
CHAPTER 7

Lp spaces

In this Chapter we consider Lp-spaces of functions whose pth powers are inte-
grable. We will not develop the full theory of such spaces here, but consider only
those properties that are directly related to measure theory — in particular, den-
sity, completeness, and duality results. The fact that spaces of Lebesgue integrable
functions are complete, and therefore Banach spaces, is another crucial reason for
the success of the Lebesgue integral. The Lp-spaces are perhaps the most useful
and important examples of Banach spaces.

7.1. Lp spaces

For definiteness, we consider real-valued functions. Analogous results apply to
complex-valued functions.

Definition 7.1. Let (X,A, µ) be a measure space and 1 ≤ p < ∞. The space
Lp(X) consists of equivalence classes of measurable functions f : X → R such that∫

|f |p dµ <∞,

where two measurable functions are equivalent if they are equal µ-a.e. The Lp-norm
of f ∈ Lp(X) is defined by

‖f‖Lp =

(∫
|f |p dµ

)1/p

.

The notation Lp(X) assumes that the measure µ on X is understood. We say
that fn → f in Lp if ‖f − fn‖Lp → 0. The reason to regard functions that are
equal a.e. as equivalent is so that ‖f‖Lp = 0 implies that f = 0. For example, the
characteristic function χQ of the rationals on R is equivalent to 0 in Lp(R). We will
not worry about the distinction between a function and its equivalence class, except
when the precise pointwise values of a representative function are significant.

Example 7.2. If N is equipped with counting measure, then Lp(N) consists of all
sequences {xn ∈ R : n ∈ N} such that

∞∑
n=1

|xn|p <∞.

We write this sequence space as `p(N), with norm

‖{xn}‖`p =

( ∞∑
n=1

|xn|p
)1/p

.

The space L∞(X) is defined in a slightly different way. First, we introduce the
notion of esssential supremum.
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80 7. Lp SPACES

Definition 7.3. Let f : X → R be a measurable function on a measure space
(X,A, µ). The essential supremum of f on X is

ess sup
X

f = inf {a ∈ R : µ{x ∈ X : f(x) > a} = 0} .

Equivalently,

ess sup
X

f = inf

{
sup
X
g : g = f pointwise a.e.

}
.

Thus, the essential supremum of a function depends only on its µ-a.e. equivalence
class. We say that f is essentially bounded on X if

ess sup
X
|f | <∞.

Definition 7.4. Let (X,A, µ) be a measure space. The space L∞(X) consists
of pointwise a.e.-equivalence classes of essentially bounded measurable functions
f : X → R with norm

‖f‖L∞ = ess sup
X
|f |.

In future, we will write
ess sup f = sup f.

We rarely want to use the supremum instead of the essential supremum when the
two have different values, so this notation should not lead to any confusion.

7.2. Minkowski and Hölder inequalities

We state without proof two fundamental inequalities.

Theorem 7.5 (Minkowski inequality). If f, g ∈ Lp(X), where 1 ≤ p ≤ ∞, then
f + g ∈ Lp(X) and

‖f + g‖Lp ≤ ‖f‖Lp + ‖f‖Lp .

This inequality means, as stated previously, that ‖ · ‖Lp is a norm on Lp(X)
for 1 ≤ p ≤ ∞. If 0 < p < 1, then the reverse inequality holds

‖f‖Lp + ‖g‖Lp ≤ ‖f + g‖Lp ,

so ‖ · ‖Lp is not a norm in that case. Nevertheless, for 0 < p < 1 we have

|f + g|p ≤ |f |p + |g|p,
so Lp(X) is a linear space in that case also.

To state the second inequality, we define the Hölder conjugate of an exponent.

Definition 7.6. Let 1 ≤ p ≤ ∞. The Hölder conjugate p′ of p is defined by

1

p
+

1

p′
= 1 if 1 < p <∞,

and 1′ =∞, ∞′ = 1.

Note that 1 ≤ p′ ≤ ∞, and the Hölder conjugate of p′ is p.

Theorem 7.7 (Hölder’s inequality). Suppose that (X,A, µ) is a measure space and

1 ≤ p ≤ ∞. If f ∈ Lp(X) and g ∈ Lp′(X), then fg ∈ L1(X) and∫
|fg| dµ ≤ ‖f‖Lp ‖g‖Lp′ .

For p = p′ = 2, this is the Cauchy-Schwartz inequality.
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7.3. Density

Density theorems enable us to prove properties of Lp functions by proving them
for functions in a dense subspace and then extending the result by continuity. For
general measure spaces, the simple functions are dense in Lp.

Theorem 7.8. Suppose that (X,A, ν) is a measure space and 1 ≤ p ≤ ∞. Then
the simple functions that belong to Lp(X) are dense in Lp(X).

Proof. It is sufficient to prove that we can approximate a positive function
f : X → [0,∞) by simple functions, since a general function may be decomposed
into its positive and negative parts.

First suppose that f ∈ Lp(X) where 1 ≤ p < ∞. Then, from Theorem 3.12,
there is an increasing sequence of simple functions {φn} such that φn ↑ f pointwise.
These simple functions belong to Lp, and

|f − φn|p ≤ |f |p ∈ L1(X).

Hence, the dominated convergence theorem implies that∫
|f − φn|p dµ→ 0 as n→∞,

which proves the result in this case.
If f ∈ L∞(X), then we may choose a representative of f that is bounded.

According to Theorem 3.12, there is a sequence of simple functions that converges
uniformly to f , and therefore in L∞(X). �

Note that a simple function

φ =

n∑
i=1

ciχAi

belongs to Lp for 1 ≤ p < ∞ if and only if µ(Ai) < ∞ for every Ai such that
ci 6= 0, meaning that its support has finite measure. On the other hand, every
simple function belongs to L∞.

For suitable measures defined on topological spaces, Theorem 7.8 can be used to
prove the density of continuous functions in Lp for 1 ≤ p <∞, as in Theorem 4.27
for Lebesgue measure on Rn. We will not consider extensions of that result to more
general measures or topological spaces here.

7.4. Completeness

In proving the completeness of Lp(X), we will use the following Lemma.

Lemma 7.9. Suppose that X is a measure space and 1 ≤ p <∞. If

{gk ∈ Lp(X) : k ∈ N}
is a sequence of Lp-functions such that

∞∑
k=1

‖gk‖Lp <∞,

then there exists a function f ∈ Lp(X) such that
∞∑
k=1

gk = f
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where the sum converges pointwise a.e. and in Lp.

Proof. Define hn, h : X → [0,∞] by

hn =

n∑
k=1

|gk| , h =

∞∑
k=1

|gk| .

Then {hn} is an increasing sequence of functions that converges pointwise to h, so
the monotone convergence theorem implies that∫

hp dµ = lim
n→∞

∫
hpn dµ.

By Minkowski’s inequality, we have for each n ∈ N that

‖hn‖Lp ≤
n∑

k=1

‖gk‖Lp ≤M

where
∑∞

k=1 ‖gk‖Lp = M . It follows that h ∈ Lp(X) with ‖h‖Lp ≤ M , and in
particular that h is finite pointwise a.e. Moreover, the sum

∑∞
k=1 gk is absolutely

convergent pointwise a.e., so it converges pointwise a.e. to a function f ∈ Lp(X)
with |f | ≤ h. Since∣∣∣∣∣f −

n∑
k=1

gk

∣∣∣∣∣
p

≤

(
|f |+

n∑
k=1

|gk|

)p

≤ (2h)p ∈ L1(X),

the dominated convergence theorem implies that∫ ∣∣∣∣∣f −
n∑

k=1

gk

∣∣∣∣∣
p

dµ→ 0 as n→∞,

meaning that
∑∞

k=1 gk converges to f in Lp. �

The following theorem implies that Lp(X) equipped with the Lp-norm is a
Banach space.

Theorem 7.10 (Riesz-Fischer theorem). If X is a measure space and 1 ≤ p ≤ ∞,
then Lp(X) is complete.

Proof. First, suppose that 1 ≤ p < ∞. If {fk : k ∈ N} is a Cauchy sequence
in Lp(X), then we can choose a subsequence {fkj : j ∈ N} such that∥∥fkj+1

− fkj

∥∥
Lp ≤

1

2j
.

Writing gj = fkj+1
− fkj

, we have

∞∑
j=1

‖gj‖Lp <∞,

so by Lemma 7.9, the sum

fk1
+

∞∑
j=1

gj
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converges pointwise a.e. and in Lp to a function f ∈ Lp. Hence, the limit of the
subsequence

lim
j→∞

fkj
= lim

j→∞

(
fk1

+

j−1∑
i=1

gi

)
= fk1

+

∞∑
j=1

gj = f

exists in Lp. Since the original sequence is Cauchy, it follows that

lim
k→∞

fk = f

in Lp. Therefore every Cauchy sequence converges, and Lp(X) is complete when
1 ≤ p <∞.

Second, suppose that p = ∞. If {fk} is Cauchy in L∞, then for every m ∈ N
there exists an integer n ∈ N such that we have

(7.1) |fj(x)− fk(x)| < 1

m
for all j, k ≥ n and x ∈ N c

j,k,m

where Nj,k,m is a null set. Let

N =
⋃

j,k,m∈N
Nj,k,m.

Then N is a null set, and for every x ∈ N c the sequence {fk(x) : k ∈ N} is Cauchy
in R. We define a measurable function f : X → R, unique up to pointwise a.e.
equivalence, by

f(x) = lim
k→∞

fk(x) for x ∈ N c.

Letting k →∞ in (7.1), we find that for every m ∈ N there exists an integer n ∈ N
such that

|fj(x)− f(x)| ≤ 1

m
for j ≥ n and x ∈ N c.

It follows that f is essentially bounded and fj → f in L∞ as j →∞. This proves
that L∞ is complete. �

One useful consequence of this proof is worth stating explicitly.

Corollary 7.11. Suppose that X is a measure space and 1 ≤ p < ∞. If {fk} is
a sequence in Lp(X) that converges in Lp to f , then there is a subsequence {fkj

}
that converges pointwise a.e. to f .

As Example 4.26 shows, the full sequence need not converge pointwise a.e.

7.5. Duality

The dual space of a Banach space consists of all bounded linear functionals on
the space.

Definition 7.12. If X is a real Banach space, the dual space of X∗ consists of all
bounded linear functionals F : X → R, with norm

‖F‖X∗ = sup
x∈X\{0}

[
|F (x)|
‖x‖X

]
<∞.
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A linear functional is bounded if and only if it is continuous. For Lp spaces,
we will use the Radon-Nikodym theorem to show that Lp(X)∗ may be identified

with Lp′(X) for 1 < p < ∞. Under a σ-finiteness assumption, it is also true that
L1(X)∗ = L∞(X), but in general L∞(X)∗ 6= L1(X).

Hölder’s inequality implies that functions in Lp′ define bounded linear func-
tionals on Lp with the same norm, as stated in the following proposition.

Proposition 7.13. Suppose that (X,A, µ) is a measure space and 1 < p ≤ ∞. If

f ∈ Lp′(X), then

F (g) =

∫
fg dµ

defines a bounded linear functional F : Lp(X)→ R, and

‖F‖Lp∗ = ‖f‖Lp′ .

If X is σ-finite, then the same result holds for p = 1.

Proof. From Hölder’s inequality, we have for 1 ≤ p ≤ ∞ that

|F (g)| ≤ ‖f‖Lp′‖g‖Lp ,

which implies that F is a bounded linear functional on Lp with

‖F‖Lp∗ ≤ ‖f‖Lp′ .

In proving the reverse inequality, we may assume that f 6= 0 (otherwise the result
is trivial).

First, suppose that 1 < p <∞. Let

g = (sgn f)

(
|f |
‖f‖Lp′

)p′/p

.

Then g ∈ Lp, since f ∈ Lp′ , and ‖g‖Lp = 1. Also, since p′/p = p′ − 1,

F (g) =

∫
(sgn f)f

(
|f |
‖f‖Lp′

)p′−1

dµ

= ‖f‖Lp′ .

Since ‖g‖Lp = 1, we have ‖F‖Lp∗ ≥ |F (g)|, so that

‖F‖Lp∗ ≥ ‖f‖Lp′ .

If p = ∞, we get the same conclusion by taking g = sgn f ∈ L∞. Thus, in these
cases the supremum defining ‖F‖Lp∗ is actually attained for a suitable function g.

Second, suppose that p = 1 and X is σ-finite. For ε > 0, let

A = {x ∈ X : |f(x)| > ‖f‖L∞ − ε} .
Then 0 < µ(A) ≤ ∞. Moreover, since X is σ-finite, there is an increasing sequence
of sets An of finite measure whose union is A such that µ(An) → µ(A), so we can
find a subset B ⊂ A such that 0 < µ(B) <∞. Let

g = (sgn f)
χB

µ(B)
.

Then g ∈ L1(X) with ‖g‖L1 = 1, and

F (g) =
1

µ(B)

∫
B

|f | dµ ≥ ‖f‖L∞ − ε.
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It follows that

‖F‖L1∗ ≥ ‖f‖L∞ − ε,
and therefore ‖F‖L1∗ ≥ ‖f‖L∞ since ε > 0 is arbitrary. �

This proposition shows that the map F = J(f) defined by

(7.2) J : Lp′(X)→ Lp(X)∗, J(f) : g 7→
∫
fg dµ,

is an isometry from Lp′ into Lp∗. The main part of the following result is that J is
onto when 1 < p <∞, meaning that every bounded linear functional on Lp arises
in this way from an Lp′ -function.

The proof is based on the idea that if F : Lp(X) → R is a bounded linear
functional on Lp(X), then ν(E) = F (χE) defines an absolutely continuous measure

on (X,A, µ), and its Radon-Nikodym derivative f = dν/dµ is the element of Lp′

corresponding to F .

Theorem 7.14 (Dual space of Lp). Let (X,A, µ) be a measure space. If 1 < p <

∞, then (7.2) defines an isometric isomorphism of Lp′(X) onto the dual space of
Lp(X).

Proof. We just have to show that the map J defined in (7.2) is onto, meaning

that every F ∈ Lp(X)∗ is given by J(f) for some f ∈ Lp′(X).
First, suppose that X has finite measure, and let

F : Lp(X)→ R

be a bounded linear functional on Lp(X). If A ∈ A, then χA ∈ Lp(X), since X has
finite measure, and we may define ν : A → R by

ν(A) = F (χA) .

If A =
⋃∞

i=1Ai is a disjoint union of measurable sets, then

χA =

∞∑
i=1

χAi
,

and the dominated convergence theorem implies that∥∥∥∥∥χA −
n∑

i=1

χAi

∥∥∥∥∥
Lp

→ 0

as n→∞. Hence, since F is a continuous linear functional on Lp,

ν(A) = F (χA) = F

( ∞∑
i=1

χAi

)
=

∞∑
i=1

F (χAi
) =

∞∑
i=1

ν(Ai),

meaning that ν is a signed measure on (X,A).
If µ(A) = 0, then χA is equivalent to 0 in Lp and therefore ν(A) = 0 by

the linearity of F . Thus, ν is absolutely continuous with respect to µ. By the
Radon-Nikodym theorem, there is a function f : X → R such that dν = fdµ and

F (χA) =

∫
fχA dµ for everyA ∈ A.
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Hence, by the linearity and boundedness of F ,

F (φ) =

∫
fφ dµ

for all simple functions φ, and ∣∣∣∣∫ fφ dµ

∣∣∣∣ ≤M‖φ‖Lp

where M = ‖F‖Lp∗ .
Taking φ = sgn f , which is a simple function, we see that f ∈ L1(X). We may

then extend the integral of f against bounded functions by continuity. Explicitly,
if g ∈ L∞(X), then from Theorem 7.8 there is a sequence of simple functions {φn}
with |φn| ≤ |g| such that φn → g in L∞, and therefore also in Lp. Since

|fφn| ≤ ‖g‖L∞ |f | ∈ L1(X),

the dominated convergence theorem and the continuity of F imply that

F (g) = lim
n→∞

F (φn) = lim
n→∞

∫
fφn dµ =

∫
fg dµ,

and that

(7.3)

∣∣∣∣∫ fg dµ

∣∣∣∣ ≤M‖g‖Lp for every g ∈ L∞(X).

Next we prove that f ∈ Lp′(X). We will estimate the Lp′ norm of f by a
similar argument to the one used in the proof of Proposition 7.13. However, we
need to apply the argument to a suitable approximation of f , since we do not know
a priori that f ∈ Lp′ .

Let {φn} be a sequence of simple functions such that

φn → f pointwise a.e. as n→∞

and |φn| ≤ |f |. Define

gn = (sgn f)

(
|φn|
‖φn‖Lp′

)p′/p

.

Then gn ∈ L∞(X) and ‖gn‖Lp = 1. Moreover, fgn = |fgn| and∫
|φngn| dµ = ‖φn‖Lp′ .

It follows from these equalities, Fatou’s lemma, the inequality |φn| ≤ |f |, and (7.3)
that

‖f‖Lp′ ≤ lim inf
n→∞

‖φn‖Lp′

≤ lim inf
n→∞

∫
|φngn| dµ

≤ lim inf
n→∞

∫
|fgn| dµ

≤M.
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Thus, f ∈ Lp′ . Since the simple functions are dense in Lp and g 7→
∫
fg dµ is a

continuous functional on Lp when f ∈ Lp′ , it follows that F (g) =
∫
fg dµ for every

g ∈ Lp(X). Proposition 7.13 then implies that

‖F‖Lp∗ = ‖f‖Lp′ ,

which proves the result when X has finite measure.
The extension to non-finite measure spaces is straightforward, and we only

outline the proof. If X is σ-finite, then there is an increasing sequence {An} of sets
with finite measure whose union is X. By the previous result, there is a unique
function fn ∈ Lp′(An) such that

F (g) =

∫
An

fng dµ for all g ∈ Lp(An).

If m ≥ n, the functions fm, fn are equal pointwise a.e. on An, and the dominated
convergence theorem implies that f = limn→∞ fn ∈ Lp′(X) is the required function.

Finally, if X is not σ-finite, then for each σ-finite subset A ⊂ X, let fA ∈ Lp′(A)
be the function such that F (g) =

∫
A
fAg dµ for every g ∈ Lp(A). Define

M ′ = sup
{
‖fA‖Lp′ (A) : A ⊂ X is σ-finite

}
≤ ‖F‖Lp(X)∗ ,

and choose an increasing sequence of sets An such that

‖fAn
‖Lp′ (An)

→M ′ as n→∞.

Defining B =
⋃∞

n=1An, one may verify that fB is the required function. �

A Banach space X is reflexive if its bi-dual X∗∗ is equal to the original space
X under the natural identification

ι : X → X∗∗ where ι(x)(F ) = F (x) for every F ∈ X∗,

meaning that x acting on F is equal to F acting on x. Reflexive Banach spaces
are generally better-behaved than non-reflexive ones, and an immediate corollary
of Theorem 7.14 is the following.

Corollary 7.15. If X is a measure space and 1 < p <∞, then Lp(X) is reflexive.

Theorem 7.14 also holds if p = 1 provided that X is σ-finite, but we omit a
detailed proof. On the other hand, the theorem does not hold if p = ∞. Thus L1

and L∞ are not reflexive Banach spaces, except in trivial cases.
The following example illustrates a bounded linear functional on an L∞-space

that does not arise from an element of L1.

Example 7.16. Consider the sequence space `∞(N). For

x = {xi : i ∈ N} ∈ `∞(N), ‖x‖`∞ = sup
i∈N
|xi| <∞,

define Fn ∈ `∞(N)∗ by

Fn (x) =
1

n

n∑
i=1

xi,

meaning that Fn maps a sequence to the mean of its first n terms. Then

‖Fn‖`∞∗ = 1
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for every n ∈ N, so by the Alaoglu theorem on the weak-∗ compactness of the unit
ball, there exists a subsequence {Fnj : j ∈ N} and an element F ∈ `∞(N)∗ with

‖F‖`∞∗ ≤ 1 such that Fnj

∗
⇀ F in the weak-∗ topology on `∞∗.

If u ∈ `∞ is the unit sequence with ui = 1 for every i ∈ N, then Fn(u) = 1 for
every n ∈ N, and hence

F (u) = lim
j→∞

Fnj
(u) = 1,

so F 6= 0; in fact, ‖F‖`∞ = 1. Now suppose that there were y = {yi} ∈ `1(N) such
that

F (x) =

∞∑
i=1

xiyi for every x ∈ `∞.

Then, denoting by ek ∈ `∞ the sequence with kth component equal to 1 and all
other components equal to 0, we have

yk = F (ek) = lim
j→∞

Fnj
(ek) = lim

j→∞

1

nj
= 0

so y = 0, which is a contradiction. Thus, `∞(N)∗ is strictly larger than `1(N).
We remark that if a sequence x = {xi} ∈ `∞ has a limit L = limi→∞ xi, then

F (x) = L, so F defines a generalized limit of arbitrary bounded sequences in terms
of their Cesàro sums. Such bounded linear functionals on `∞(N) are called Banach
limits.

It is possible to characterize the dual of L∞(X) as a space ba(X) of bounded,
finitely additive, signed measures that are absolutely continuous with respect to
the measure µ on X. This result is rarely useful, however, since finitely additive
measures are not easy to work with. Thus, for example, instead of using the weak
topology on L∞(X), we can regard L∞(X) as the dual space of L1(X) and use the
corresponding weak-∗ topology.
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