Measure Theory

John K. Hunter

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT DAVIS

ABSTRACT. These are some brief notes on measure theory, concentrating on Lebesgue measure on \mathbb{R}^n . Some missing topics I would have liked to have included had time permitted are: the change of variable formula for the Lebesgue integral on \mathbb{R}^n ; absolutely continuous functions and functions of bounded variation of a single variable and their connection with Lebesgue-Stieltjes measures on \mathbb{R} ; Radon measures on \mathbb{R}^n , and other locally compact Hausdorff topological spaces, and the Riesz representation theorem for bounded linear functionals on spaces of continuous functions; and other examples of measures, including k-dimensional Hausdorff measure in \mathbb{R}^n , Wiener measure and Brownian motion, and Haar measure on topological groups. All these topics can be found in the references.

© John K. Hunter, 2011

Contents

Chapter 1. Measures	1
1.1. Sets	1
1.2. Topological spaces	2
1.3. Extended real numbers	2
1.4. Outer measures	3
1.5. σ -algebras	4
1.6. Measures	5
1.7. Sets of measure zero	6
Chapter 2. Lebesgue Measure on \mathbb{R}^n	9
2.1. Lebesgue outer measure	10
2.2. Outer measure of rectangles	12
2.3. Carathéodory measurability	14
2.4. Null sets and completeness	18
2.5. Translational invariance	19
2.6. Borel sets	20
2.7. Borel regularity	22
2.8. Linear transformations	27
2.9. Lebesgue-Stieltjes measures	30
Chapter 3. Measurable functions	33
3.1. Measurability	33
3.2. Real-valued functions	34
3.3. Pointwise convergence	36
3.4. Simple functions	37
3.5. Properties that hold almost everywhere	38
Chapter 4. Integration	39
4.1. Simple functions	39
4.2. Positive functions	40
4.3. Measurable functions	42
4.4. Absolute continuity	45
4.5. Convergence theorems	47
4.6. Complex-valued functions and a.e. convergence	50
4.7. L^1 spaces	50
4.8. Riemann integral	52
4.9. Integrals of vector-valued functions	52
Chapter 5. Product Measures	55
5.1. Product σ -algebras	55

CONTENTS

5.2.	Premeasures	56
5.3.	Product measures	58
5.4.	Measurable functions	60
5.5.	Monotone class theorem	61
5.6.	Fubini's theorem	61
5.7.	Completion of product measures	61
Chapter	6. Differentiation	63
6.1.	A covering lemma	64
6.2.	Maximal functions	65
6.3.	Weak- L^1 spaces	66
6.4.	Hardy-Littlewood theorem	67
6.5.	Lebesgue differentiation theorem	68
6.6.	Signed measures	70
6.7.	Hahn and Jordan decompositions	71
6.8.	Radon-Nikodym theorem	73
6.9.	Complex measures	77
Chapter	7. L^p spaces	79
7.1.	L^p spaces	79
7.2.	Minkowski and Hölder inequalities	80
7.3.	Density	81
7.4.	Completeness	81
7.5.	Duality	83
Bibliogr	aphy	89

iv