
CHAPTER 4

Integration

In this Chapter, we define the integral of real-valued functions on an arbitrary
measure space and derive some of its basic properties. We refer to this integral as
the Lebesgue integral, whether or not the domain of the functions is subset of Rn
equipped with Lebesgue measure. The Lebesgue integral applies to a much wider
class of functions than the Riemann integral and is better behaved with respect to
pointwise convergence. We carry out the definition in three steps: first for positive
simple functions, then for positive measurable functions, and finally for extended
real-valued measurable functions.

4.1. Simple functions

Suppose that (X,A, µ) is a measure space.

Definition 4.1. If φ : X → [0,∞) is a positive simple function, given by

φ =

N∑
i=1

ciχEi

where ci ≥ 0 and Ei ∈ A, then the integral of φ with respect to µ is

(4.1)

∫
φdµ =

N∑
i=1

ciµ (Ei) .

In (4.1), we use the convention that if ci = 0 and µ(Ei) = ∞, then 0 · ∞ = 0,
meaning that the integral of 0 over a set of measure ∞ is equal to 0. The integral
may take the value ∞ (if ci > 0 and µ(Ei) = ∞ for some 1 ≤ i ≤ N). One
can verify that the value of the integral in (4.1) is independent of how the simple
function is represented as a linear combination of characteristic functions.

Example 4.2. The characteristic function χQ : R → R of the rationals is not
Riemann integrable on any compact interval of non-zero length, but it is Lebesgue
integrable with ∫

χQ dµ = 1 · µ(Q) = 0.

The integral of simple functions has the usual properties of an integral. In
particular, it is linear, positive, and monotone.

39



40 4. INTEGRATION

Proposition 4.3. If φ, ψ : X → [0,∞) are positive simple functions on a measure
space X, then: ∫

kφ dµ = k

∫
φdµ if k ∈ [0,∞);∫

(φ+ ψ) dµ =

∫
φdµ+

∫
ψ dµ;

0 ≤
∫
φdµ ≤

∫
ψ dµ if 0 ≤ φ ≤ ψ.

Proof. These follow immediately from the definition. �

4.2. Positive functions

We define the integral of a measurable function by splitting it into positive and
negative parts, so we begin by defining the integral of a positive function.

Definition 4.4. If f : X → [0,∞] is a positive, measurable, extended real-valued
function on a measure space X, then∫

f dµ = sup

{∫
φdµ : 0 ≤ φ ≤ f , φ simple

}
.

A positive function f : X → [0,∞] is integrable if it is measurable and∫
f dµ <∞.

In this definition, we approximate the function f from below by simple func-
tions. In contrast with the definition of the Riemann integral, it is not necessary to
approximate a measurable function from both above and below in order to define
its integral.

If A ⊂ X is a measurable set and f : X → [0,∞] is measurable, we define∫
A

f dµ =

∫
fχA dµ.

Unlike the Riemann integral, where the definition of the integral over non-rectangular
subsets of R2 already presents problems, it is trivial to define the Lebesgue integral
over arbitrary measurable subsets of a set on which it is already defined.

The following properties are an immediate consequence of the definition and
the corresponding properties of simple functions.

Proposition 4.5. If f, g : X → [0,∞] are positive, measurable, extended real-
valued function on a measure space X, then:∫

kf dµ = k

∫
f dµ if k ∈ [0,∞);

0 ≤
∫
f dµ ≤

∫
g dµ if 0 ≤ f ≤ g.

The integral is also linear, but this is not immediately obvious from the defi-
nition and it depends on the measurability of the functions. To show the linearity,
we will first derive one of the fundamental convergence theorem for the Lebesgue
integral, the monotone convergence theorem. We discuss this theorem and its ap-
plications in greater detail in Section 4.5.



4.2. POSITIVE FUNCTIONS 41

Theorem 4.6 (Monotone Convergence Theorem). If {fn : n ∈ N} is a monotone
increasing sequence

0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ . . .

of positive, measurable, extended real-valued functions fn : X → [0,∞] and

f = lim
n→∞

fn,

then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. The pointwise limit f : X → [0,∞] exists since the sequence {fn}
is increasing. Moreover, by the monotonicity of the integral, the integrals are
increasing, and ∫

fn dµ ≤
∫
fn+1 dµ ≤

∫
f dµ,

so the limit of the integrals exists, and

lim
n→∞

∫
fn dµ ≤

∫
f dµ.

To prove the reverse inequality, let φ : X → [0,∞) be a simple function with
0 ≤ φ ≤ f . Fix 0 < t < 1. Then

An = {x ∈ X : fn(x) ≥ tφ(x)}

is an increasing sequence of measurable sets A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ . . . whose
union is X. It follows that

(4.2)

∫
fn dµ ≥

∫
An

fn dµ ≥ t
∫
An

φdµ.

Moreover, if

φ =

N∑
i=1

ciχEi

we have from the monotonicity of µ in Proposition 1.12 that∫
An

φdµ =

N∑
i=1

ciµ(Ei ∩An)→
N∑
i=1

ciµ(Ei) =

∫
φdµ

as n→∞. Taking the limit as n→∞ in (4.2), we therefore get

lim
n→∞

∫
fn dµ ≥ t

∫
φdµ.

Since 0 < t < 1 is arbitrary, we conclude that

lim
n→∞

∫
fn dµ ≥

∫
φdµ,

and since φ ≤ f is an arbitrary simple function, we get by taking the supremum
over φ that

lim
n→∞

∫
fn dµ ≥

∫
f dµ.

This proves the theorem. �
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In particular, this theorem implies that we can obtain the integral of a positive
measurable function f as a limit of integrals of an increasing sequence of simple
functions, not just as a supremum over all simple functions dominated by f as in
Definition 4.4. As shown in Theorem 3.12, such a sequence of simple functions
always exists.

Proposition 4.7. If f, g : X → [0,∞] are positive, measurable functions on a
measure space X, then ∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. Let {φn : n ∈ N} and {ψn : n ∈ N} be increasing sequences of positive
simple functions such that φn → f and ψn → g pointwise as n→∞. Then φn+ψn
is an increasing sequence of positive simple functions such that φn + ψn → f + g.
It follows from the monotone convergence theorem (Theorem 4.6) and the linearity
of the integral on simple functions that∫

(f + g) dµ = lim
n→∞

∫
(φn + ψn) dµ

= lim
n→∞

(∫
φn dµ+

∫
ψn dµ

)
= lim
n→∞

∫
φn dµ+ lim

n→∞

∫
ψn dµ

=

∫
f dµ+

∫
g dµ,

which proves the result. �

4.3. Measurable functions

If f : X → R is an extended real-valued function, we define the positive and
negative parts f+, f− : X → [0,∞] of f by

(4.3) f = f+ − f−, f+ = max{f, 0}, f− = max{−f, 0}.
For this decomposition,

|f | = f+ + f−.

Note that f is measurable if and only if f+ and f− are measurable.

Definition 4.8. If f : X → R is a measurable function, then∫
f dµ =

∫
f+ dµ−

∫
f− dµ,

provided that at least one of the integrals
∫
f+ dµ,

∫
f− dµ is finite. The function

f is integrable if both
∫
f+ dµ,

∫
f− dµ are finite, which is the case if and only if∫
|f | dµ <∞.

Note that, according to Definition 4.8, the integral may take the values −∞ or
∞, but it is not defined if both

∫
f+ dµ,

∫
f− dµ are infinite. Thus, although the

integral of a positive measurable function always exists as an extended real number,
the integral of a general, non-integrable real-valued measurable function may not
exist.
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This Lebesgue integral has all the usual properties of an integral. We restrict
attention to integrable functions to avoid undefined expressions involving extended
real numbers such as ∞−∞.

Proposition 4.9. If f, g : X → R are integrable functions, then:∫
kf dµ = k

∫
f dµ if k ∈ R;∫

(f + g) dµ =

∫
f dµ+

∫
g dµ;∫

f dµ ≤
∫
g dµ if f ≤ g;∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.
Proof. These results follow by writing functions into their positive and neg-

ative parts, as in (4.3), and using the results for positive functions.
If f = f+ − f− and k ≥ 0, then (kf)+ = kf+ and (kf)− = kf−, so∫

kf dµ =

∫
kf+ dµ−

∫
kf− dµ = k

∫
f+ dµ− k

∫
f− dµ = k

∫
f dµ.

Similarly, (−f)+ = f− and (−f)− = f+, so∫
(−f) dµ =

∫
f− dµ−

∫
f+ dµ = −

∫
f dµ.

If h = f + g and

f = f+ − f−, g = g+ − g−, h = h+ − h−

are the decompositions of f, g, h into their positive and negative parts, then

h+ − h− = f+ − f− + g+ − g−.

It need not be true that h+ = f+ + g+, but we have

f− + g− + h+ = f+ + g+ + h−.

The linearity of the integral on positive functions gives∫
f− dµ+

∫
g− dµ+

∫
h+ dµ =

∫
f+ dµ+

∫
g+ dµ+

∫
h− dµ,

which implies that∫
h+ dµ−

∫
h− dµ =

∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ,

or
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

It follows that if f ≤ g, then

0 ≤
∫

(g − f) dµ =

∫
g dµ−

∫
f dµ,

so
∫
f dµ ≤

∫
g dµ. The last result is then a consequence of the previous results

and −|f | ≤ f ≤ |f |. �

Let us give two basic examples of the Lebesgue integral.
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Example 4.10. Suppose that X = N and ν : P(N) → [0,∞] is counting measure
on N. If f : N→ R and f(n) = xn, then∫

N
f dν =

∞∑
n=1

xn,

where the integral is finite if and only if the series is absolutely convergent. Thus,
the theory of absolutely convergent series is a special case of the Lebesgue integral.
Note that a conditionally convergent series, such as the alternating harmonic series,
does not correspond to a Lebesgue integral, since both its positive and negative
parts diverge.

Example 4.11. Suppose that X = [a, b] is a compact interval and µ : L([a, b])→ R
is Lesbegue measure on [a, b]. We note in Section 4.8 that any Riemann integrable
function f : [a, b] → R is integrable with respect to Lebesgue measure µ, and its
Riemann integral is equal to the Lebesgue integral,∫ b

a

f(x) dx =

∫
[a,b]

f dµ.

Thus, all of the usual integrals from elementary calculus remain valid for the
Lebesgue integral on R. We will write an integral with respect to Lebesgue measure
on R, or Rn, as ∫

f dx.

Even though the class of Lebesgue integrable functions on an interval is wider
than the class of Riemann integrable functions, some improper Riemann integrals
may exist even though the Lebesegue integral does not.

Example 4.12. The integral∫ 1

0

(
1

x
sin

1

x
+ cos

1

x

)
dx

is not defined as a Lebesgue integral, although the improper Riemann integral

lim
ε→0+

∫ 1

ε

(
1

x
sin

1

x
+ cos

1

x

)
dx = lim

ε→0+

∫ 1

ε

d

dx

[
x cos

1

x

]
dx = cos 1

exists.

Example 4.13. The integral ∫ 1

−1

1

x
dx

is not defined as a Lebesgue integral, although the principal value integral

p.v.

∫ 1

−1

1

x
dx = lim

ε→0+

{∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx

}
= 0

exists. Note, however, that the Lebesgue integrals∫ 1

0

1

x
dx =∞,

∫ 0

−1

1

x
dx = −∞

are well-defined as extended real numbers.
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The inability of the Lebesgue integral to deal directly with the cancelation
between large positive and negative parts in oscillatory or singular integrals, such
as the ones in the previous examples, is sometimes viewed as a defect (although the
integrals above can still be defined as an appropriate limit of Lebesgue integrals).
Other definitions of the integral such as the Henstock-Kurzweil integral, which is a
generalization of the Riemann integral, avoid this defect but they have not proved
to be as useful as the Lebesgue integral. Similar issues arise in connection with
Feynman path integrals in quantum theory, where one would like to define the
integral of highly oscillatory functionals on an infinite-dimensional function-space.

4.4. Absolute continuity

The following results show that a function with finite integral is finite a.e. and
that the integral depends only on the pointwise a.e. values of a function.

Proposition 4.14. If f : X → R is an integrable function, meaning that
∫
|f | dµ <

∞, then f is finite µ-a.e. on X.

Proof. We may assume that f is positive without loss of generality. Suppose
that

E = {x ∈ X : f =∞}
has nonzero measure. Then for any t > 0, we have f > tχE , so∫

f dµ ≥
∫
tχE dµ = tµ(E),

which implies that
∫
f dµ =∞. �

Proposition 4.15. Suppose that f : X → R is an extended real-valued measurable
function. Then

∫
|f | dµ = 0 if and only if f = 0 µ-a.e.

Proof. By replacing f with |f |, we can assume that f is positive without loss
of generality. Suppose that f = 0 a.e. If 0 ≤ φ ≤ f is a simple function,

φ =

N∑
i=1

ciχEi
,

then φ = 0 a.e., so ci = 0 unless µ(Ei) = 0. It follows that∫
φdµ =

N∑
i=1

ciµ(Ei) = 0,

and Definition 4.4 implies that
∫
f dµ = 0.

Conversely, suppose that
∫
f dµ = 0. For n ∈ N, let

En = {x ∈ X : f(x) ≥ 1/n} .
Then 0 ≤ (1/n)χEn

≤ f , so that

0 ≤ 1

n
µ(En) =

∫
1

n
χEn

dµ ≤
∫
f dµ = 0,

and hence µ(En) = 0. Now observe that

{x ∈ X : f(x) > 0} =

∞⋃
n=1

En,

so it follows from the countable additivity of µ that f = 0 a.e. �
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In particular, it follows that if f : X → R is any measurable function, then

(4.4)

∫
A

f dµ = 0 if µ(A) = 0.

For integrable functions we can strengthen the previous result to get the fol-
lowing property, which is called the absolute continuity of the integral.

Proposition 4.16. Suppose that f : X → R is an integrable function, meaning
that

∫
|f | dµ <∞. Then, given any ε > 0, there exists δ > 0 such that

(4.5) 0 ≤
∫
A

|f | dµ < ε

whenever A is a measurable set with µ(A) < δ.

Proof. Again, we can assume that f is positive. For n ∈ N, define fn : X →
[0,∞] by

fn(x) =

{
n if f(x) ≥ n,
f(x) if 0 ≤ f(x) < n.

Then {fn} is an increasing sequence of positive measurable functions that converges
pointwise to f . We estimate the integral of f over A as follows:∫

A

f dµ =

∫
A

(f − fn) dµ+

∫
A

fn dµ

≤
∫
X

(f − fn) dµ+ nµ(A).

By the monotone convergence theorem,∫
X

fn dµ→
∫
X

f dµ <∞

as n→∞. Therefore, given ε > 0, we can choose n such that

0 ≤
∫
X

(f − fn) dµ <
ε

2
,

and then choose

δ =
ε

2n
.

If µ(A) < δ, we get (4.5), which proves the result. �

Proposition 4.16 may fail if f is not integrable.

Example 4.17. Define ν : B((0, 1))→ [0,∞] by

ν(A) =

∫
A

1

x
dx,

where the integral is taken with respect to Lebesgue measure µ. Then ν(A) = 0 if
µ(A) = 0, but (4.5) does not hold.

There is a converse to this theorem concerning the representation of absolutely
continuous measures as integrals (the Radon-Nikodym theorem, stated in Theo-
rem 6.27).
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4.5. Convergence theorems

One of the most basic questions in integration theory is the following: If fn → f
pointwise, when can one say that

(4.6)

∫
fn dµ→

∫
f dµ?

The Riemann integral is not sufficiently general to permit a satisfactory answer to
this question.

Perhaps the simplest condition that guarantees the convergence of the integrals
is that the functions fn : X → R converge uniformly to f : X → R and X has finite
measure. In that case∣∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣∣ ≤ ∫ |fn − f | dµ ≤ µ(X) sup
X
|fn − f | → 0

as n→∞. The assumption of uniform convergence is too strong for many purposes,
and the Lebesgue integral allows the formulation of simple and widely applicable
theorems for the convergence of integrals. The most important of these are the
monotone convergence theorem (Theorem 4.6) and the Lebesgue dominated con-
vergence theorem (Theorem 4.24). The utility of these results accounts, in large
part, for the success of the Lebesgue integral.

Some conditions on the functions fn in (4.6) are, however, necessary to ensure
the convergence of the integrals, as can be seen from very simple examples. Roughly
speaking, the convergence may fail because ‘mass’ can leak out to infinity in the
limit.

Example 4.18. Define fn : R→ R by

fn(x) =

{
n if 0 < x < 1/n,
0 otherwise.

Then fn → 0 as n→∞ pointwise on R, but∫
fn dx = 1 for every n ∈ N.

By modifying this example, and the following ones, we can obtain a sequence fn that
converges pointwise to zero but whose integrals converge to infinity; for example

fn(x) =

{
n2 if 0 < x < 1/n,
0 otherwise.

Example 4.19. Define fn : R→ R by

fn(x) =

{
1/n if 0 < x < n,
0 otherwise.

Then fn → 0 as n→∞ pointwise on R, and even uniformly, but∫
fn dx = 1 for every n ∈ N.

Example 4.20. Define fn : R→ R by

fn(x) =

{
1 if n < x < n+ 1,
0 otherwise.
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Then fn → 0 as n→∞ pointwise on R, but∫
fn dx = 1 for every n ∈ N.

The monotone convergence theorem implies that a similar failure of convergence
of the integrals cannot occur in an increasing sequence of functions, even if the
convergence is not uniform or the domain space does not have finite measure. Note
that the monotone convergence theorem does not hold for the Riemann integral;
indeed, the pointwise limit of a monotone increasing, bounded sequence of Riemann
integrable functions need not even be Riemann integrable.

Example 4.21. Let {qi : i ∈ N} be an enumeration of the rational numbers in the
interval [0, 1], and define fn : [0, 1]→ [0,∞) by

fn(x) =

{
1 if x = qi for some 1 ≤ i ≤ n,
0 otherwise.

Then {fn} is a monotone increasing sequence of bounded, positive, Riemann in-
tegrable functions, each of which has zero integral. Nevertheless, as n → ∞ the
sequence converges pointwise to the characteristic function of the rationals in [0, 1],
which is not Riemann integrable.

A useful generalization of the monotone convergence theorem is the following
result, called Fatou’s lemma.

Theorem 4.22. Suppose that {fn : n ∈ N} is sequence of positive measurable
functions fn : X → [0,∞]. Then

(4.7)

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Proof. For each n ∈ N, let

gn = inf
k≥n

fk.

Then {gn} is a monotone increasing sequence which converges pointwise to lim inf fn
as n→∞, so by the monotone convergence theorem

(4.8) lim
n→∞

∫
gn dµ =

∫
lim inf
n→∞

fn dµ.

Moreover, since gn ≤ fk for every k ≥ n, we have∫
gn dµ ≤ inf

k≥n

∫
fk dµ,

so that

lim
n→∞

∫
gn dµ ≤ lim inf

n→∞

∫
fn dµ.

Using (4.8) in this inequality, we get the result. �

We may have strict inequality in (4.7), as in the previous examples. The mono-
tone convergence theorem and Fatou’s Lemma enable us to determine the integra-
bility of functions.
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Example 4.23. For α ∈ R, consider the function f : [0, 1]→ [0,∞] defined by

f(x) =

{
x−α if 0 < x ≤ 1,
∞ if x = 0.

For n ∈ N, let

fn(x) =

{
x−α if 1/n ≤ x ≤ 1,
nα if 0 ≤ x < 1/n.

Then {fn} is an increasing sequence of Lebesgue measurable functions (e.g since
fn is continuous) that converges pointwise to f . We denote the integral of f with

respect to Lebesgue measure on [0, 1] by
∫ 1

0
f(x) dx. Then, by the monotone con-

vergence theorem, ∫ 1

0

f(x) dx = lim
n→∞

∫ 1

0

fn(x) dx.

From elementary calculus, ∫ 1

0

fn(x) dx→ 1

1− α
as n→∞ if α < 1, and to ∞ if α ≥ 1. Thus, f is integrable on [0, 1] if and only if
α < 1.

Perhaps the most frequently used convergence result is the following dominated
convergence theorem, in which all the integrals are necessarily finite.

Theorem 4.24 (Lebesgue Dominated Convergence Theorem). If {fn : n ∈ N} is
a sequence of measurable functions fn : X → R such that fn → f pointwise, and
|fn| ≤ g where g : X → [0,∞] is an integrable function, meaning that

∫
g dµ <∞,

then ∫
fn dµ→

∫
f dµ as n→∞.

Proof. Since g + fn ≥ 0 for every n ∈ N, Fatou’s lemma implies that∫
(g + f) dµ ≤ lim inf

n→∞

∫
(g + fn) dµ ≤

∫
g dµ+ lim inf

n→∞

∫
fn dµ,

which gives ∫
f dµ ≤ lim inf

n→∞

∫
fn dµ.

Similarly, g − fn ≥ 0, so∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ ≤

∫
g dµ− lim sup

n→∞

∫
fn dµ,

which gives ∫
f dµ ≥ lim sup

n→∞

∫
fn dµ,

and the result follows. �

An alternative, and perhaps more illuminating, proof of the dominated conver-
gence theorem may be obtained from Egoroff’s theorem and the absolute continuity
of the integral. Egoroff’s theorem states that if a sequence {fn} of measurable func-
tions, defined on a finite measure space (X,A, µ), converges pointwise to a function
f , then for every ε > 0 there exists a measurable set A ⊂ X such that {fn} converges
uniformly to f on A and µ(X \ A) < ε. The uniform integrability of the functions
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and the absolute continuity of the integral imply that what happens off the set A
may be made to have arbitrarily small effect on the integrals. Thus, the convergence
theorems hold because of this ‘almost’ uniform convergence of pointwise-convergent
sequences of measurable functions.

4.6. Complex-valued functions and a.e. convergence

In this section, we briefly indicate the generalization of the above results to
complex-valued functions and sequences that converge pointwise almost every-
where. The required modifications are straightforward.

If f : X → C is a complex valued function f = g + ih, then we say that f is
measurable if and only if its real and imaginary parts g, h : X → R are measurable,
and integrable if and only if g, h are integrable. In that case, we define∫

f dµ =

∫
g dµ+ i

∫
h dµ.

Note that we do not allow extended real-valued functions or infinite integrals here.
It follows from the discussion of product measures that f : X → C, where C is
equipped with its Borel σ-algebra B(C), is measurable if and only if its real and
imaginary parts are measurable, so this definition is consistent with our previous
one.

The integral of complex-valued functions satisfies the properties given in Propo-
sition 4.9, where we allow k ∈ C and the condition f ≤ g is only relevant for
real-valued functions. For example, to show that |

∫
f dµ| ≤

∫
|f | dµ, we let∫

f dµ =

∣∣∣∣∫ f dµ

∣∣∣∣ eiθ
for a suitable argument θ, and then∣∣∣∣∫ f dµ

∣∣∣∣ = e−iθ
∫
f dµ =

∫
<[e−iθf ] dµ ≤

∫
|<[e−iθf ]| dµ ≤

∫
|f | dµ.

Complex-valued functions also satisfy the properties given in Section 4.4.
The monotone convergence theorem holds for extended real-valued functions

if fn ↑ f pointwise a.e., and the Lebesgue dominated convergence theorem holds
for complex-valued functions if fn → f pointwise a.e. and |fn| ≤ g pointwise a.e.
where g is an integrable extended real-valued function. If the measure space is not
complete, then we also need to assume that f is measurable. To prove these results,
we replace the functions fn, for example, by fnχNc where N is a null set off which
pointwise convergence holds, and apply the previous theorems; the values of any
integrals are unaffected.

4.7. L1 spaces

We introduce here the space L1(X) of integrable functions on a measure space
X; we will study its properties, and the properties of the closely related Lp spaces,
in more detail later on.

Definition 4.25. If (X,A, µ) is a measure space, then the space L1(X) consists
of the integrable functions f : X → R with norm

‖f‖L1 =

∫
|f | dµ <∞,
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where we identify functions that are equal a.e. A sequence of functions

{fn ∈ L1(X)}
converges in L1, or in mean, to f ∈ L1(X) if

‖f − fn‖L1 =

∫
|f − fn| dµ→ 0 as n→∞.

We also denote the space of integrable complex-valued functions f : X → C by
L1(X). For definiteness, we consider real-valued functions unless stated otherwise;
in most cases, the results generalize in an obvious way to complex-valued functions

Convergence in mean is not equivalent to pointwise a.e.-convergence. The se-
quences in Examples 4.18–4.20 converges to zero pointwise, but they do not con-
verge in mean. The following is an example of a sequence that converges in mean
but not pointwise a.e.

Example 4.26. Define fn : [0, 1]→ R by

f1(x) = 1, f2(x) =

{
1 if 0 ≤ x ≤ 1/2,
0 if 1/2 < x ≤ 1,

f3(x) =

{
0 if 0 ≤ x < 1/2,
1 if 1/2 ≤ x ≤ 1,

f4(x) =

{
1 if 0 ≤ x ≤ 1/4,
1 if 1/4 < x ≤ 1,

f5(x) =

 0 if 0 ≤ x < 1/4,
1 if 1/4 ≤ x ≤ 1/2,
0 if 1/2x < x ≤ 1,

and so on. That is, for 2m ≤ n ≤ 2m − 1, the function fn consists of a spike of
height one and width 2−m that sweeps across the interval [0, 1] as n increases from
2m to 2m − 1. This sequence converges to zero in mean, but it does not converge
pointwise as any point x ∈ [0, 1].

We will show, however, that a sequence which converges sufficiently rapidly in
mean does converge pointwise a.e.; as a result, every sequence that converges in
mean has a subsequence that converges pointwise a.e. (see Lemma 7.9 and Corol-
lary 7.11).

Let us consider the particular case of L1(Rn). As an application of the Borel
regularity of Lebesgue measure, we prove that integrable functions on Rn may be
approximated by continuous functions with compact support. This result means
that L1(Rn) is a concrete realization of the completion of Cc(Rn) with respect to the
L1(Rn)-norm, where Cc(Rn) denotes the space of continuous functions f : Rn → R
with compact support. The support of f is defined by

suppf = {x ∈ Rn : f(x) 6= 0}.
Thus, f has compact support if and only if it vanishes outside a bounded set.

Theorem 4.27. The space Cc(Rn) is dense in L1(Rn). Explicitly, if f ∈ L1(Rn),
then for any ε > 0 there exists a function g ∈ Cc(Rn) such that

‖f − g‖L1 < ε.

Proof. Note first that by the dominated convergence theorem∥∥f − fχBR(0)

∥∥
L1 → 0 as R→∞,

so we can assume that f ∈ L1(Rn) has compact support. Decomposing f = f+−f−
into positive and negative parts, we can also assume that f is positive. Then there
is an increasing sequence of compactly supported simple functions that converges
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to f pointwise and hence, by the monotone (or dominated) convergence theorem,
in mean. Since every simple function is a finite linear combination of characteristic
functions, it is sufficient to prove the result for the characteristic function χA of a
bounded, measurable set A ⊂ Rn.

Given ε > 0, by the Borel regularity of Lebesgue measure, there exists a
bounded open set G and a compact set K such that K ⊂ A ⊂ G and µ(G\K) < ε.
Let g ∈ Cc(Rn) be a Urysohn function such that g = 1 on K, g = 0 on Gc, and
0 ≤ g ≤ 1. For example, we can define g explicitly by

g(x) =
d(x,Gc)

d(x,K) + d(x,Gc)

where the distance function d(·, F ) : Rn → R from a subset F ⊂ Rn is defined by

d(x, F ) = inf {|x− y| : y ∈ F} .

If F is closed, then d(·, F ) is continuous, so g is continuous.
We then have that

‖χA − g‖L1 =

∫
G\K
|χA − g| dx ≤ µ(G \K) < ε,

which proves the result. �

4.8. Riemann integral

Any Riemann integrable function f : [a, b]→ R is Lebesgue measurable, and in
fact integrable since it must be bounded, but a Lebesgue integrable function need
not be Riemann integrable. Using Lebesgue measure, we can give a necessary and
sufficient condition for Riemann integrability.

Theorem 4.28. If f : [a, b] → R is Riemann integrable, then f is Lebesgue in-
tegrable on [a, b] and its Riemann integral is equal to its Lebesgue integral. A
Lebesgue measurable function f : [a, b] → R is Riemann integrable if and only
if it is bounded and the set of discontinuities {x ∈ [a, b] : f is discontinuous at x}
has Lebesgue measure zero.

For the proof, see e.g. Folland [4].

Example 4.29. The characteristic function of the rationals χQ∩[0,1] is discontin-
uous at every point and it is not Riemann integrable on [0, 1]. This function is,
however, equal a.e. to the zero function which is continuous at every point and is
Riemann integrable. (Note that being continuous a.e. is not the same thing as being
equal a.e. to a continuous function.) Any function that is bounded and continuous
except at countably many points is Riemann integrable, but these are not the only
Riemann integrable functions. For example, the characteristic function of a Cantor
set with zero measure is a Riemann integrable function that is discontinuous at
uncountable many points.

4.9. Integrals of vector-valued functions

In Definition 4.4, we use the ordering properties of R to define real-valued
integrals as a supremum of integrals of simple functions. Finite integrals of complex-
valued functions or vector-valued functions that take values in a finite-dimensional
vector space are then defined componentwise.
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An alternative method is to define the integral of a vector-valued function
f : X → Y from a measure space X to a Banach space Y as a limit in norm of
integrals of vector-valued simple functions. The integral of vector-valued simple
functions is defined as in (4.1), assuming that µ(En) < ∞; linear combinations of
the values cn ∈ Y make sense since Y is a vector space. A function f : X → Y is
integrable if there is a sequence of integrable simple functions {φn : X → Y } such
that φn → f pointwise, where the convergence is with respect to the norm ‖ · ‖ on
Y , and ∫

‖f − φn‖ dµ→ 0 as n→∞.

Then we define ∫
f dµ = lim

n→∞

∫
φn dµ,

where the limit is the norm-limit in Y .
This definition of the integral agrees with the one used above for real-valued,

integrable functions, and amounts to defining the integral of an integrable function
by completion in the L1-norm. We will not develop this definition here (see [6],
for example, for a detailed account), but it is useful in defining the integral of
functions that take values in an infinite-dimensional Banach space, when it leads to
the Bochner integral. An alternative approach is to reduce vector-valued integrals
to scalar-valued integrals by the use of continuous linear functionals belonging to
the dual space of the Banach space.
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