LECTURE NOTES ON APPLIED MATHEMATICS

METHODS AND MODELS

John K. Hunter Department of Mathematics University of California, Davis June 17, 2009

Contents

Lecture 1.	Introduction	1
1. Conse	1	
	citutive equations	2
3. The 1	KPP equation	3
Lecture 2.	Dimensional Analysis, Scaling, and Similarity	11
1. Syste	ms of units	11
2. Scalin	ng	12
3. Nond	imensionalization	13
4. Fluid	mechanics	13
5. Stoke	s formula for the drag on a sphere	18
	ogorov's 1941 theory of turbulence	22
7. Self-s	imilarity	26
8. The p	porous medium equation	27
9. Cont	nuous symmetries of differential equations	33
Lecture 3.	The Calculus of Variations	43
1. Motio	on of a particle in a conservative force field	44
	Euler-Lagrange equation	49
3. Newt	on's problem of minimal resistance	51
4. Cons	rained variational principles	57
5. Elast	ic rods	58
6. Buck	ing and bifurcation theory	61
7. Lapla	ce's equation	70
8. The l	Euler-Lagrange equation	74
9. The	vave equation	77
10. Han	niltonian mechanics	77
11. Pois	son brackets	80
12. Rigi	d body rotations	81
13. Han	niltonian PDEs	87
14. Patl	integrals	89
Lecture 4.	Sturm-Liouville Eigenvalue Problems	95
1. Vibra	ting strings	96
2. The o	one-dimensional wave equation	99
3. Quan	tum mechanics	103
4. The	one-dimensional Schrödinger equation	107
5. The	Airy equation	117
	rsive wave propagation	121
	ation of the KdV equation for ion-acoustic waves	123

i

8.	Other Sturm-Liouville problems	129
Lectu	re 5. Stochastic Processes	131
1.	Probability	131
2.	Stochastic processes	138
3.	Brownian motion	143
4.	Brownian motion with drift	150
5.	The Langevin equation	154
6.	The stationary Ornstein-Uhlenbeck process	159
7.	Stochastic differential equations	162
8.	Financial models	169
Bibliography		175