field pr(k)~v on E(k). This prolonged vector field has the
form

pr(k)~v = ξi∂xi + ϕ∂u +

k∑
|α|=1

ϕα∂uα ,

where the ϕα are suitable coefficient functions, which are determined by ~v.
The prolongation formula expresses the coefficients ϕα of the prolonged vector

field in terms of the coefficients ξi, ϕ of the original vector field. We will state the
result here without proof (see [40] for a derivation).

To write the prolongation formula in a compact form — see (2.49) below —
we define the total derivative DxiF : E(k) → R of a function F : E(k) → R with
respect to an independent variable xi by

DxiF = ∂xiF +

k∑
|α|=0

uα,i∂uαF.

Here, we use the notation

uα,i = ∂xi∂
αu

to denote the coordinate of the corresponding derivative. That is, uα,i = uβ where
βi = αi + 1 and βj = αj for j 6= i.
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In other words, the total derivative DxiF of F with respect to xi is what we
would obtain by differentiating F with respect to xi after the coordinates u, uα
have been evaluated at a function of x and its derivatives.

If α = (α1, . . . , αn) is a multi-index, we define the α-total derivative by

Dα = Dα1

x1D
α2

x2 . . . D
αn
xn .

Total derivatives commute, so the order in which we take them does not matter.
Finally, we define the characteristic Q : E(1) → R of the vector field (2.47) by

Q (x, u, ∂u) = ϕ(x, u)− ξi(x, u)uxi ,

where the summation convention is understood, and ∂u = (ux1 , . . . , uxn) is the
first-derivative coordinate.

Then the kth-prolongation of the vector field (2.47) is given by

pr(k)~v = ξi∂xi + ϕ∂u +

k∑
|α|=1

ϕα∂uα ,(2.48)

ϕα = DαQ+ ξiuα,i.(2.49)

This is the main result needed for the algebraic computation of symmetries of a
differential equation. See Olver [40] for the prolongation formula for systems.

9.7. Invariance of a differential equation

A kth order differential equation for a real-valued function u(x) may be written as

F (x, u, ∂αu) = 0

where F : E(k) → R and 1 ≤ |α| ≤ k. Here, we abuse notation and use the same
symbols for the coordinates u, ∂αu and the functions u(x), ∂αu(x).

A local point transformation g(ε) : E → E is a symmetry of the differential
equation if g(ε) · u is a solution whenever u is a solution. This means that, for all
ε in the neighborhood of 0 for which g(ε) is defined, we have

(2.50) F
(
pr(k)g(ε) · (x, u, ∂αu)

)
= F (x, u, ∂αu) on F (x, u, ∂αu) = 0.

Suppose that g(ε) = eε~v. Then, differentiating (2.50) with respect to ε and
setting ε = 0, we conclude that

(2.51) pr(k)~v · F (x, u, ∂αu) = 0 on F (x, u, ∂αu) = 0,

where pr(k)~v acts on F by differentiation. Conversely, if F satisfies the ‘maximal
rank’ condition DF 6= 0 on F = 0, which rules out degenerate ways of the equation
such as F 2 = 0, we may integrate the infinitesimal invariance condition (2.51) to
obtain (2.50).

The condition (2.51) is called the determining equation for the infinitesimal
symmetries of the differential equation. It is typically a large, over-determined sys-
tem of equations for ξi(x, u), ϕ(x, u) and their derivatives, which is straightforward
(though tedious) to solve.

Thus, in summary, to compute the point symmetries of a differential equation

F (x, u, ∂αu) = 0

we use the prolongation formula (2.48)–(2.49) to write down the infinitesimal in-
variance condition (2.51), solve the resulting equations for ξi(x, u) and ϕ(x, u), then
integrate the vector fields (2.47) to obtain the symmetries g = e~v.



40

9.8. Porous medium equation

Let us return to the porous medium equation (2.36).
The space E of independent and dependent variables has coordinates (x, t, u).

We may write the equation as

(2.52) F (u, ux, ut, uxx) = 0

where F : E(2) → R is given by

F (u, ux, ut, uxx) = −ut + u2
x + uuxx.

A vector field ~v on E is given by

(2.53) ~v(x, t, u) = ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u.

From (2.48), the second prolongation of ~v has the form

pr(2)~v = ξ∂x + τ∂t + ϕ∂u + ϕx∂ux + ϕt∂ut + ϕxx∂uxx + ϕxt∂uxt + ϕtt∂utt .

The infinitesimal invariance condition (2.51) applied to (2.52) gives

(2.54) −ϕt + 2uxϕ
x + ϕuxx + uϕxx = 0 on ut = u2

x + uuxx.

From (2.49), we have

ϕx = DxQ+ ξuxx + τuxt,

ϕt = DtQ+ ξuxt + τutt,

ϕxx = D2
xQ+ ξuxxx + τuxxt,

ϕxt = DxDtQ+ ξuxxt + τuxtt,

ϕtt = D2
tQ+ ξuxtt + τuttt,

where the characteristic Q of (2.53) is given by

Q (x, t, u, ut, ux) = ϕ (x, t, u)− ξ (x, t, u)ux − τ (x, t, u)ut,

and the total derivatives Dx, Dt of a function f (x, t, u, ux, ut) are given by

Dxf = fx + uxfu + uxxfux + uxtfut ,

Dtf = ft + utfu + uxtfux + uttfut .

Expanding the total derivatives of Q, we find that

ϕx = ϕx + (ϕu − ξx)ux − τxut − ξuu2
x − τuuxut,

ϕt = ϕt − ξtux + (ϕu − τt)ut − ξuuxut − τuu2
t ,

ϕxx = ϕxx + (2ϕxu − ξxx)ux − τxxut + (ϕuu − 2ξxu)u2
x

− 2τxtuxut − ξuuu3
x − τuuu2

xut + (ϕu − 2ξx)uxx

− 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt.

We use these expressions in (2.54), replace ut by uuxx+u2
x in the result, and equate

coefficients of the terms that involve different combinations of the spatial derivatives
of u to zero.

The highest derivative terms are those proportional to uxt and uxuxt. Their
coefficients are proportional to τx and τu, respectively, so we conclude that τx = 0
and τu = 0, which implies that τ = τ(t) depends only on t.

The remaining terms that involve second-order spatial derivatives are a term
proportional to uxuxx, with coefficient ξu, so ξu = 0 and ξ = ξ(x, t), and a term
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proportional to uxx. Equating the coefficient of the latter term to zero, we find
that

(2.55) ϕ = (2ξx − τt)u.

Thus, ϕ is a linear function of u.
The terms that are left are either proportional to u2

x, ux, or involve no deriva-
tives of u. Equating to zero the coefficients of these terms to zero, we get

τt − 2ξx + ϕu + uϕuu = 0,

ξt − uξxx + 2ϕx + 2uϕxu = 0,

ϕt − uϕxx = 0.

The first equation is satisfied by any ϕ of the form (2.55). The second equation
is satisfied if ξt = 0 and ξxx = 0, which implies that

ξ = ε1 + ε3x

for arbitrary constants ε1, ε3. The third equation holds if τtt = 0, which implies
that

τ = ε2 + ε4t

for arbitrary constants ε2, ε3. Equation (2.55) then gives

ϕ = (2ε3 − ε4)u

Thus, the general form of an infinitesimal generator of a point symmetry of
(2.36) is

~v(x, t, u) = (ε1 + ε3x) ∂x + (ε2 + ε4t) ∂t + (2ε3 − ε4)u∂u.

We may write this as

~v =

4∑
i=1

εi~vi

where the vector fields ~vi are given by

~v1 = ∂x, ~v2 = ∂t(2.56)

~v3 = x∂x + 2u∂u ~v4 = t∂t − u∂u(2.57)

The vector fields ~v1, ~v2 in (2.56) generate the space and time translations

(x, t, u) 7→ (x+ ε1, t, u), (x, t, u) 7→ (x, t+ ε2, u),

respectively. The vector fields ~v3, ~v4 in (2.57) generate the scaling transformations

(x, t, u) 7→
(
eε3x, t, e2ε3u

)
(x, t, u) 7→

(
x, eε4t, e−ε4u

)
.

These are the same as (2.44) with

α = eε3 , β = eε4 .

Thus the full point symmetry group of the porous medium equation is four
dimensional, and is generated by space and time translations and the two scaling
transformations that arise from dimensional analysis.

This result is, perhaps, a little disappointing, since we did not find any new
symmetries, although it is comforting to know that there are no other point sym-
metries to be found. For other equations, however, we can get symmetries that are
not at all obvious.
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Example 2.18. Consider the one-dimensional heat equation

(2.58) ut = uxx.

The determining equation for infinitesimal symmetries is

ϕt = ϕxx on ut = uxx.

Solving this equation and integrating the resulting vector fields, we find that the
point symmetry group of (2.58) is generated by the following transformations [40]:

u(x, t) 7→ u(x− α, t),
u(x, t) 7→ u(x, t− β),

u(x, t) 7→ γu(x, t),

u(x, t) 7→ u(δx, δ2t),

u(x, t) 7→ e−εx+ε2tu(x− 2εt, t),

u(x, t) 7→ 1√
1 + 4ηt

exp

[
−ηx2

1 + 4ηt

]
u

(
x

1 + 4ηt
,

t

1 + 4ηt

)
,

u(x, t) 7→ u(x, t) + v(x, t),

where (α, . . . , η) are constants, and v(x, t) is an arbitrary solution of the heat equa-
tion. The scaling symmetries involving γ and δ can be deduced by dimensional
arguments, but the symmetries involving ε and η cannot.

As these examples illustrate, given a differential equation it is, in principle,
straightforward (but lengthy) to write out the conditions that a vector field gen-
erates a point symmetry of the equation, solve these conditions, and integrate the
resulting infinitesimal generators to obtain the Lie group of continuous point sym-
metries of the equation. There are a number of symbolic algebra packages that will
do this automatically.

Finally, we note that point symmetries are not the only kind of symmetry
one can consider. It is possible to define ‘generalized’ (also called ‘nonclassical’
or ‘higher’) symmetries on infinite-dimensional jet spaces (see [40], for an intro-
duction). These are of particular interest in connection with completely integrable
equations, such as the Korteweg-de Vries (KdV) equation, which possess ‘hidden’
symmetries that are not revealed by their point symmetries


