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LECTURE 5

Stochastic Processes

We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at a
certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it
would embrace in a single formula the movements of the greatest
bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the
past would be present before its eyes.1

In many problems that involve modeling the behavior of some system, we lack
sufficiently detailed information to determine how the system behaves, or the be-
havior of the system is so complicated that an exact description of it becomes
irrelevant or impossible. In that case, a probabilistic model is often useful.

Probability and randomness have many different philosophical interpretations,
but, whatever interpretation one adopts, there is a clear mathematical formulation
of probability in terms of measure theory, due to Kolmogorov.

Probability is an enormous field with applications in many different areas. Here
we simply aim to provide an introduction to some aspects that are useful in applied
mathematics. We will do so in the context of stochastic processes of a continuous
time variable, which may be thought of as a probabilistic analog of deterministic
ODEs. We will focus on Brownian motion and stochastic differential equations,
both because of their usefulness and the interest of the concepts they involve.

Before discussing Brownian motion in Section 3, we provide a brief review of
some basic concepts from probability theory and stochastic processes.

1. Probability

Mathematicians are like Frenchmen: whatever you say to them
they translate into their own language and forthwith it is some-
thing entirely different.2

A probability space (Ω,F , P ) consists of: (a) a sample space Ω, whose points
label all possible outcomes of a random trial; (b) a σ-algebra F of measurable
subsets of Ω, whose elements are the events about which it is possible to obtain
information; (c) a probability measure P : F → [0, 1], where 0 ≤ P (A) ≤ 1 is the
probability that the event A ∈ F occurs. If P (A) = 1, we say that an event A

1Pierre Simon Laplace, in A Philosophical Essay on Probabilities.
2Johann Goethe. It has been suggested that Goethe should have said “Probabilists are like
Frenchmen (or Frenchwomen).”
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occurs almost surely. When the σ-algebra F and the probability measure P are
understood from the context, we will refer to the probability space as Ω.

In this definition, we say thatF is σ-algebra on Ω if it is is a collection of subsets
of Ω such that ∅ and Ω belong to F , the complement of a set in F belongs to F , and
a countable union or intersection of sets in F belongs to F . A probability measure
P on F is a function P : F → [0, 1] such that P (∅) = 0, P (Ω) = 1, and for any
sequence {An} of pairwise disjoint sets (meaning that Ai ∩ Aj = ∅ for i 6= j) we
have

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An) .

Example 5.1. Let Ω be a set and F a σ-algebra on Ω. Suppose that

{ωn ∈ Ω : n ∈ N}
is a countable subset of Ω and {pn} is a sequence of numbers 0 ≤ pn ≤ 1 such that
p1 + p2 + p3 + · · · = 1. Then we can define a probability measure P : F → [0, 1] by

P (A) =
∑
ωn∈A

pn.

If E is a collection of subsets of a set Ω, then the σ-algebra generated by E ,
denoted σ(E), is the smallest σ-algebra that contains E .

Example 5.2. The open subsets of R generate a σ-algebra B called the Borel σ-
algebra of R. This algebra is also generated by the closed sets, or by the collection
of intervals. The interval [0, 1] equipped with the σ-algebra B of its Borel subsets
and Lebesgue measure, which assigns to an interval a measure equal to its length,
forms a probability space. This space corresponds to the random trial of picking a
uniformly distributed real number from [0, 1].

1.1. Random variables

A function X : Ω → R defined on a set Ω with a σ-algebra F is said to be F-
measurable, or simply measurable when F is understood, if X−1(A) ∈ F for every
Borel set A ∈ B in R. A random variable on a probability space (Ω,F , P ) is a
real-valued F-measurable function X : Ω → R. Intuitively, a random variable is a
real-valued quantity that can be measured from the outcome of a random trial.

If f : R→ R is a Borel measurable function, meaning that f−1(A) ∈ B for every
A ∈ B, and X is a random variable, then Y = f ◦X, defined by Y (ω) = f (X(ω)),
is also a random variable.

We denote the expected value of a random variable X with respect to the
probability measure P by EP [X], or E[X] when the measure P is understood.
The expected value is a real number which gives the mean value of the random
variable X. Here, we assume that X is integrable, meaning that the expected value
E[ |X| ] < ∞ is finite. This is the case if large values of X occur with sufficiently
low probability.

Example 5.3. If X is a random variable with mean µ = E[X], the variance σ2 of
X is defined by

σ2 = E
[
(X − µ)

2
]
,

assuming it is finite. The standard deviation σ provides a measure of the departure
of X from its mean µ. The covariance of two random variables X1, X2 with means
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µ1, µ2, respectively, is defined by

cov (X1, X2) = E [(X1 − µ1) (X2 − µ2)] .

We will also loosely refer to this quantity as a correlation function, although strictly
speaking the correlation function of X1, X2 is equal to their covariance divided by
their standard deviations.

The expectation is a linear functional on random variables, meaning that for
integrable random variables X, Y and real numbers c we have

E [X + Y ] = E [X] + E [Y ] , E [cX] = cE [X] .

The expectation of an integrable random variable X may be expressed as an
integral with respect to the probability measure P as

E[X] =

∫
Ω

X(ω) dP (ω).

In particular, the probability of an event A ∈ F is given by

P (A) =

∫
A

dP (ω) = E [1A]

where 1A : Ω→ {0, 1} is the indicator function of A,

1A(ω) =

{
1 if ω ∈ A,
0 if ω /∈ A.

We will say that two random variables are equal P -almost surely, or almost surely
when P is understood, if they are equal on an event A such that P (A) = 1. Sim-
ilarly, we say that a random variable X : A ⊂ Ω → R is defined almost surely
if P (A) = 1. Functions of random variables that are equal almost surely have
the same expectations, and we will usually regard such random variables as being
equivalent.

Suppose that {Xλ : λ ∈ Λ} is a collection of functions Xλ : Ω → R. The
σ-algebra generated by {Xλ : λ ∈ Λ}, denoted σ (Xλ : λ ∈ Λ), is the smallest σ-
algebra G such that Xλ is G-measurable for every λ ∈ Λ. Equivalently, G = σ (E)
where E =

{
X−1
λ (A) : λ ∈ Λ, A ∈ B(R)

}
.

1.2. Absolutely continuous and singular measures

Suppose that P,Q : F → [0, 1] are two probability measures defined on the same
σ-algebra F of a sample space Ω.

We say thatQ is absolutely continuous with respect to P is there is an integrable
random variable f : Ω→ R such that for every A ∈ F we have

Q (A) =

∫
A

f(ω)dP (ω).

We will write this relation as

dQ = fdP,

and call f the density of Q with respect to P . It is defined P -almost surely. In that
case, if EP and EQ denote the expectations with respect to P and Q, respectively,
and X is a random variable which is integrable with respect to Q, then

EQ[X] =

∫
Ω

X dQ =

∫
Ω

fX dP = EP [fX].
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We say that probability measures P and Q on F are singular if there is an
event A ∈ F such that P (A) = 1 and Q (A) = 0 (or, equivalently, P (Ac) = 0
and Q (Ac) = 1). This means that events which occur with finite probability with
respect to P almost surely do not occur with respect to Q, and visa-versa.

Example 5.4. Let P be the Lebesgue probability measure on ([0, 1],B) described
in Example 5.2. If f : [0, 1]→ [0,∞) is a nonnegative, integrable function with∫ 1

0

f(ω) dω = 1,

where dω denotes integration with respect to Lebesgue measure, then we can define
a measure Q on ([0, 1],B) by

Q(A) =

∫
A

f(ω) dω.

The measure Q is absolutely continuous with respect to P with density f . Note
that P is not necessarily absolutely continuous with respect to Q; this is the case
only if f 6= 0 almost surely and 1/f is integrable. If R is a measure on ([0, 1],B)
of the type given in Example 5.1 then R and P (or R and Q) are singular because
the Lebesgue measure of any countable set is equal to zero.

1.3. Probability densities

The distribution function F : R→ [0, 1] of a random variable X : Ω→ R is defined
by F (x) = P {ω ∈ Ω : X(ω) ≤ x} or, in more concise notation,

F (x) = P {X ≤ x} .
We say that a random variable is continuous if the probability measure it

induces on R is absolutely continuous with respect to Lebesgue measure.3 Most of
the random variables we consider here will be continuous.

If X is a continuous random variable with distribution function F , then F is
differentiable and

p(x) = F ′(x)

is the probability density function of X. If A ∈ B(R) is a Borel subset of R, then

P {X ∈ A} =

∫
A

p(x) dx.

The density satisfies p(x) ≥ 0 and∫ ∞
−∞

p(x) dx = 1.

Moreover, if f : R → R is any Borel-measurable function such that f(X) is inte-
grable, then

E[f(X)] =

∫ ∞
−∞

f(x)p(x) dx.

Example 5.5. A random variable X is Gaussian with mean µ and variance σ2 if
it has the probability density

p (x) =
1√

2πσ2
e−(x−µ)2/(2σ2).

3This excludes, for example, counting-type random variables that take only integer values.
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We say that random variables X1, X2, . . . Xn : Ω→ R are jointly continuous if
there is a joint probability density function p (x1, x2, . . . , xn) such that

P {X1 ∈ A1, X1 ∈ A1,. . . , Xn ∈ An} =

∫
A

p (x1, x2 . . . , xn) dx1dx2 . . . dxn.

where A = A1 ×A2 × · · · ×An. Then p (x1, x2, . . . , xn) ≥ 0 and∫
Rn
p (x1, x2, . . . , xn) dx1dx2 . . . dxn = 1.

Expected values of functions of the Xi are given by

E [f (X1, X2, . . . , Xn)] =

∫
Rn
f (x1, x2, . . . , xn) p (x1, x2, . . . , xn) dx1dx2 . . . dxn.

We can obtain the joint probability density of a subset of the Xi’s by integrating
out the other variables. For example, if p(x, y) is the joint probability density of
random variables X and Y , then the marginal probability densities pX(x) and pY (y)
of X and Y , respectively, are given by

pX(x) =

∫ ∞
−∞

p(x, y) dy, pY (y) =

∫ ∞
−∞

p(x, y) dx.

Of course, in general, we cannot obtain the joint density p(x, y) from the marginal
densities pX(x), pY (y), since the marginal densities do not contain any information
about how X and Y are related.

Example 5.6. A random vector ~X = (X1, . . . , Xn) is Gaussian with mean ~µ =
(µ1, . . . , µn) and invertible covariance matrix C = (Cij), where

µi = E [Xi] , Cij = E [(Xi − µi) (Xj − µj)] ,
if it has the probability density

p (~x) =
1

(2π)n/2(detC)1/2
exp

{
−1

2
(~x− ~µ)

>
C−1 (~x− ~µ)

}
.

Gaussian random variables are completely specified by their mean and covariance.

1.4. Independence

Random variables X1, X2, . . . , Xn : Ω→ R are said to be independent if

P {X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An}
= P {X1 ∈ A1}P {X2 ∈ A2} . . . P {Xn ∈ An}

for arbitrary Borel sets A1, A2,. . . ,A3 ⊂ R. If X1, X2,. . . , Xn are independent
random variables, then

E [f1 (X1) f2 (X2) . . . fn (Xn)] = E [f1 (X1)] E [f2 (X2)] . . .E [fn (Xn)] .

Jointly continuous random variables are independent if their joint probability den-
sity distribution factorizes into a product:

p (x1, x2, . . . , xn) = p1 (x1) p2 (x2) . . . pn (xn) .

If the densities pi = pj are the same for every 1 ≤ i, j ≤ n, then we say that
X1,X2,. . . , Xn are independent, identically distributed random variables.

Heuristically, each random variable in a collection of independent random vari-
ables defines a different ‘coordinate axis’ of the probability space on which they are
defined. Thus, any probability space that is rich enough to support a countably infi-
nite collection of independent random variables is necessarily ‘infinite-dimensional.’
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Example 5.7. The Gaussian random variables in Example 5.6 are independent if
and only if the covariance matrix C is diagonal.

The sum of independent Gaussian random variables is a Gaussian random vari-
able whose mean and variance are the sums of those of the independent Gaussians.
This is most easily seen by looking at the characteristic function of the sum,

E
[
eiξ(X1+···+Xn)

]
= E

[
eiξX1

]
. . .E

[
eiξXn

]
,

which is the Fourier transform of the density. The characteristic function of a

Gaussian with mean µ and variance σ2 is eiξµ−σ
2ξ2/2, so the means and variances

add when the characteristic functions are multiplied. Also, a linear transformations
of Gaussian random variables is Gaussian.

1.5. Conditional expectation

Conditional expectation is a somewhat subtle topic. We give only a brief discussion
here. See [45] for more information and proofs of the results we state here.

First, suppose that X : Ω→ R is an integrable random variable on a probability
space (Ω,F , P ). Let G ⊂ F be a σ-algebra contained in F . Then the conditional
expectation of X given G is a G-measurable random variable

E [X | G] : Ω→ R

such that for all bounded G-measurable random variables Z

E [ E [X | G]Z ] = E [XZ] .

In particular, choosing Z = 1B as the indicator function of B ∈ G, we get

(5.1)

∫
B

E [X | G] dP =

∫
B

X dP for all B ∈ G.

The existence of E [X | G] follows from the Radon-Nikodym theorem or by a
projection argument. The conditional expectation is only defined up to almost-sure
equivalence, since (5.1) continues to hold if E[X | G] is modified on an event in G
that has probability zero. Any equations that involve conditional expectations are
therefore understood to hold almost surely.

Equation (5.1) states, roughly, that E [X | G] is obtained by averaging X over
the finer σ-algebra F to get a function that is measurable with respect to the coarser
σ-algebra G. Thus, one may think of E [X | G] as providing the ‘best’ estimate of
X given information about the events in G.

It follows from the definition that ifX, XY are integrable and Y is G-measurable
then

E [XY | G] = YE [X | G] .

Example 5.8. The conditional expectation given the full σ-algebra F , correspond-
ing to complete information about events, is E [X | F ] = X. The conditional ex-
pectation given the trivial σ-algebra M = {∅,Ω}, corresponding to no information
about events, is the constant function E [X | G] = E[X].

Example 5.9. Suppose that G = {∅, B,Bc,Ω} where B is an event such that
0 < P (B) < 1. This σ-algebra corresponds to having information about whether
or not the event B has occurred. Then

E [X | G] = p1B + q1Bc
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where p, q are the expected values of X on B, Bc, respectively

p =
1

P (B)

∫
B

X dP, q =
1

P (Bc)

∫
Bc
X dP.

Thus, E [X | G] (ω) is equal to the expected value of X given B if ω ∈ B, and the
expected value of X given Bc if ω ∈ Bc.

The conditional expectation has the following ‘tower’ property regarding the
collapse of double expectations into a single expectation: If H ⊂ G are σ-algebras,
then

(5.2) E [E [X | G] | H] = E [E [X | H] | G] = E [X | H] ,

sometimes expressed as ‘the coarser algebra wins.’
If X,Y : Ω → R are integrable random variables, we define the conditional

expectation of X given Y by

E [X | Y ] = E [X | σ(Y )] .

This random variable depends only on the events that Y defines, not on the values
of Y themselves.

Example 5.10. Suppose that Y : Ω→ R is a random variable that attains count-
ably many distinct values yn. The sets Bn = Y −1(yn), form a countable disjoint
partition of Ω. For any integrable random variable X, we have

E [X | Y ] =
∑
n∈N

zn 1Bn

where 1Bn is the indicator function of Bn, and

zn =
E [1BnX]

P (Bn)
=

1

P (Bn)

∫
Bn

X dP

is the expected value of X on Bn. Here, we assume that P (Bn) 6= 0 for every n ∈ N.
If P (Bn) = 0 for some n, then we omit that term from the sum, which amounts
to defining E [X | Y ] (ω) = 0 for ω ∈ Bn. The choice of a value other than 0 for
E [X | Y ] on Bn would give an equivalent version of the conditional expectation.
Thus, if Y (ω) = yn then E [X | Y ] (ω) = zn where zn is the expected value of X (ω′)
over all ω′ such that Y (ω′) = yn. This expression for the conditional expectation
does not apply to continuous random variables Y , since then P{Y = y} = 0
for every y ∈ R, but we will give analogous results below for continuous random
variables in terms of their probability densities.

If Y, Z : Ω → R are random variables such that Z is measurable with respect
to σ(Y ), then one can show that there is a Borel function ϕ : R → R such that
Z = ϕ(Y ). Thus, there is a Borel function ϕ : R→ R such that

E [X | Y ] = ϕ(Y ).

We then define the conditional expectation of X given that Y = y by

E [X | Y = y] = ϕ(y).

Since the conditional expectation E[X | Y ] is, in general, defined almost surely, we
cannot define E [X | Y = y] unambiguously for all y ∈ R, only for y ∈ A where A
is a Borel subset of R such that P{Y ∈ A} = 1.
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More generally, if Y1, . . . , Yn are random variables, we define the conditional
expectation of an integrable random variable X given Y1, . . . , Yn by

E [X | Y1, . . . , Yn] = E [X | σ (Y1, . . . , Yn)] .

This is a random variable E [X | Y1, . . . , Yn] : Ω → R which is measurable with
respect to σ (Y1, . . . , Yn) and defined almost surely. As before, there is a Borel
function ϕ : Rn → R such that E [X | Y1, . . . , Yn] = ϕ (Y1, . . . , Yn). We denote the
corresponding conditional expectation of X given that Y1 = y1, . . . , Yn = yn by

E [X | Y1 = y1, . . . , Yn = yn] = ϕ (y1, . . . , yn) .

Next we specialize these results to the case of continuous random variables.
Suppose that X1, . . . , Xm, Y1, . . . , Yn are random variables with a joint probability
density p (x1, x2, . . . xm, y1, y2, . . . , yn). The conditional joint probability density of
X1, X2,. . . , Xm given that Y1 = y1, Y2 = y2,. . . , Yn = yn, is

(5.3) p (x1, x2, . . . xm | y1, y2, . . . , yn) =
p (x1, x2, . . . xm, y1, y2, . . . , yn)

pY (y1, y2, . . . , yn)
,

where pY is the marginal density of the (Y1, . . . , Yn),

pY (y1, . . . , yn) =

∫
Rm

p (x1, . . . , xm, y1, . . . , yn) dx1 . . . dxm.

The conditional expectation of f (X1, . . . , Xm) given that Y1 = y1, . . . , Yn = yn is

E [f (X1, . . . , Xm) | Y1 = y1, . . . , Yn = yn]

=

∫
Rm

f (x1, . . . , xm) p (x1, . . . xm | y1, . . . , yn) dx1, . . . , dxm.

The conditional probability density p (x1, . . . xm | y1, . . . , yn) in (5.3) is defined
for (y1, . . . , yn) ∈ A, where A = {(y1, . . . , yn) ∈ Rn : pY (y1, . . . , yn) > 0}. Since

P {(Y1, . . . , Yn) ∈ Ac} =

∫
Ac
pY (y1, . . . , yn) dy1 . . . dyn = 0

we have P{(Y1, . . . , Yn) ∈ A} = 1.

Example 5.11. If X, Y are random variables with joint probability density p(x, y),
then the conditional probability density of X given that Y = y, is defined by

p(x | y) =
p(x, y)

pY (y)
, pY (y) =

∫ ∞
−∞

p(x, y) dx,

provided that pY (y) > 0. Also,

E [f(X,Y ) | Y = y] =

∫ ∞
−∞

f(x, y)p(x | y) dx =

∫∞
−∞ f(x, y)p(x, y) dx

pY (y)
.

2. Stochastic processes

Consider a real-valued quantity that varies ‘randomly’ in time. For example, it
could be the brightness of a twinkling star, a velocity component of the wind at
a weather station, a position or velocity coordinate of a pollen grain in Brownian
motion, the number of clicks recorded by a Geiger counter up to a given time, or
the value of the Dow-Jones index.

We describe such a quantity by a measurable function

X : [0,∞)× Ω→ R



LECTURE 5. STOCHASTIC PROCESSES 137

where Ω is a probability space, and call X a stochastic process. The quantity
X(t, ω) is the value of the process at time t for the outcome ω ∈ Ω. When it is
not necessary to refer explicitly to the dependence of X(t, ω) on ω, we will write
the process as X(t). We consider processes that are defined on 0 ≤ t < ∞ for
definiteness, but one can also consider processes defined on other time intervals,
such as [0, 1] or R. One can also consider discrete-time processes with t ∈ N, or
t ∈ Z, for example. We will consider only continuous-time processes.

We may think of a stochastic process in two different ways. First, fixing ω ∈ Ω,
we get a function of time

Xω : t 7→ X(t, ω),

called a sample function (or sample path, or realization) of the process. From this
perspective, the process is a collection of functions of time {Xω : ω ∈ Ω}, and the
probability measure is a measure on the space of sample functions.

Alternatively, fixing t ∈ [0,∞), we get a random variable

Xt : ω 7→ X(t, ω)

defined on the probability space Ω. From this perspective, the process is a collection
of random variables {Xt : 0 ≤ t < ∞} indexed by the time variable t. The
probability measure describes the joint distribution of these random variables.

2.1. Distribution functions

A basic piece of information about a stochastic process X is the probability dis-
tribution of the random variables Xt for each t ∈ [0,∞). For example if Xt is
continuous, we can describe its distribution by a probability density p(x, t). These
one-point distributions do not, however, tell us how the values of the process at
different times are related.

Example 5.12. Let X be a process such that with probability 1/2, we have Xt = 1
for all t, and with probability 1/2, we have Xt = −1 for all t. Let Y be a process
such that Yt and Ys are independent random variables for t 6= s, and for each t, we
have Yt = 1 with probability 1/2 and Yt = −1 with probability 1/2. Then Xt, Yt
have the same distribution for each t ∈ R, but they are different processes, because
the values of X at different times are completely correlated, while the values of
Y are independent. As a result, the sample paths of X are constant functions,
while the sample paths of Y are almost surely discontinuous at every point (and
non-Lebesgue measurable). The means of these processes, EXt = EYt = 0, are
equal and constant, but they have different covariances

E [XsXt] = 1, E [YsYt] =

{
1 if t = s,
0 otherwise.

To describe the relationship between the values of a process at different times,
we need to introduce multi-dimensional distribution functions. We will assume that
the random variables associated with the process are continuous.

Let 0 ≤ t1 < t2 < · · · < tn be a sequence times, and A1, A2,. . .An a sequence
of Borel subsets R. Let E be the event

E =
{
ω ∈ Ω : Xtj (ω) ∈ Aj for 1 ≤ j ≤ n

}
.
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Then, assuming the existence of a joint probability density p (xn, t; . . . ;x2, t2;x1, t1)
for Xt1 , Xt2 ,. . . , Xtn , we can write

P{E} =

∫
A

p (xn, tn; . . . ;x2, t2;x1, t1) dx1dx2 . . . dxn

where A = A1 × A2 × · · · × An ⊂ Rn. We adopt the convention that times are
written in increasing order from right to left in p.

These finite-dimensional densities must satisfy a consistency condition relating
the (n+1)-dimensional densities to the n-dimensional densities: If n ∈ N, 1 ≤ i ≤ n
and t1 < t2 < · · · < ti < · · · < tn, then∫ ∞

−∞
p (xn+1, tn+1; . . . ;xi+1, ti+1;xi, ti;xi−1, ti−1; . . . ;x1, t1) dxi

= p (xn+1, tn+1; . . . ;xi+1, ti+1;xi−1, ti−1; . . . ;x1, t1) .

We will regard these finite-dimensional probability densities as providing a full
description of the process. For continuous-time processes this requires an assump-
tion of separability, meaning that the process is determined by its values at count-
ably many times. This is the case, for example, if its sample paths are continuous,
so that they are determined by their values at all rational times.

Example 5.13. To illustrate the inadequacy of finite-dimensional distributions for
the description of non-separable processes, consider the process X : [0, 1]× Ω→ R
defined by

X(t, ω) =

{
1 if t = ω,
0 otherwise,

where Ω = [0, 1] and P is Lebesgue measure on Ω. In other words, we pick a point
ω ∈ [0, 1] at random with respect to a uniform distribution, and change Xt from
zero to one at t = ω. The single time distribution of Xt is given by

P {Xt ∈ A} =

{
1 if 0 ∈ A,
0 otherwise,

since the probability that ω = t is zero. Similarly,

P {Xt1 ∈ A1, . . . , Xtn ∈ An} =

{
1 if 0 ∈

⋂n
i=1Ai,

0 otherwise,

since the probability that ω = ti for some 1 ≤ i ≤ n is also zero. Thus, X has
the same finite-dimensional distributions as the trivial zero-process Z(t, ω) = 0.
If, however, we ask for the probability that the realizations are continuous, we get
different answers:

P {Xω is continuous on [0, 1]} = 0, P {Zω is continuous on [0, 1]} = 1.

The problem here is that in order to detect the discontinuity in a realization Xω

of X, one needs to look at its values at an uncountably infinite number of times.
Since measures are only countably additive, we cannot determine the probability
of such an event from the probability of events that depend on the values of Xω at
a finite or countably infinite number of times.
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2.2. Stationary processes

A process Xt, defined on −∞ < t < ∞, is stationary if Xt+c has the same distri-
bution as Xt for all −∞ < c < ∞; equivalently this means that all of its finite-
dimensional distributions depend only on time differences. ‘Stationary’ here is used
in a probabilistic sense; it does not, of course, imply that the individual sample
functions do not vary in time. For example, if one considers the fluctuations of a
thermodynamic quantity, such as the pressure exerted by a gas on the walls of its
container, this quantity varies in time even when the system is in thermodynamic
equilibrium. The one-point probability distribution of the quantity is independent
of time, but the two-point correlation at different times depends on the time differ-
ence.

2.3. Gaussian processes

A process is Gaussian if all of its finite-dimensional distributions are multivariate
Gaussian distributions. A separable Gaussian process is completely determined by
the means and covariance matrices of its finite-dimensional distributions.

2.4. Filtrations

Suppose that X : [0,∞) × Ω → R is a stochastic process on a probability space Ω
with σ-algebra F . For each 0 ≤ t <∞, we define a σ-algebra Ft by

(5.4) Ft = σ (Xs : 0 ≤ s ≤ t) .

If 0 ≤ s < t, then Fs ⊂ Ft ⊂ F . Such a family of σ-fields {Ft : 0 ≤ t <∞} is called
a filtration of F .

Intuitively, Ft is the collection of events whose occurrence can be determined
from observations of the process up to time t, and an Ft-measurable random variable
is one whose value can be determined by time t. If X is any random variable, then
E [X | Ft ] is the ‘best’ estimate of X based on observations of the process up to
time t.

The properties of conditional expectations with respect to filtrations define
various types of stochastic processes, the most important of which for us will be
Markov processes.

2.5. Markov processes

A stochastic process X is said to be a Markov process if for any 0 ≤ s < t and any
Borel measurable function f : R → R such that f(Xt) has finite expectation, we
have

E [f (Xt) | Fs] = E [f (Xt) | Xs] .

Here Fs is defined as in (5.4). This property means, roughly, that ‘the future is
independent of the past given the present.’ In anthropomorphic terms, a Markov
process only cares about its present state, and has no memory of how it got there.

We may also define a Markov process in terms of its finite-dimensional distri-
butions. As before, we consider only processes for which the random variables Xt

are continuous, meaning that their distributions can be described by probability
densities. For any times

0 ≤ t1 < t2 < · · · < tm < tm+1 < · · · < tn,
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the conditional probability density that Xti = xi for m + 1 ≤ i ≤ n given that
Xti = xi for 1 ≤ i ≤ m is given by

p (xn, tn; . . . ;xm+1, tm+1 | xm, tm; . . . ;x1, t1) =
p (xn, tn; . . . ;x1, t1)

p (xm, tm; . . . ;x1, t1)
.

The process is a Markov process if these conditional densities depend only on the
conditioning at the most recent time, meaning that

p (xn+1, tn+1 | xn, tn; . . . ;x2, t2;x1, t1) = p (xn+1, tn+1 | xn, tn) .

It follows that, for a Markov process,

p (xn, tn; . . . ;x2, t2 | x1, t1) = p (xn, tn | xn−1, tn−1) . . . p (x2, t2 | x1, t1) .

Thus, we can determine all joint finite-dimensional probability densities of a con-
tinuous Markov process Xt in terms of the transition density p (x, t | y, s) and the
probability density p0(x) of its initial value X0. For example, the one-point density
of Xt is given by

p(x, t) =

∫ ∞
−∞

p (x, t | y, 0) p0(y) dy.

The transition probabilities of a Markov process are not arbitrary and satisfy
the Chapman-Kolmogorov equation. In the case of a continuous Markov process,
this equation is

(5.5) p(x, t | y, s) =

∫ ∞
−∞

p(x, t | z, r)p(z, r | y, s) dz for any s < r < t,

meaning that in going from y at time s to x at time t, the process must go though
some point z at any intermediate time r.

A continuous Markov process is time-homogeneous if

p(x, t | y, s) = p(x, t− s | y, 0),

meaning that its stochastic properties are invariant under translations in time.
For example, a stochastic differential equation whose coefficients do not depend
explicitly on time defines a time-homogeneous continuous Markov process. In that
case, we write p(x, t | y, s) = p(x, t− s | y) and the Chapman-Kolmogorov equation
(5.5) becomes

(5.6) p(x, t | y) =

∫ ∞
−∞

p(x, t− s | z)p(z, s | y) dz for any 0 < s < t.

Nearly all of the processes we consider will be time-homogeneous.

2.6. Martingales

Martingales are fundamental to the analysis of stochastic processes, and they have
important connections with Brownian motion and stochastic differential equations.
Although we will not make use of them, we give their definition here.

We restrict our attention to processes M with continuous sample paths on a
probability space (Ω,Ft, P ), where Ft = σ (Mt : t ≥ 0) is the filtration induced by
M . Then M is a martingale4 if Mt has finite expectation for every t ≥ 0 and for

4The term ‘martingale’ was apparently used in 18th century France as a name for the roulette

betting ‘strategy’ of doubling the bet after every loss. If one were to compile a list of nondescriptive
and off-putting names for mathematical concepts, ‘martingale’ would almost surely be near the

top.
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any 0 ≤ s < t,
E [Mt | Fs ] = Ms.

Intuitively, a martingale describes a ‘fair game’ in which the expected value of a
player’s future winnings Mt is equal to the player’s current winnings Ms. For more
about martingales, see [46], for example.

3. Brownian motion

The grains of pollen were particles...of a figure between cylindri-
cal and oblong, perhaps slightly flattened...While examining the
form of these particles immersed in water, I observed many of
them very evidently in motion; their motion consisting not only
of a change in place in the fluid manifested by alterations in
their relative positions...In a few instances the particle was seen
to turn on its longer axis. These motions were such as to satisfy
me, after frequently repeated observations, that they arose nei-
ther from currents in the fluid, nor from its gradual evaporation,
but belonged to the particle itself.5

In 1827, Robert Brown observed that tiny pollen grains in a fluid undergo a
continuous, irregular movement that never stops. Although Brown was perhaps not
the first person to notice this phenomenon, he was the first to study it carefully,
and it is now known as Brownian motion.

The constant irregular movement was explained by Einstein (1905) and the
Polish physicist Smoluchowski (1906) as the result of fluctuations caused by the
bombardment of the pollen grains by liquid molecules. (It is not clear that Ein-
stein was initially aware of Brown’s observations — his motivation was to look for
phenomena that could provide evidence of the atomic nature of matter.)

For example, a colloidal particle of radius 10−6 m in a liquid, is subject to
approximately 1020 molecular collisions each second, each of which changes its
velocity by an amount on the order of 10−8 m s−1. The effect of such a change is
imperceptible, but the cumulative effect of an enormous number of impacts leads
to observable fluctuations in the position and velocity of the particle.6

Einstein and Smoluchowski adopted different approaches to modeling this prob-
lem, although their conclusions were similar. Einstein used a general, probabilistic
argument to derive a diffusion equation for the number density of Brownian par-
ticles as a function of position and time, while Smoluchowski employed a detailed
kinetic model for the collision of spheres, representing the molecules and the Brow-
nian particles. These approaches were partially connected by Langevin (1908) who
introduced the Langevin equation, described in Section 5 below.

Perrin (1908) carried out experimental observations of Brownian motion and
used the results, together with Einstein’s theoretical predictions, to estimate Avo-
gadro’s number NA; he found NA ≈ 7 × 1023 (see Section 6.2). Thus, Brownian
motion provides an almost direct observation of the atomic nature of matter.

Independently, Louis Bachelier (1900), in his doctoral dissertation, introduced
Brownian motion as a model for asset prices in the French bond market. This work
received little attention at the time, but there has been extensive subsequent use of

5Robert Brown, from Miscellaneous Botanical Works Vol. I, 1866.
6Deutsch (1992) suggested that these fluctuations are in fact too small for Brown to have observed

them with contemporary microscopes, and that the motion Brown saw had some other cause.
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the theory of stochastic processes to model financial markets, especially following
the development of the Black-Scholes-Merton (1973) model for options pricing (see
Section 8).

Wiener (1923) gave the first construction of Brownian motion as a measure
on the space of continuous functions, now called Wiener measure. Wiener did
this by several different methods, including the use of Fourier series with random
coefficients (c.f. (5.7) below). This work was further developed by Wiener and
many others, especially Lévy (1939).

3.1. Definition

Standard (one-dimensional) Brownian motion starting at 0, also called the Wiener
process, is a stochastic process B(t, ω) with the following properties:

(1) B(0, ω) = 0 for every ω ∈ Ω;
(2) for every 0 ≤ t1 < t2 < t3 < · · · < tn, the increments

Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −Btn−1

are independent random variables;
(3) for each 0 ≤ s < t < ∞, the increment Bt − Bs is a Gaussian random

variable with mean 0 and variance t− s;
(4) the sample paths Bω : [0,∞) → R are continuous functions for every

ω ∈ Ω.

The existence of Brownian motion is a non-trivial fact. The main issue is to
show that the Gaussian probability distributions, which imply that B(t+∆t)−B(t)

is typically of the order
√

∆t, are consistent with the continuity of sample paths. We
will not give a proof here, or derive the properties of Brownian motion, but we will
describe some results which give an idea of how it behaves. For more information
on the rich mathematical theory of Brownian motion, see for example [15, 46].

The Gaussian assumption must, in fact, be satisfied by any process with inde-
pendent increments and continuous sample sample paths. This is a consequence of
the central limit theorem, because each increment

Bt −Bs =

n∑
i=0

(
Bti+1 −Bti

)
s = t0 < t1 < · · · < tn = t,

is a sum of arbitrarily many independent random variables with zero mean; the
continuity of sample paths is sufficient to ensure that the hypotheses of the central
limit theorem are satisfied. Moreover, since the means and variances of independent
Gaussian variables are additive, they must be linear functions of the time difference.
After normalization, we may assume that the mean of Bt − Bs is zero and the
variance is t− s, as in standard Brownian motion.

Remark 5.14. A probability distribution F is said to be infinitely divisible if, for
every n ∈ N, there exists a probability distribution Fn such that if X1,. . .Xn are
independent, identically distributed random variables with distribution Fn, then
X1 + · · ·+Xn has distribution F . The Gaussian distribution is infinitely divisible,
since a Gaussian random variable with mean µ and variance σ2 is a sum of n
independent, identically distributed random variables with mean µ/n and variance
σ2/n, but it is not the only such distribution; the Poisson distribution is another
basic example. One can construct a stochastic process with independent increments
for any infinitely divisible probability distribution. These processes are called Lévy
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processes [5]. Brownian motion is, however, the only Lévy process whose sample
paths are almost surely continuous; the paths of other Lévy processes contain jump
discontinuities in any time interval with nonzero probability.

Since Brownian motion is a sum of arbitrarily many independent increments in
any time-interval, it has a random fractal structure in which any part of the motion,
after rescaling, has the same distribution as the original motion (see Figure 1).
Specifically, if c > 0 is a constant, then

B̃t =
1

c1/2
Bct

has the same distribution as Bt, so it is also a Brownian motion. Moreover, we
may translate a Brownian motion Bt from any time s back to the origin to get a
Brownian motion B̂t = Bt+s −Bs, and then rescale the translated process.

Figure 1. A sample path for Brownian motion, and a rescaling
of it near the origin to illustrate the random fractal nature of the
paths.

The condition of independent increments implies that Brownian motion is a
Gaussian Markov process. It is not, however, stationary; for example, the variance
t of Bt is not constant and grows linearly in time. We will discuss a closely related
process in Section 5, called the stationary Ornstein-Uhlenbeck process, which is a
stationary, Gaussian, Markov process (in fact, it is the only such process in one
space dimension with continuous sample paths).

One way to think about Brownian motion is as a limit of random walks in
discrete time. This provides an analytical construction of Brownian motion, and
can be used to simulate it numerically. For example, consider a particle on a line
that starts at x = 0 when t = 0 and moves as follows: After each time interval of
length ∆t, it steps a random distance sampled from independent, identically dis-
tributed Gaussian distributions with mean zero and variance ∆t. Then, according
to Donsker’s theorem, the random walk approaches a Brownian motion in distri-
bution as ∆t → 0. A key point is that although the total distance moved by the
particle after time t goes to infinity as ∆t→ 0, since it takes roughly on the order
of 1/∆t steps of size

√
∆t, the net distance traveled remains finite almost surely



144

because of the cancelation between forward and backward steps, which have mean
zero.

Another way to think about Brownian motion is in terms of random Fourier
series. For example, Wiener (1923) showed that if A0, A1, . . . , An, . . . are indepen-
dent, identically distributed Gaussian variables with mean zero and variance one,
then the Fourier series

(5.7) B(t) =
1√
π

(
A0t+ 2

∞∑
n=1

An
sinnt

n

)
almost surely has a subsequence of partial sums that converges uniformly to a
continuous function. Furthermore, the resulting process B is a Brownian motion
on [0, π]. The nth Fourier coefficient in (5.7) is typically of the order 1/n, so the
uniform convergence of the series depends essentially on the cancelation between
terms that results from the independence of their random coefficients.

3.2. Probability densities and the diffusion equation

Next, we consider the description of Brownian motion in terms of its finite-dimensional
probability densities. Brownian motion is a time-homogeneous Markov process,
with transition density

(5.8) p(x, t | y) =
1√
2πt

e−(x−y)2/2t for t > 0.

As a function of (x, t), the transition density satisfies the diffusion, or heat, equation

(5.9)
∂p

∂t
=

1

2

∂2p

∂x2
,

and the initial condition
p(x, 0 | y) = δ(x− y).

The one-point probability density for Brownian motion starting at 0 is the
Green’s function of the diffusion equation,

p(x, t) =
1√
2πt

e−x
2/2t.

More generally, if a Brownian motion Bt does not start almost surely at 0 and the
initial value B0 is a continuous random variable, independent of the rest of the
motion, with density p0(x), then the density of Bt for t > 0 is given by

(5.10) p(x, t) =
1√
2πt

∫
e−(x−y)2/2tp0(y) dy.

This is the Green’s function representation of the solution of the diffusion equation
(5.9) with initial data p(x, 0) = p0(x).

One may verify explicitly that the transition density (5.8) satisfies the Chapman-
Kolmogorov equation (5.6). If we introduce the solution operators of (5.9),

Tt : p0(·) 7→ p(·, t)
defined by (5.10), then the Chapman-Kolmogorov equation is equivalent to the
semi-group property TtTs = Tt+s. We use the term ‘semi-group’ here, because we
cannot, in general, solve the diffusion equation backward in time, so Tt does not
have an inverse (as would be required in a group).

The covariance function of Brownian motion is given by

(5.11) E [BtBs] = min(t, s).
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To see this, suppose that s < t. Then the increment Bt −Bs has zero mean and is
independent of Bs, and Bs has variance s, so

E [BsBt] = E [(Bt −Bs)Bs] + E
[
B2
s

]
= s.

Equivalently, we may write (5.11) as

E [BsBt] =
1

2
(|t|+ |s| − |t− s|) .

Remark 5.15. One can a define a Gaussian process Xt, depending on a parameter
0 < H < 1, called fractional Brownian motion which has mean zero and covariance
function

E [XsXt] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

The parameter H is called the Hurst index of the process. When H = 1/2, we get
Brownian motion. This process has similar fractal properties to standard Brownian
motion because of the scaling-invariance of its covariance [17].

3.3. Sample path properties

Although the sample paths of Brownian motion are continuous, they are almost
surely non-differentiable at every point.

We can describe the non-differentiablity of Brownian paths more precisely. A
function F : [a, b]→ R is Hölder continuous on the interval [a, b] with exponent γ,
where 0 < γ ≤ 1, if there exists a constant C such that

|F (t)− F (s)| ≤ C|t− s|γ for all s, t ∈ [a, b].

For 0 < γ < 1/2, the sample functions of Brownian motion are almost surely Hölder
continuous with exponent γ on every bounded interval; but for 1/2 ≤ γ ≤ 1, they
are almost surely not Hölder continuous with exponent γ on any bounded interval.

One way to understand these results is through the law of the iterated loga-
rithm, which states that, almost surely,

lim sup
t→0+

Bt(
2t log log 1

t

)1/2 = 1, lim inf
t→0+

Bt(
2t log log 1

t

)1/2 = −1.

Thus, although the typical fluctuations of Brownian motion over times ∆t are of
the order

√
∆t, there are rare deviations which are larger by a very slowly growing,

but unbounded, double-logarithmic factor of
√

2 log log(1/∆t).
Although the sample paths of Brownian motion are almost surely not Hölder

continuous with exponent 1/2, there is a sense in which Brownian motion satisfies a
stronger condition probabilistically: When measured with respect to a given, non-
random set of partitions, the quadratic variation of a Brownian path on an interval
of length t is almost surely equal to t. This property is of particular significance in
connection with Itô’s theory of stochastic differential equations (SDEs).

In more detail, suppose that [a, b] is any time interval, and let {Πn : n ∈ N} be
a sequence of non-random partitions of [a, b],

Πn = {t0, t1, . . . , tn} , a = t0 < t1 < · · · < tn = b.

To be specific, suppose that Πn is obtained by dividing [a, b] into n subintervals
of equal length (the result is independent of the choice of the partitions, provided
they are not allowed to depend on ω ∈ Ω so they cannot be ‘tailored’ to fit each
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realization individually). We define the quadratic variation of a sample function Bt
on the time-interval [a, b] by

QV ba (Bt) = lim
n→∞

n∑
i=1

(
Bti −Bti−1

)2
.

The n terms in this sum are independent, identically distributed random variables
with mean (b − a)/n and variance 2(b − a)2/n2. Thus, the sum has mean (b − a)
and variance proportional to 1/n. Therefore, by the law of large numbers, the limit
exists almost surely and is equal to (b − a). By contrast, the quadratic variation
of any continuously differentiable function, or any function of bounded variation,
is equal to zero.

This property of Brownian motion leads to the formal rule of the Itô calculus
that

(5.12) (dB)
2

= dt.

The apparent peculiarity of this formula, that the ‘square of an infinitesimal’ is
another first-order infinitesimal, is a result of the nonzero quadratic variation of
the Brownian paths.

The Hölder continuity of the Brownian sample functions for 0 < γ < 1/2
implies that, for any α > 2, the α-variation is almost surely equal to zero:

lim
n→∞

n∑
i=1

∣∣Bti −Bti−1

∣∣α = 0.

3.4. Wiener measure

Brownian motion defines a probability measure on the space C[0,∞) of continuous
functions, called Wiener measure, which we denote by W .

A cylinder set C is a subset of C[0,∞) of the form

(5.13) C =
{
B ∈ C[0,∞) : Btj ∈ Aj for 1 ≤ j ≤ n

}
where 0 < t1 < · · · < tn and A1, . . . , An are Borel subsets of R. We may define
W : F → [0, 1] as a probability measure on the σ-algebra F on C[0,∞) that is
generated by the cylinder sets.

It follows from (5.8) that the Wiener measure of the set (5.13) is given by

W{C} = Cn

∫
A

exp

[
−1

2

{
(xn − xn−1)2

(tn − tn−1)
+ · · ·+ (x1 − x0)2

(t1 − t0)

}]
dx1dx2 . . . dxn

where A = A1 ×A2 × · · · ×An ⊂ Rn, x0 = 0, t0 = 0, and

Cn =
1√

2π(tn − tn−1) . . . (t1 − t0))
.

If we suppose, for simplicity, that ti − ti−1 = ∆t, then we may write this
expression as

W{C} = Cn

∫
A

exp

[
−∆t

2

{(
xn − xn−1

∆t

)2

+ · · ·+
(
x1 − x0

∆t

)2
}]

dx1dx2 . . . dxn

Thus, formally taking the limit as n→∞, we get the expression given in (3.89)

(5.14) dW = C exp

[
−1

2

∫ t

0

ẋ2(s) ds

]
Dx



LECTURE 5. STOCHASTIC PROCESSES 147

for the density of Wiener measure with respect to the (unfortunately nonexistent)
‘flat’ measure Dx. Note that, since Wiener measure is supported on the set of
continuous functions that are nowhere differentiable, the exponential factor in (5.14)
makes no more sense than the ‘flat’ measure.

It is possible interpret (5.14) as defining a Gaussian measure in an infinite
dimensional Hilbert space, but we will not consider that theory here. Instead, we
will describe some properties of Wiener measure suggested by (5.14) that are, in
fact, true despite the formal nature of the expression.

First, as we saw in Section 14.3, Kac’s version of the Feynman-Kac formula is
suggested by (5.14). Although it is difficult to make sense of Feynman’s expression
for solutions of the Schrödinger equation as an oscillatory path integral, Kac’s
formula for the heat equation with a potential makes perfect sense as an integral
with respect to Wiener measure.

Second, (5.14) suggests the Cameron-Martin theorem, which states that the
translation x(t) 7→ x(t) + h(t) maps Wiener measure W to a measure Wh that is
absolutely continuous with respect to Wiener measure if and only if h ∈ H1(0, t)
has a square integrable derivative. A formal calculation based on (5.14), and the
idea that, like Lebesgue measure, Dx should be invariant under translations gives

dWh = C exp

[
−1

2

∫ t

0

{
ẋ(s)− ḣ(s)

}2

ds

]
Dx

= C exp

[∫ t

0

ẋ(s)ḣ(s) ds− 1

2

∫ t

0

ḣ2(s) ds

]
exp

[
−1

2

∫ t

0

ẋ2(s) ds

]
Dx

= exp

[∫ t

0

ẋ(s)ḣ(s) ds− 1

2

∫ t

0

ḣ2(s) ds

]
dW.

The integral

〈x, h〉 =

∫ t

0

ẋ(s)ḣ(s) ds =

∫ t

0

ḣ(s) dx(s)

may be defined as a Payley-Wiener-Zygmund integral (5.47) for any h ∈ H1. We
then get the Cameron-Martin formula

(5.15) dWh = exp

[
〈x, h〉 − 1

2

∫ t

0

ḣ2(s) ds

]
dW.

Despite the formal nature of the computation, the result is correct.
Thus, although Wiener measure is not translation invariant (which is impossible

for probability measures on infinite-dimensional linear spaces) it is ‘almost’ trans-
lation invariant in the sense that translations in a dense set of directions h ∈ H1

give measures that are mutually absolutely continuous. On the other hand, if one
translates Wiener measure by a function h /∈ H1, one gets a measure that is singu-
lar with respect to the original Wiener measure, and which is supported on a set
of paths with different continuity and variation properties.

These results reflect the fact that Gaussian measures on infinite-dimensional
spaces are concentrated on a dense set of directions, unlike the picture we have of a
finite dimensional Gaussian measure with an invertible covariance matrice (whose
density is spread out over an ellipsoid in all direction).
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4. Brownian motion with drift

Brownian motion is a basic building block for the construction of a large class of
Markov processes with continuous sample paths, called diffusion processes.

In this section, we discuss diffusion processes that have the same ‘noise’ as
standard Brownian motion, but differ from it by a mean ‘drift.’ These process are
defined by a stochastic ordinary differential equation (SDE) of the form

(5.16) Ẋ = b (X) + ξ(t),

where b : R → R is a given smooth function and ξ(t) = Ḃ(t) is, formally, the time
derivative of Brownian motion, or ‘white noise.’ Equation (5.16) may be thought

of as describing either a Brownian motion Ẋ = ξ perturbed by a drift term b(X),

or a deterministic ODE Ẋ = b(X) perturbed by an additive noise.
We begin with a heuristic discussion of white noise, and then explain more

precisely what meaning we give to (5.16).

4.1. White noise

Although Brownian paths are not differentiable pointwise, we may interpret their
time derivative in a distributional sense to get a generalized stochastic process called
white noise. We denote it by

ξ(t, ω) = Ḃ(t, ω).

We also use the notation ξdt = dB. The term ‘white noise’ arises from the spectral
theory of stationary random processes, according to which white noise has a ‘flat’
power spectrum that is uniformly distributed over all frequencies (like white light).
This can be observed from the Fourier representation of Brownian motion in (5.7),
where a formal term-by-term differentiation yields a Fourier series all of whose
coefficients are Gaussian random variables with same variance.

Since Brownian motion has Gaussian independent increments with mean zero,
its time derivative is a Gaussian stochastic process with mean zero whose values at
different times are independent. (See Figure 2.) As a result, we expect the SDE
(5.16) to define a Markov process X. This process is not Gaussian unless b(X) is
linear, since nonlinear functions of Gaussian variables are not Gaussian.

Figure 2. A numerical realization of an approximation to white noise.
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To make this discussion more explicit, consider a finite difference approximation
of ξ using a time interval of width ∆t,

ξ∆t(t) =
B(t+ ∆t)−B(t)

∆t
.

Then ξ∆t is a Gaussian stochastic process with mean zero and variance 1/∆t. Using
(5.11), we compute that its covariance is given by

E [ξ∆t(t)ξ∆t(s)] = δ∆t(t− s)
where δ∆t(t) is an approximation of the δ-function given by

δ∆t(t) =
1

∆t

(
1− |t|

∆t

)
if |t| ≤ ∆t, δ∆t(t) = 0 otherwise.

Thus, ξ∆t has a small but nonzero correlation time. Its power spectrum, which is the
Fourier transform of its covariance, is therefore not flat, but decays at sufficiently
high frequencies. We therefore sometimes refer to ξ∆t as ‘colored noise.’

We may think of white noise ξ as the limit of this colored noise ξ∆t as ∆t→ 0,
namely as a δ-correlated stationary, Gaussian process with mean zero and covari-
ance

(5.17) E [ξ(t)ξ(s)] = δ(t− s).
In applications, the assumption of white noise is useful for modeling phenomena in
which the correlation time of the noise is much shorter than any other time-scales
of interest. For example, in the case of Brownian motion, the correlation time of
the noise due to the impact of molecules on the Brownian particle is of the order
of the collision time of the fluid molecules with each other. This is very small in
comparison with the time-scales over which we use the SDE to model the motion
of the particle.

4.2. Stochastic integral equations

While it is possible to define white noise as a distribution-valued stochastic process,
we will not do so here. Instead, we will interpret white noise as a process whose
time-integral is Brownian motion. Any differential equation that depends on white
noise will be rewritten as an integral equation that depends on Brownian motion.

Thus, we rewrite (5.16) as the integral equation

(5.18) X(t) = X(0) +

∫ t

0

b (X(s)) ds+B(t).

We use the differential notation

dX = b(X)dt+ dB

as short-hand for the integral equation (5.18); it has no further meaning.
The standard Picard iteration from the theory of ODEs,

Xn+1(t) = X(0) +

∫ t

0

b (Xn(s)) ds+B(t),

implies that (5.18) has a unique continuous solution X(t) for every continuous
function B(t), assuming that b(x) is a Lipschitz-continuous function of x. Thus, if
B is Brownian motion, the mapping B(t) 7→ X(t) obtained by solving (5.18) ‘path
by path’ defines a stochastic process X with continuous sample paths. We call X
a Brownian motion with drift.
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Remark 5.16. According to Girsanov’s theorem [46], the probability measure
induced by X on C[0,∞) is absolutely continuous with respect to the Wiener
measure induced by B, with density

exp

[∫ t

0

b (X(s)) dX(s)− 1

2

∫ t

0

b2 (X(s)) ds

]
.

This is a result of the fact that the processes have the same ‘noise,’ so they are
supported on the same paths; the drift changes only the probability density on
those paths c.f. the Cameron-Martin formula (5.15).

4.3. The Fokker-Planck equation

We observed above that the transition density p(x, t | y) of Brownian motion satis-
fies the diffusion equation (5.9). We will give a direct derivation of a generalization
of this result for Brownian motion with drift.

We fix y ∈ R and write the conditional expectation given that X(0) = y as

Ey [ · ] = E [ · |X(0) = y] .

Equation (5.18) defines a Markov process X(t) = Xt with continuous paths. More-
over, as ∆t→ 0+, the increments of X satisfy

Ey [Xt+∆t −Xt | Xt] = b (Xt) ∆t+ o (∆t) ,(5.19)

Ey

[
(Xt+∆t −Xt)

2 | Xt

]
= ∆t+ o (∆t) ,(5.20)

Ey

[
|Xt+∆t −Xt|3 | Xt

]
= o(∆t),(5.21)

where o(∆t) denotes a term which approaches zero faster than ∆t, meaning that

lim
∆t→0+

o(∆t)

∆t
= 0.

For example, to derive (5.19) we subtract (5.18) evaluated at t + ∆t from (5.18)
evaluated at t to get

∆X =

∫ t+∆t

t

b (Xs) ds+ ∆B

where

∆X = Xt+∆t −Xt, ∆B = Bt+∆t −Bt.
Using the smoothness of b and the continuity of Xt, we get

∆X =

∫ t+∆t

t

[b (Xt) + o(1)] ds+ ∆B

= b (Xt) ∆t+ ∆B + o(∆t).

Taking the expected value of this equation conditioned on Xt, using the fact that
E[∆B] = 0, and assuming we can exchange expectations with limits as ∆t→ 0+, we
get (5.19). Similarly, Taylor expanding to second order, we find that the dominant
term in E[(∆X)2] is E[(∆B)2] = ∆t, which gives (5.20). Equation (5.21) follows
from the corresponding property of Brownian motion.

Now suppose that ϕ : R → R is any smooth test function with uniformly
bounded derivatives, and let

e(t) =
d

dt
Ey [ϕ (Xt)] .
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Expressing the expectation in terms of the transition density p(x, t | y) of Xt,
assuming that the time-derivative exists and that we may exchange the order of
differentiation and expectation, we get

e(t) =
d

dt

∫
ϕ(x)p(x, t | y) dx =

∫
ϕ(x)

∂p

∂t
(x, t | y) dx.

Alternatively, writing the time derivative as a limit of difference quotients, and
Taylor expanding ϕ(x) about x = Xt, we get

e(t) = lim
∆t→0+

1

∆t
Ey [ϕ (Xt+∆t)− ϕ (Xt)]

= lim
∆t→0+

1

∆t
Ey

[
ϕ′ (Xt) (Xt+∆t −Xt) +

1

2
ϕ′′ (Xt) (Xt+∆t −Xt)

2
+ rt(∆t)

]
where the remainder rt satisfies

|rt(∆t)| ≤M |Xt+∆t −Xt|3

for some constant M . Using the ‘tower’ property of conditional expectation (5.2)
and (5.19), we have

Ey [ϕ′ (Xt) (Xt+∆t −Xt)] = Ey [ Ey [ϕ′ (Xt) (Xt+∆t −Xt) | Xt] ]

= Ey [ϕ′ (Xt) Ey [Xt+∆t −Xt | Xt] ]

= Ey [ϕ′ (Xt) b (Xt)] ∆t.

Similarly

Ey

[
ϕ′′ (Xt) (Xt+∆t −Xt)

2
]

= Ey [ϕ′′ (Xt) ] ∆t.

Hence,

e(t) = Ey

[
ϕ′ (Xt) b (Xt) +

1

2
ϕ′′ (Xt)

]
.

Rewriting this expression in terms of the transition density, we get

e(t) =

∫
R

[
ϕ′(x)b(x) +

1

2
ϕ′′(x)

]
p (x, t | y) dx.

Equating the two different expressions for e(t) we find that,∫
R
ϕ(x)

∂p

∂t
(x, t | y) dx =

∫
R

[
ϕ′(x)b(x) +

1

2
ϕ′′(x)

]
p (x, t | y) dx.

This is the weak form of an advection-diffusion equation for the transition density
p(x, t | y) as a function of (x, t). After integrating by parts with respect to x, we
find that, since ϕ is an arbitrary test function, smooth solutions p satisfy

(5.22)
∂p

∂t
= − ∂

∂x
(bp) +

1

2

∂2p

∂x2
.

This PDE is called the Fokker-Planck, or forward Kolmogorov equation, for the
diffusion process of Brownian motion with drift. When b = 0, we recover (5.9).
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5. The Langevin equation

A particle such as the one we are considering, large relative to the
average distance between the molecules of the liquid and moving
with respect to the latter at the speed ξ, experiences (according
to Stokes’ formula) a viscous resistance equal to −6πµaξ. In
actual fact, this value is only a mean, and by reason of the irreg-
ularity of the impacts of the surrounding molecules, the action
of the fluid on the particle oscillates around the preceding value,
to the effect that the equation of motion in the direction x is

m
d2x

dt2
= −6πµa

dx

dt
+X.

We know that the complementary force X is indifferently posi-
tive and negative and that its magnitude is such as to maintain
the agitation of the particle, which, given the viscous resistance,
would stop without it.7

In this section, we describe a one-dimensional model for the motion of a Brown-
ian particle due to Langevin. A three-dimensional model may be obtained from the
one-dimensional model by assuming that a spherical particle moves independently
in each direction. For non-spherical particles, such as the pollen grains observed by
Brown, rotational Brownian motion also occurs.

Suppose that a particle of mass m moves along a line, and is subject to two
forces: (a) a frictional force that is proportional to its velocity; (b) a random white
noise force. The first force models the average force exerted by a viscous fluid on
a small particle moving though it; the second force models the fluctuations in the
force about its mean value due to the impact of the fluid molecules.

This division could be questioned on the grounds that all of the forces on
the particle, including the viscous force, ultimately arise from molecular impacts.
One is then led to the question of how to derive a mesoscopic stochastic model
from a more detailed kinetic model. Here, we will take the division of the force
into a deterministic mean, given by macroscopic continuum laws, and a random
fluctuating part as a basic hypothesis of the model. See Keizer [30] for further
discussion of such questions.

We denote the velocity of the particle at time t by V (t). Note that we consider
the particle velocity here, not its position. We will consider the behavior of the
position of the particle in Section 6. According to Newton’s second law, the velocity
satisfies the ODE

(5.23) mV̇ = −βV + γξ(t),

where ξ = Ḃ is white noise, β > 0 is a damping constant, and γ is a constant that
describes the strength of the noise. Dividing the equation by m, we get

(5.24) V̇ = −bV + cξ(t),

where b = β/m > 0 and c = γ/m are constants. The parameter b is an inverse-time,
so [b] = T−1. Standard Brownian motion has dimension T 1/2 since E

[
B2(t)

]
= t,

so white noise ξ has dimension T−1/2, and therefore [c] = LT−3/2.

7P. Langevin, Comptes rendus Acad. Sci. 146 (1908).
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We suppose that the initial velocity of the particle is given by

(5.25) V (0) = v0,

where v0 is a fixed deterministic quantity. We can obtain the solution for random
initial data that is independent of the future evolution of the process by conditioning
with respect to the initial value.

Equation (5.24) is called the Langevin equation. It describes the effect of noise
on a scalar linear ODE whose solutions decay exponentially to the globally asymp-
totically stable equilibrium V = 0 in the absence of noise. Thus, it provides a
basic model for the effect of noise on any system with an asymptotically stable
equilibrium.

As explained in Section 4.2, we interpret (5.24)–(5.25) as an integral equation

(5.26) V (t) = v0 − b
∫ t

0

V (s) ds+ cB(t),

which we write in differential notation as

dV = −bV dt+ cdB.

The process V (t) defined by (5.26) is called the Ornstein-Uhlenbeck process, or the
OU process, for short.

We will solve this problem in a number of different ways, which illustrate dif-
ferent methods. In doing so, it is often convenient to use the formal properties of
white noise; the correctness of any results we derive in this way can be verified
directly.

One of the most important features of the solution is that, as t → ∞, the
process approaches a stationary process, called the stationary Ornstein-Uhlenbeck
process. This corresponds physically to the approach of the Brownian particle to
thermodynamic equilibrium in which the fluctuations caused by the noise balance
the dissipation due to the damping terms. We will discuss the stationary OU
process further in Section 6.

5.1. Averaging the equation

Since (5.24) is a linear equation for V (t) with deterministic coefficients and an ad-
ditive Gaussian forcing, the solution is also Gaussian. It is therefore determined by
its mean and covariance. In this section, we compute these quantities by averaging
the equation.

Let

µ(t) = E [V (t)] .

Then, taking the expected value of (5.24), and using the fact that ξ(t) has zero
mean, we get

(5.27) µ̇ = −bµ.

From (5.25), we have µ(0) = v0, so

(5.28) µ(t) = v0e
−bt.

Thus, the mean value of the process decays to zero in exactly the same way as the
solution of the deterministic, damped ODE, V̇ = −bV .

Next, let

(5.29) R (t, s) = E [{V (t)− µ(t)} {V (s)− µ(s)}]
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denote the covariance of the OU process. Then, assuming we may exchange the
order of time-derivatives and expectations, and using (5.24) and (5.27), we compute
that

∂2R

∂t∂s
(t, s) = E

[{
V̇ (t)− µ̇(t)

}{
V̇ (s)− µ̇(s)

}]
= E [{−b [V (t)− µ(t)] + cξ(t)} {−b [V (s)− µ(s)] + cξ(s)}] .

Expanding the expectation in this equation and using (5.17), (5.29), we get

(5.30)
∂2R

∂t∂s
= b2R− bc {L(t, s) + L(s, t)}+ c2δ(t− s)

where
L(t, s) = E [{V (t)− µ(t)} ξ(s)] .

Thus, we also need to derive an equation for L. Note that L(t, s) need not vanish
when t > s since then V (t) depends on ξ(s).

Using (5.24), (5.27), and (5.17), we find that

∂L

∂t
(t, s) = E

[{
˙V (t)− µ̇(t)

}
ξ(s)

]
= −bE [{V (t)− µ(t)} ξ(s)] + cE [ξ(t)ξ(s)]

= −bL(t, s) + cδ(t− s).
From the initial condition (5.25), we have

L(0, s) = 0 for s > 0.

The solution of this equation is

(5.31) L(t, s) =

{
ce−b(t−s) for t > s,
0 for t < s.

This function solves the homogeneous equation for t 6= s, and jumps by c as t
increases across t = s.

Using (5.31) in (5.30), we find that R(t, s) satisfies the PDE

(5.32)
∂2R

∂t∂s
= b2R− bc2e−b|t−s| + c2δ(t− s).

From the initial condition (5.25), we have

(5.33) R(t, 0) = 0, R(0, s) = 0 for t, s > 0.

The second-order derivatives in (5.32) are the one-dimensional wave operator writ-
ten in characteristic coordinates (t, s). Thus, (5.32)–(5.33) is a characteristic initial
value problem for R(t, s).

This problem has a simple explicit solution. To find it, we first look for a
particular solution of the nonhomogeneous PDE (5.32). We observe that, since

∂2

∂t∂s

(
e−b|t−s|

)
= −b2e−b|t−s| + 2bδ(t− s),

a solution is given by

Rp(t, s) =
c2

2b
e−b|t−s|.

Then, writing R = Rp + R̃, we find that R̃(t, s) satisfies

∂2R̃

∂t∂s
= b2R̃, R̃(t, 0) = − c

2

2b
e−bt, R̃(0, s) = − c

2

2b
e−bs.
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This equation has the solution

R̃(t, s) = − c
2

2b
e−b(t+s).

Thus, the covariance function (5.29) of the OU process defined by (5.24)–(5.25)
is given by

(5.34) R(t, s) =
c2

2b

(
e−b|t−s| − e−b(t+s)

)
.

In particular, the variance of the process,

σ2(t) = E
[
{V (t)− µ(t)}2

]
,

or σ2(t) = R(t, t), is given by

(5.35) σ2(t) =
c2

2b

(
1− e−2bt

)
,

and the one-point probability density of the OU process is given by the Gaussian
density

(5.36) p(v, t) =
1√

2πσ2(t)
exp

{
− [v − µ(t)]

2

2σ2(t)

}
.

The success of the method used in this section depends on the fact that the
Langevin equation is linear with additive noise. For nonlinear equations, or equa-
tions with multiplicative noise, one typically encounters the ‘closure’ problem, in
which higher order moments appear in equations for lower order moments, lead-
ing to an infinite system of coupled equations for averaged quantities. In some
problems, it may be possible to use a (more or less well-founded) approximation to
truncate this infinite system to a finite system.

5.2. Exact solution

The SDE (5.24) is sufficiently simple that we can solve it exactly. A formal solution
of (5.24) is

(5.37) V (t) = v0e
−bt + c

∫ t

0

e−b(t−s)ξ(s) ds.

Setting ξ = Ḃ, and using a formal integration by parts, we may rewrite (5.37) as

(5.38) V (t) = v0e
−bt + bc

(
B(t)−

∫ t

0

e−b(t−s)B(s) ds

)
.

This last expression does not involve any derivatives of B(t), so it defines a con-
tinuous function V (t) for any continuous Brownian sample function B(t). One can
verify by direct calculation that (5.38) is the solution of (5.26).

The random variable V (t) defined by (5.38) is Gaussian. Its mean and covari-
ance may be computed most easily from the formal expression (5.37), and they
agree with the results of the previous section.
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For example, using (5.37) in (5.29) and simplifying the result by the use of
(5.17), we find that the covariance function is

R(t, s) = c2E

[{∫ t

0

e−b(t−t
′)ξ (t′) dt′

}{∫ s

0

e−b(s−s
′)ξ (s′) ds′

}]
= c2

∫ t

0

∫ s

0

e−b(t+s−t
′−s′)E [ξ (t′) ξ (s′)] ds′dt′

= c2
∫ t

0

∫ s

0

e−b(t+s−t
′−s′)δ (t′ − s′) ds′dt′

=
c2

2b

{
e−b|t−s| − e−b(t+s)

}
.

In more complicated problems, it is typically not possible to solve a stochastic
equation exactly for each realization of the random coefficients that appear in it, so
we cannot compute the statistical properties of the solution by averaging the exact
solution. We may, however, be able to use perturbation methods or numerical
simulations to obtain approximate solutions whose averages can be computed.

5.3. The Fokker-Planck equation

The final method we use to solve the Langevin equation is based on the Fokker-
Planck equation. This method depends on a powerful and general connection be-
tween diffusion processes and parabolic PDEs.

From (5.22), the transition density p(v, t | w) of the Langevin equation (5.24)
satisfies the diffusion equation

(5.39)
∂p

∂t
=

∂

∂v
(bvp) +

1

2
c2
∂2p

∂v2
.

Note that the coefficient of the diffusion term is proportional to c2 since the
Brownian motion cB associated with the white noise cξ has quadratic variation
E
[
(c∆B)2

]
= c2∆t.

To solve (5.39), we write it in characteristic coordinates associated with the
advection term. (An alternative method is to Fourier transform the equation with
respect to v, which leads to a first-order PDE for the transform since the variable
coefficient term involves only multiplication by v. This PDE can then be solved by
the method of characteristics.)

The sub-characteristics of (5.39) are defined by

dv

dt
= −bv,

whose solution is v = ṽe−bt. Making the change of variables v 7→ ṽ in (5.39), we
get

∂p

∂t
= bp+

1

2
c2e2bt ∂

2p

∂ṽ2
,

which we may write as

∂

∂t

(
e−btp

)
=

1

2
c2e2bt ∂

2

∂ṽ2

(
e−btp

)
.

To simplify this equation further, we define

p̃ = e−btp, t̃ =
c2

2b

(
e2bt − 1

)
,
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which gives the standard diffusion equation

∂p̃

∂t̃
=

1

2

∂2p̃

∂ṽ2
.

The solution with initial condition

p̃ (ṽ, 0) = δ (ṽ − v0)

is given by

p̃
(
ṽ, t̃
)

=
1

(2πt̃)1/2
e−(ṽ−v0)2/(2t̃).

Rewriting this expression in terms of the original variables, we get (5.36).
The corresponding expression for the transition density is

p (v, t | v0) =
1√

2πσ2(t)
exp

{
−
[
v − v0e

−bt]2
2σ2(t)

}
where σ is given in (5.35).

Remark 5.17. It is interesting to note that the Ornstein-Uhlenbeck process is
closely related to the ‘imaginary’ time version of the quantum mechanical simple
harmonic oscillator. The change of variable

p(v, t) = exp

(
1

2
bx2 − bt

)
ψ(x, t) v = cx,

transforms (5.39) to the diffusion equation with a quadratic potential

∂ψ

∂t
=

1

2

∂2ψ

∂x2
− 1

2
b2x2ψ.

6. The stationary Ornstein-Uhlenbeck process

As t→∞, the Ornstein-Uhlenbeck process approaches a stationary Gaussian pro-
cess with zero mean, called the stationary Ornstein-Uhlenbeck process. This ap-
proach occurs on a time-scale of the order b−1, which is the time-scale for solutions
of the deterministic equation V̇ = −bV to decay to zero.

From (5.36) and (5.35), the limiting probability density for v is a Maxwellian
distribution,

(5.40) p(v) =
1√

2πσ2
e−v

2/(2σ2)

with variance

(5.41) σ2 =
c2

2b
.

We can also obtain (5.40) by solving the ODE for steady solutions of (5.39)

1

2
c2
d2p

dv2
+ b

d

dv
(vp) = 0.

Unlike Brownian paths, whose fluctatations grow with time, the stationary OU
paths consist of fluctuations that are typically of the order σ, although larger fluc-
tuations occur over long enough times.

The stationary OU process is the exact solution of the SDE (5.24) if, instead of
taking deterministic initial conditions, we suppose that V (0) is a Gaussian random
variable with the stationary distribution (5.40).
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Taking the limit as t → ∞ in (5.34), we find that the covariance function of
the stationary OU process is

(5.42) R(t− s) = σ2 e−b|t−s|.

The covariance function depends only on the time-difference since the process is
stationary. Equation (5.42) shows that the values of the stationary OU process
become uncorrelated on the damping time-scale b−1.

6.1. Parameter values for Brownian motion

Before we use use the OU process to determine the spatial diffusion of a Brownian
particle, we give some typical experimental parameters for Brownian motion [38]
and discuss their implications.

A typical radius of a spherical Brownian particle in water (for example, a
polystyrene microsphere) is a = 10−6 m. Assuming that the density of the particle
is close to the density of water, its mass is approximately m = 4 × 10−15 Kg.
According to Stokes law (2.24), at low Reynolds numbers, the viscous drag on a
sphere of radius a moving with velocity v through a fluid with viscosity µ is equal
to 6πµav. Thus, in (5.23), we take

β = 6πµa.

The viscosity of water at standard conditions is approximately µ = 10−3 Kg m−1s−1,
which gives β = 2× 10−8 Kg s−1.

The first conclusion from these figures is that the damping time,

1

b
=
m

β
≈ 2× 10−7 s,

is very small compared with the observation times of Brownian motion, which
are typically on the order of seconds. Thus, we can assume that the Brownian
particle velocity is in thermodynamic equilibrium and is distributed according to
the stationary OU distribution. It also follows that the stationary OU fluctuations
are very fast compared with the time scales of observation.

Although b−1 is small compared with macroscopic time-scales, it is large com-
pared with molecular time scales; the time for water molecules to collide with each
other is of the order of 10−11 s or less. Thus, it is appropriate to use white noise to
model the effect of fluctuations in the molecular impacts.

We can determine the strength of the noise in (5.23) by an indirect argument.
According to statistical mechanics, the equilibrium probability density of a Brown-
ian particle is proportional to exp(−E/kT ), where E = 1

2mv
2 is the kinetic energy

of the particle, k is Boltzmann’s constant, and T is the absolute temperature. This
agrees with (5.40) if

(5.43) σ2 =
kT

m
.

At standard conditions, we have kT = 4 × 10−21 J, which gives σ = 10−3 ms−1.
This is the order of magnitude of the thermal velocity fluctuations of the particle.
The corresponding Reynolds numbers R = Ua/ν are of the order 10−3 which is
consistent with the use of Stokes’ law.

Remark 5.18. It follows from (5.41) and (5.43) that

γ2 = 2kTβ.
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This equation is an example of a fluctuation-dissipation theorem. It relates the
macroscopic damping coefficient β in (5.23) to the strength γ2 of the fluctuations
when the system in thermodynamic equilibrium at temperature T .

6.2. The spatial diffusion of Brownian particles

Let us apply these results to the spatial diffusion of Brownian particles. We assume
that the particles are sufficiently dilute that we can neglect any interactions between
them.

Let X(t) be the position at time t of a particle in Brownian motion measured
along some coordinate axis. We assume that its velocity V (t) satisfies the Langevin
equation (5.23). Having solved for V (t), we can obtain X by an integration

X(t) =

∫ t

0

V (s) ds.

Since X(t) is a linear function of the Gaussian process V (t), it is also Gaussian. The
stochastic properties of X may be determined exactly from those of V , for example
by averaging this equation to find its mean and covariance. We can, however,
simplify the calculation when the parameters have the order of magnitude of the
experimental ones given above.

On the time-scales over which we want to observe X(t), the velocity V (t) is a
rapidly fluctuating, stationary Gaussian process with zero mean and a very short
correlation time b−1. We may therefore approximate it by white noise. From (5.42),
the covariance function R(t− s) = E [V (t)V (s)] of V is given by

E [V (t)V (s)] =
2σ2

b

(
be−b|t−s|

2

)
As b → ∞, we have be−b|t|/2 ⇀ δ(t). Thus, from (5.17), if bt � 1, we may make
the approximation

V (t) =

√
2σ2

b
ξ(t)

where ξ(t) is a standard white noise.
It then follows that the integral of V (t) is given in terms of a standard Brownian

motion B(t) by

X(t) =

√
2σ2

b
B(t).

The probability distribution of X(t), which we denote p(x, t), therefore satisfies the
diffusion equation

∂p

∂t
= D

∂2p

∂2x

where, D = σ2/b, or by use of (5.43),

(5.44) D =
kT

β

This is the result derived by Einstein (1905).
As Einstein observed, one can use (5.44) to determine Avogadro’s number NA,

the number of molecules in one mole of gas, by measuring the diffusivity of Brownian
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particles. Boltzmann’s constant k is related to the macroscopically measurable gas
constant R by R = kNA; at standard conditions, we have RT ≈ 2, 400 J. Thus,

NA =
RT

βD

For the experimental values given above, with β = 2 × 10−8 Kg s−1, the diffu-
sivity of Brownian particles is found to be approximately 2×10−13 m2 s−1, meaning
that the particles diffuse a distance on the order of a micron over a few seconds [38].
This gives NA ≈ 6×1023, consistent with the accepted value of NA = 6.02214×1023,
measured more accurately by other methods.

7. Stochastic differential equations

In this section, we discuss SDEs that are driven by white noise whose strength
depends on the solution. Our aim here is to introduce some of the main ideas,
rather than give a full discussion, and we continue to consider scalar SDEs. The
ideas generalize to systems of SDEs, as we briefly explain in Section 7.5. For a more
detailed introduction to the theory of SDEs, see [19]. For the numerical solution
of SDEs, see [32]

The SDE (5.16) considered in Section 4 contains white noise with a constant
strength. If the strength of the white noise depends on the solution, we get an SDE
of the form

(5.45) Ẋ = b(X, t) + σ(X, t)ξ(t),

where b, σ : R × [0,∞) → R are smooth coefficient functions, which describe the
drift and diffusion, respectively. We allow the coefficients to depend explicitly on t.

As we will explain, there is a fundamental ambiguity in how to interpret an
SDE such as (5.45) which does not arise when σ is constant.

First, we rewrite (5.45) as an integral equation for X(t),

(5.46) X(t) = X(0) +

∫ t

0

b (X(s), s) ds+

∫ t

0

σ (X(s), s) dB(s),

or, in differential notation, as

dX = b(X, t) dt+ σ(X, t) dB.

We interpret (5.45) as the corresponding integral equation (5.46). In order to do
so, we need to define the stochastic integral∫ t

0

σ (X(s), s) dB(s).

When σ = 1, we made the obvious definition that this integral is to equal B(t).
More generally, if F (t) is a stochastic process with smooth sample paths, we can
define the integral of F against dB by use of a formal integration by parts:∫ t

0

F (s)dB(s) = F (t)B(t)−
∫ t

0

Ḟ (s)B(s) ds.

For deterministic integrands, we can relax the smoothness condition and define
a stochastic integral for any f ∈ L2(0, t) such that∫ t

0

f2(s) ds <∞.
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If f(s) is smooth and f(t) = 0, then (by a formal white-noise computation, which
is easy to verify [19])

E

[{∫ t

0

f(s)dB(s)

}2
]

=

∫ t

0

∫ t

0

f(s)f(r)E [ξ(s)ξ(r)] dsdr

=

∫ t

0

∫ t

0

f(s)f(r)δ(s− r) dsdr

=

∫ t

0

f2(s) ds.

If f ∈ L2(0, t), then we choose a sequence of smooth functions fn such that fn → f
with respect to the L2-norm. We then define

(5.47)

∫ t

0

f(s)dB(s) = lim
n→∞

∫ t

0

fn(s)dB(s),

where, from the preceding estimate, the integrals converge in the sense of mean-
square expectation,

lim
n→∞

E

[{∫ t

0

fn(s)dB(s)−
∫ t

0

f(s)dB(s)

}2
]

= 0.

This definition of a stochastic integral is due to Payley, Wiener, and Zygmund
(1933).

None of these definitions work, however, if F is a stochastic process with con-
tinuous but non-differentiable paths, such as a function of B or X of (5.46), which
is exactly the case we are interested in.

In the next section, we illustrate the difficulties that arise for such integrals. We
will then indicate how to define the Itô integral, which includes the above definitions
as special cases.

7.1. An illustrative stochastic integral

Let B(t) be a standard Brownian motion starting at 0. Consider, as a specific
example, the question of how to define the integral

(5.48) J(t) =

∫ t

0

B(s) dB(s)

by the use of Riemann sums. We will give two different definitions, corresponding
to the Strantonovich and Itô integral, respectively.

Let 0 = s0 < s1 < · · · < sn < sn+1 = t be a non-random partition of [0, t].
The Strantonovich definition of (5.48) corresponds to a limit of centered Riemann
sums, such as

J (S)
n =

n∑
i=0

1

2
[B (si+1) +B (si)] [B (si+1)−B (si)] .

This gives a telescoping series with the sum

J (S)
n =

1

2

n∑
i=0

[
B2 (si+1)−B2 (si)

]
=

1

2

[
B2 (sn+1)−B2 (s0)

]
.
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Thus, we get the Strantonovich integral

(5.49)

∫ t

0

(S)

B(s) dB(s) =
1

2
B2(t),

as in the usual calculus. The Strantonovich definition of the integral is, however,
not well-suited to the Markov and martingale properties of stochastic processes.
For example, the expected value of the Strantonovich integral in (5.49) is nonzero
and equal to t/2.

The Itô definition of (5.48) corresponds to a limit of forward-differenced Rie-
mann sums, such as

J (I)
n =

n∑
i=0

B (si) [B (si+1)−B (si)] .

We can rewrite this equation as

J (I)
n =

1

2

n∑
i=0

[{B (si+1) +B (si)} − {B (si+1)−Bi (si)}] [B (si+1)−B (si)]

=
1

2

n∑
i=0

[
B2 (si+1)−B2 (si)

]
− 1

2

n∑
i=0

[B (si+1)−B (si)]
2
.

The first sum gives B2(t), as for the Strantonovich integral, while the second sum
converges almost surely to t as n → ∞ by the quadratic-variation property of
Brownian motion.

The Itô integral is therefore

(5.50)

∫ t

0

(I)

B(s) dB(s) =
1

2

[
B2(t)− t

]
.

This definition has powerful stochastic properties; for example, it defines a martin-
gale, consistent with the fact that the expected value of the Itô integral in (5.50) is
equal to zero.

If we use the Itô definition, however, the usual rules of calculus must be modified
to include (5.12). For example, the differential form of (5.50) may be derived
formally as follows:

(5.51) d

(
1

2
B2

)
=

1

2

[
(B + dB)

2 −B2
]

= BdB +
1

2
(dB)2 = BdB +

1

2
dt.

As this example illustrates, there is an inherent ambiguity in how one defines
stochastic integrals such as (5.48). This ambiguity is caused by the sensitivity of
the values of the Riemann sums to the location of the point where one evaluates
the integrand, which is a result of the unbounded total variation of the Brownian
sample paths.

We will use the Itô definition, but it should be emphasized that this choice is
a matter of mathematical convenience. For instance, one can express the Itô and
Strantonovich integrals in terms of each other.

7.2. The Itô integral

We will not define the Itô’s integral in detail, but we will give a brief summary of
some of the main points. Evans [19] or Varadhan [46] give proofs of most of the
results stated here.
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A stochastic process

F : [0,∞)× Ω→ R
is said to be adapted to a Brownian motion B(t) if, for each t ≥ 0, F (t) is measurable
with respect to the σ-algebra Ft generated by the random variables {B(s) : 0 ≤
s ≤ t}. Roughly speaking, this means that F (t) is a function of {B(s) : 0 ≤ s ≤ t}.

If F (t) is an adapted process with almost surely continuous sample paths and∫ t

0

E
[
F 2(s)

]
ds <∞,

then we can define the stochastic Itô integral of F with respect to B as a limit in
mean-square expectation of forward-differenced Riemann sums∫ t

0

F (s) dB(s) = lim
n→∞

n∑
i=0

F (si) [B (si+1)−B (si)] ,

or, in general, as a limit of integrals of adapted simple functions.
An important property of the Itô integral is that, as in (5.50),

(5.52) E

[∫ t

0

F (s) dB(s)

]
= 0.

This follows because F (t) is independent of B(t + ∆t) − B(t) for ∆t > 0, since F
is adapted, so

E [F (si) {B (si+1)−B (si)}] = E [F (si)] E [B (si+1)−B (si)] = 0.

Since Brownian motion has independent increments, one can see by a similar argu-
ment that the Itô integral

(5.53) M(t) = M0 +

∫ t

0

F (s) dB(s)

defines a martingale, meaning that E [M(t) | Fs] = M(s) for 0 ≤ s < t.
We then define the Itô SDE

(5.54) dX = b(X, t) dt+ σ(X, t) dB

by (5.46), where the integral is understood to be an Itô integral. The initial data

(5.55) X(0) = X0

is a given F0-measurable random variable. Here, we allow the initial value B(0) of
the Brownian motion to be a random variable, and F0 = σ (B(0)).

For the SDE (5.18) with constant noise, we can define solutions ‘path by path.’
For (5.46), the definition of a solution depends on a probabilistic convergence of
the integral. Thus, it is essentially stochastic in nature.

It can be shown that the SDE (5.54)–(5.55) has a unique adapted solution X(t)
with continuous paths defined for all 0 ≤ t ≤ T if, for example:

(1) the functions b, σ : R× [0, T ]→ R are continuous, globally Lipschitz in x,
and uniformly bounded in t, meaning that there exists a constant K such
that for all x, y ∈ R, t ∈ [0, T ]

|b(x, t)− b(y, t)| ≤ K|x− y|, |σ(x, t)− σ(y, t)| ≤ K|x− y|,
|b(x, t)| ≤ K (1 + |x|) , |σ(x, t)| ≤ K (1 + |x|) ;
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(2) the initial data satisfies

(5.56) E
[
X2

0

]
<∞.

Such solutions are called strong solutions. It is also possible to define weak solutions
of that satisfy the SDE in a distributional sense, and which exist even if the coef-
ficient functions are not Lipschitz continuous, but we will not use weak solutions
here.

7.3. Itô’s formula

As we saw above, it is necessary to modify the usual rules of calculus if one uses
Itô integrals. The key result is a version of the chain rule called Itô’s formula.

Suppose that X(t) is a solution of the Itô SDE (5.54), and f(X, t) is a smooth
function f : R × [0,∞) → R. Here, we abuse notation slightly and use the same
symbol for the argument of f and the process. Define

Y (t) = f (X(t), t) .

Then Itô’s formula states that Y satisfies the SDE

dY =

[
∂f

∂t
(X, t) + b(X, t)

∂f

∂X
(X, t) +

1

2
σ2(X, t)

∂2f

∂X2
(X, t)

]
dt

+ σ(X, t)
∂f

∂X
(X, t) dB.

(5.57)

This equation stands, of course, for the corresponding stochastic integral equation.
Equation (5.57) is what one would obtain from the usual chain rule with an addi-
tional term in the drift proportional to the second x-derivative of f . In particular,
if X = B, then b = 0, σ = 1, and Itô’s formula becomes

(5.58) df(B, t) =

[
∂f

∂t
(B, t) +

1

2

∂f2

∂B2
(B, t)

]
dt+

∂f

∂B
(B, t) dB.

For a proof of (5.57), see [19].
Itô’s formula may be motivated by a formal computation using (5.54) and

(5.12). For example, when Y = f(X) we get, denoting X-derivatives by primes,

dY = f ′(X)dX +
1

2
f ′′(X)dX2

= f ′(X) [b(X, t) dt+ σ(X, t) dB] +
1

2
f ′′(X)σ2(X, t) (dB)

2

=

[
f ′(X)b(X, t) +

1

2
f ′′(X)σ2(X, t)

]
dt+ f ′(X)σ(X, t) dB.

Example 5.19. Itô’s formula (5.58) gives, as in (5.51),

d

(
1

2
B2

)
=

1

2
dt+BdB.

Example 5.20. If f(B) = eσB , where σ is a constant, then (5.58) implies that

deσB =
1

2
σ2eσB dt+ σeσB dB.

Taking expected values of this equation, and using the martingale property (5.52)
of the Itô integral, we find that

dE
[
eσB

]
=

1

2
σ2E

[
eσB

]
.
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Solving this equation, and assuming that B(t) starts at 0, we find that

(5.59) E
[
eσB

]
= eσ

2t/2.

7.4. The Fokker-Planck equation

Itô’s formula provides a quick and efficient way to derive the Fokker-Planck equa-
tion. Suppose that X(t) satisfies

dX = b(X, t) dt+ σ(X, t) dB.

Taking the expectation of Itô’s formula (5.57) and using the martingale property
(5.52), we find that for any smooth function f : R→ R,

E [f (X(t))] =

∫ t

0

E

[
f ′ (X(s)) b (X(s), s) +

1

2
f ′′ (X(s))σ2 (X(s), s)

]
ds.

Differentiating this equation with respect to t, we get

d

dt
E [f (X(t))] = E

[
f ′ (X(t)) b (X(t), t) +

1

2
f ′′ (X(t))σ2 (X(t), t)

]
.

Writing this equation in terms of the probability density p(x, t), or the transition
density p(x, t | y, s) if we condition on X(s) = y, we get

d

dt

∫
f (x) p(x, t) dx =

∫ [
f ′ (x) b (x, t) +

1

2
f ′′ (x)σ2 (x, t)

]
p(x, t) dx,

which is the weak form of the Fokker-Planck equation,

(5.60)
∂p

∂t
= − ∂

∂x
(b (x, t) p) +

1

2

∂2

∂2x

(
σ2 (x, t) p

)
.

7.5. Systems of SDEs

A system of SDEs for a vector-valued stochastic process ~X(t) = (X1(t), . . . , Xn(t))
may be written as

(5.61) d ~X = ~b
(
~X, t
)
dt+ σ

(
~X, t
)
d ~B.

In (5.61), the vector ~B(t) = (B1(t), . . . , Bn(t)) is an n-dimensional Brownian motion
whose components Bi(t) are independent one-dimensional Brownian motions such
that

E [Bi(t)Bj(s)] =

{
min (t, s) if i = j,
0 if i 6= j.

The coefficient functions in (5.61) are a drift vector ~b = (b1, . . . , bn) and a diffusion
matrix σ = (σij)

~b : Rn × [0,∞)→ Rn, σ : Rn × [0,∞)→ Rn×n,

which we assume satisfy appropriate smoothness conditions.
The differential form of the SDE (5.61) is short-hand for the integral equation

~X(t) = ~X0 +

∫ t

0

~b
(
~X(s), s

)
ds+

∫ t

0

σ
(
~X(s), s

)
d ~B(s),
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or, in component form,

Xi(t) = Xi0 +

∫ t

0

bi (X1(s), . . . , Xn(s), s) ds

+

n∑
j=1

∫ t

0

σij (X1(s), . . . , Xn(s), s) dBj(s) for 1 ≤ i ≤ n.

The integrals here are understood as Itô integrals.
If f : Rn × [0,∞)→ R is a smooth function f(X1, . . . , Xn, t), and

Y (t) = f (X1(t), . . . , Xn(t), t)

where ~X(t) = (X1(t), . . . , Xn(t)) is a solution of (5.61), then Itô’s formula is

(5.62) dY =

∂f
∂t

+

n∑
i=1

bi
∂f

∂Xi
+

1

2

n∑
i,j,k=1

σikσjk
∂2f

∂Xi∂Xj

 dt+

n∑
i,j=1

σij
∂f

∂Xi
dBj .

This result follows formally from the generalization of (5.12) to the ‘rule’

dBi dBj =

{
dt if i = j,
0 if i 6= j.

The coefficients of the resulting drift terms in (5.62) are

aij =

n∑
k=1

σikσjk.

Thus, A = (aij) is given by A = σσ>.
The Fokker-Planck equation for the transition density p (~x, t | ~y, s) may be de-

rived in the same way as in the scalar case. The result is that

∂p

∂t
= −

n∑
i=1

∂

∂xi
(bip) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
(aijp) ,

with the initial condition p (~x, s | ~y, s) = δ (~x− ~y).

7.6. Strantonovich SDEs

Suppose that X satisfies the Strantonovich SDE

(5.63) dX = b(X, t) dt+ σ(X, t) ∂B

where the notation ∂B indicates that the corresponding integral in (5.46) is to be
interpreted as a Strantonovich integral. Then the normal rules of calculus apply,
and Y = f(X) satisfies

dY = f ′(X)b(X, t) dt+ f ′(X)σ(X, t) ∂B.

The derivation of the Fokker-Planck equation is not as simple as for the Itô SDE,
since the expected value of a Strantonovich integral is, in general, nonzero, but one
can show that the Fokker-Planck equation for (5.63) is

∂p

∂t
= − ∂

∂x
(b (x, t) p) +

1

2

∂

∂x

[
σ(x, t)

∂

∂x
(σ (x, t) p)

]
= − ∂

∂x

{[
b (x, t) +

1

2
σ (x, t)

∂σ

∂x
(x, t)

]
p

}
+

1

2

∂2

∂2x

[
σ2(x, t)p

]
.
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If σ is not constant, this PDE has a different drift term than the one in (5.60)
arising from the Itô SDE (5.54).

Equivalently, the solution X(t) of the Strantonovich SDE (5.63) is the same as
the solution of the Itô SDE

dX =

[
b(X, t) +

1

2
σ(X, t)

∂σ

∂X
(X, t)

]
dt+ σ(X) dB

with a corrected drift. Thus, the difference in drifts is simply a consequence of the
difference in the definitions of the Itô and Strantonovich integrals, and it has no
other significance. Of course, in using an SDE to model a system, one must choose
an appropriate drift and noise, The drift will therefore depend on what definition
of the stochastic integral one uses (see Remark 5.21).

8. Financial models

In this section we describe a basic SDE models of a financial market and derive the
Black-Scholes formula for options pricing.

8.1. Stock prices

A simple model for the dynamics of the price S(t) > 0 of a stock at time t, intro-
duced by Samuelson (1965), is provided by the Itô SDE

(5.64) dS = µS dt+ σS dB

where µ and σ are constant parameters.
The drift-constant µ in (5.64) is the expected rate of return of the stock; in

the absence of noise, S(t) = S0e
µt. The noise term describes random fluctuations

in the stock price due to the actions of many individual investors. The strength of
the noise is σS since we expect that the fluctuations in the price of a stock should
be proportional to its price. The diffusion-constant σ is called the volatility of the
stock; it is larger for more speculative stocks. Typical values for σ are in the range

0.2–0.4 in units of (years)
1/2

, corresponding to a standard deviation in the relative
stock price of 20–40 percent per annum.

The dependence of the noise in (5.64) on the solution S differs from the con-
stant noise in the Ornstein-Uhlenbeck SDE, which describes physical systems in
thermodynamic equilibrium where the noise is fixed by the temperature.

As can be verified by the use of Itô’s formula, the exact solution of (5.64) is

(5.65) S(t) = S0 exp

[(
µ− 1

2
σ2

)
t+ σB(t)

]
where S0 is the initial value of S. The process (5.65) is called geometric Brownian
motion. The logarithm of S(t) is Gaussian, meaning that S(t) is lognormal. From
(5.65) and (5.59), the expected value of S(t) is

E [S(t)] = E [S0] eµt,

consistent with what one obtains by averaging (5.64) directly.

Remark 5.21. We could equally well model the stock price by use of a Strantonovich
SDE with a corrected value for the drift

(5.66) dS =

(
µ− 1

2
σ2

)
S dt+ σS ∂B.
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The growth rate of the drift term in this equation is lower than the growth rate of
the drift term in the corresponding Itô equation. This is because the Strantonovich
noise contributes to the mean growth rate. Favorable fluctuations in the stock price
increase the growth rate due to noise, and this outweighs the effect of unfavorable
fluctuations that decrease the growth rate. The noise term in the Itô equation is
defined so that its mean effect is zero. The solution of (5.66), which is found by
the usual rules of calculus, is the same as the solution (5.65) of the corresponding
Itô equation.

8.2. An ideal market

Consider, as an idealized model, a financial market that consists of single stock
whose price S(t) satisfies (5.64), and a risk-free security, such as a bond, whose
price R(t) satisfies the deterministic equation

(5.67) dR = rR dt.

Thus, the value of the risk-free security is unaffected by random fluctuations in the
stock market, and is assumed to have a fixed constant rate of return r.

We will refer to any item that is traded on the market, such as the stock, the
bond, or a derivative, as a security. The prices, or values, of securities and the
amounts owned by different traders are stochastic processes that are adapted to
the filtration {Ft : t ≥ 0} generated by the Brownian motion B(t) in (5.64). This
means that we cannot look into the future.

We assume that all processes have continuous sample paths. We further assume,
for simplicity, that we can trade continuously without cost or restriction, that stocks
and bonds are infinitely divisible, and that we can neglect any other complicating
factors, such as dividends.

A portfolio is a collection of investments. If a portfolio consists of ai(t) units
of securities with values Vi(t), where 1 ≤ i ≤ n, the value Π(t) of the portfolio is

(5.68) Π =

n∑
i=1

aiVi.

The value of the portfolio satisfies an SDE of the form

dΠ = b dt+ c dB.

We say that the portfolio is risk-free if c = 0, meaning that its value is not directly
affected by random fluctuations in the market. Without further assumptions, how-
ever, the growth rate b could depend on B.

We say that the portfolio is self-financing if

(5.69) dΠ =

n∑
i=1

ai dVi.

As usual, this equation stands for the corresponding Itô integral equation. The
condition (5.69) means that the change in the value of the portfolio is entirely due
to the change in value of the securities it contains. Therefore, after the initial
investment, no money flows in or out of the portfolio.

We will take as a basic assumption that the market allows no arbitrage opportu-
nities in which traders can make a guaranteed profit through multiple transactions.
Specifically, we assume that the value Π(t) of any self-financing, risk-free security
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must satisfy the ODE

(5.70) dΠ = rΠ dt

where r is the risk-free rate of return in (5.67).
If there were a self-financing, risk-free portfolio whose instantaneous rate of

return was higher (or lower) than the prevailing rate r, then traders could make a
guaranteed profit by continuously buying (or selling) the securities in the portfolio.
This would rapidly drive the rate of return of the portfolio and the prevailing
rate r to the same value, which is the theoretical justification of the no-arbitrage
assumption.

8.3. Derivatives

It is a recipe for disaster to give one or two people complete
authority to trade derivatives without a close monitoring of the
risks being taken.8

Next, let us use this model to study the pricing of derivatives such as stock
options. A derivative is a financial instrument that derives its value from some
underlying asset. The asset could be almost anything, from pork bellies to next
season’s snowfall at a ski resort. Here, we consider derivatives that are contingent
on the price of a stock.

We assume that the value V (t) of the derivative is a deterministic function of
the stock price S(t) and the time t,

V (t) = f (S(t), t) , f : (0,∞)× [0,∞)→ R.
Our aim is to determine what functions f(S, t) provide values for a derivative that
are consistent with the no-arbitrage assumption. The idea, following Black-Scholes
(1973) and Merton (1973), is to construct a risk-free portfolio whose value replicates
the value of the derivative.

Suppose that we sell, or write, one derivative, and form a portfolio that consists
of:

(1) the derivative (whose value is a liability to us);
(2) a quantity a(t) of the risk-free security with price R(t);
(3) a quantity b(t) of stock with price S(t).

The value Π(t) of the portfolio is given by

(5.71) Π = aR+ bS − V,
where R satisfies (5.67) and S satisfies (5.64).

We will choose a(t), b(t) so that the portfolio is self-financing and risk-free. In
that case, its value must grow at the risk-free rate of return, and this will tell us
how the value of the derivative V (t) changes in terms of the price S(t) of the stock.

The role of R(t) is simply to provide a source of funds within the portfolio
which allows us to adjust the stock holding as the value of the derivative fluctuates
in order to maintain a risk-free position (this is called ‘hedging’); R does not appear
in the final result. If we did not include R in the portfolio, we would need to move
funds in and out of the portfolio to make it risk-free.

From (5.69) and (5.71), the portfolio is self-financing if

(5.72) dΠ = a dR+ b dS − dV.

8J. C. Hull, Options Futures and Other Derivatives, 4th ed., 2000.
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Writing V (t) = f (S(t), t), then using Itô’s formula and (5.64), we get

dV =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+

∂f

∂S
dS.

Using this result and (5.67) in (5.72), we find that

dΠ =

(
raR− ∂f

∂t
− 1

2
σ2S2 ∂

2f

∂S2

)
dt+

(
b− ∂f

∂S

)
dS.

Hence, the portfolio is risk-free if

(5.73) b =
∂f

∂S
,

in which case

dΠ =

(
raR− ∂f

∂t
− 1

2
σ2S2 ∂

2f

∂S2

)
dt.

The no-arbitrage assumption (5.70) then implies that

dΠ = rΠ dt.

Equating these expressions for dΠ, using (5.71) and (5.73), and simplifying the
result, we find that

(5.74)
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf.

This is a PDE for f(S, t), called the Black-Scholes PDE.
It is interesting to note that the rate of return µ of the stock in (5.64) does not

appear in (5.74). The equation involves only the volatility σ of the stock and the
risk-free rate of return r.

Equation (5.74) is a backward diffusion equation. In principle, any solution
provides a feasible value-function for a derivative that is contingent on the stock.
In the next section, we use (5.74) to determine the pricing of an option. The value
of an option is known at the time when it comes to maturity, and this provides a
final condition for (5.74). Solving the PDE backward in time then determines the
initial price of the option. As we will see, although (5.74) has variable coefficients,
we can obtain explicit solutions by transforming it to a constant coefficient heat
equation.

8.4. Options

An option gives the holder the right, but not the obligation, to buy or sell an
underlying asset for a specified price by a specified date. Options are primarily used
to hedge against future risks or, perhaps more frequently, as a means of speculation.

The first reported use of options9 seems to be by Thales who, after predicting
a large olive crop by astronomical or astrological means, purchased one winter
the right to use all the olive presses in Miletus and Chios for the coming harvest.
When the large crop materialized, Thales was able to resell his rights for much
more than they had cost him. Later on, tulip bulb options were heavily traded
in Holland during the tulip mania of 1636 (until the market collapsed in 1637).
Options were first traded on an organized exchange in 1973, on the Chicago Board
Options Exchange. Since then the trading of options has developed into a global
financial market of enormous volume.

9Aristotle, Politics I xi, 332 B.C.
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There are two main types of options: a call option gives the holder the right
to buy the underlying asset, while a put option give the holder the right to sell
the asset. In an American option this right can be exercised at any time up to
the expiration date; in a European option, the right can be exercised only on the
expiration date itself.

Any options contract has two parties. The party who buys the option, is said to
take the long position, while the party who sells, or writes, the option is said to take
the short position. The writer receives cash up front, but has potential liabilities
later on if the holder exercises the option. The holder incurs an immediate cost,
but has the potential for future gains.

Let us consider, as an example, a European call option which gives the holder
the right to buy a unit of stock at a prearranged price K > 0, called the strike
price, at a future time T > 0. In this case, the value, or payoff, of the option at the
expiration time T for stock price S is

(5.75) f (S, T ) = max {S −K, 0} .
If S ≤ K, the option is worthless, and the holder lets it expire; if S > K, the holder
exercises the option and makes a profit equal to the difference between the actual
price of the stock at time T and the strike price. We want to compute the fair value
of the option at an earlier time.

To do this, we solve the Black-Scholes PDE (5.74) for t ≤ T subject to the final
condition (5.75). We can find the solution explicitly by transforming (5.74) into
the heat equation.

The change of independent variables (S, t) 7→ (x, τ) given by

(5.76) S = Kex, t = T − 1

σ2
τ

transforms (5.74) into the constant-coefficient equation

(5.77)
∂f

∂τ
=

1

2

∂2f

∂x2
+ q

∂f

∂x
−
(
q +

1

2

)
f

where

(5.78) q =
r

σ2
− 1

2
.

Since 0 < S <∞, we have −∞ < x <∞. We have also reversed the time-direction,
so that the final time t = T corresponds to the initial time τ = 0. The change of
dependent variable in (5.77)

(5.79) f(x, τ) = Ke−qx−(q+1)2τ/2u(x, τ)

gives the heat equation

(5.80)
∂u

∂τ
=

1

2

∂2u

∂x2
.

Rewriting (5.75) in terms of the transformed variables, we get the initial condition

(5.81) u(x, 0) =

{
e(q+1)x − eqx if x > 0,
0 if x ≤ 0.

The Green’s function representation of the solution of (5.80)–(5.81) is

u(x, τ) =
1√
2πτ

∫ ∞
0

exp

[
− (x− y)2

2τ

] [
e(q+1)y − eqy

]
dy.
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This integral is straightforward to evaluate by completing the square. For example,∫ ∞
0

exp

[
− (x− y)2

2τ

]
eqy dy = exp

[
qx+

1

2
q2τ

] ∫ ∞
0

exp

[
(y − x− qτ)2

2τ

]
dy

=
√
τ exp

[
qx+

1

2
q2τ

] ∫ (
x+qτ√
τ

)
−∞

e−z
2/2 dz

=
√

2πτ exp

[
qx+

1

2
q2τ

]
Φ

(
x+ qτ√

τ

)
where Φ is the distribution function of the standard Gaussian,

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz.

The function Φ is given in terms of the error function erf by

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
, erf(x) =

2√
π

∫ x

0

e−z
2

dz.

It follows that

u(x, τ) = exp

[
(q + 1)x+

1

2
(q + 1)2τ

]
Φ

(
x+ (q + 1)τ√

τ

)
− exp

(
qx+

1

2
q2τ

)
Φ

(
x+ qτ√

τ

)
.

Using this equation in (5.79), then using (5.76) and (5.78) to rewrite the result
in terms of the original independent variables (S, t), we get

(5.82) f(S, t) = SΦ (a(S, t))−Ke−r(T−t)Φ (b(S, t))

where

a(S, t) =
1

σ
√
T − t

[
log

(
S

K

)
+

(
r +

1

2
σ2

)
(T − t)

]
,

b(S, t) =
1

σ
√
T − t

[
log

(
S

K

)
+

(
r − 1

2
σ2

)
(T − t)

]
.

(5.83)

Equation (5.82)–(5.83) is the Black-Scholes formula for the value f(S, t), at stock-
price S and time t, of a European call option with strike price K and expiration
time T . It also involves the risk-free rate of return r of the market and the volatility
σ of the underlying stock.

Other types of options can be analyzed in a similar way. American options are,
however, more difficult to analyze than European options since the time, if any, at
which they are exercised is not known a priori.


