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Abstract. These are some brief notes on measure theory, concentrating on

Lebesgue measure on Rn. Some missing topics I would have liked to have in-
cluded had time permitted are: the change of variable formula for the Lebesgue

integral on Rn; absolutely continuous functions and functions of bounded vari-

ation of a single variable and their connection with Lebesgue-Stieltjes measures
on R; Radon measures on Rn, and other locally compact Hausdorff topological

spaces, and the Riesz representation theorem for bounded linear functionals

on spaces of continuous functions; and other examples of measures, including
k-dimensional Hausdorff measure in Rn, Wiener measure and Brownian mo-

tion, and Haar measure on topological groups. All these topics can be found

in the references.
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