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1. Kinematics

Consider the deformation of a continuous medium. We label material points by
their position X ∈ B ⊂ Rn in a reference configuration. The deformation of the
medium is defined by a function

φ : B × R→ BT ⊂ Rn

where x = φ(X, T ) is the position of the material point X at time T .
We will refer to X as a material, or Lagrangian point, and x as a spatial or

Eulerian point. If Ω ⊂ B is a material region, we denote by ΩT = φ (Ω, T ) the
spatial region occupied by the material points in Ω at time T .

We assume that the deformation φ is smooth, with a smooth inverse X = Φ(x, t).
Here, we write T = t for the time; the partial derivative ∂T will denote the mate-
rial time-derivative, taken holding X fixed, while ∂t will denote the spatial time-
derivative, taken holding x fixed. Abusing notation, we will usually denote the
deformation and its inverse by x(X, T ) and X(x, t), respectively.

We denote the Cartesian coordinates of the position vector of a point, chosen
with respect to some convenient origin, in the spatial and reference configurations
by

x =
(
x1, . . . , xa, . . . , xn

)
, X =

(
X1, . . . , XA, . . . , Xn

)
,

respectively, with a corresponding notation for the components of other vectors and
tensors. We will use the summation convention.

Following the usual procedure in Cartesian tensor analysis, we may identify
vectors and one-forms and ignore the distinction between upper and lower indices,
while maintaining the distinction between spatial indices (such as a) and material
indices (such as A).

Alternatively, in order to maintain a distinction between vectors and one forms
without introducing the full apparatus of tensor analysis, let g and G be the met-
ric tensors in the spatial and reference configurations, respectively. The component
matrix of each metric with respect to the corresponding Cartesian coordinate sys-
tem is the identity matrix

gab =

{
1 if a = b,
0 if a 6= b,

GAB =

{
1 if A = B,
0 if A 6= B.

We denote the inner product of two spatial vectors v, w with components va, wa

by

v ·w = gabv
awb = v1w1 + v2w2 + · · ·+ vnwn,

and write va = gabv
b for the (numerically equal) components of the covector associ-

ated with the vector v. We write gab = gab for the contravariant metric components,
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and use similar notation to ‘raise’ and ‘lower’ indices of other tensors. We will gen-
erally regard the resulting tensors as being equivalent. The notation for material
vectors and tensors, is analogous, with gab replaced by GAB .

The trace of a second-order spatial tensor T with components T ab is the scalar
tr T = T aa .

We denote the material and spatial covariant derivatives by D and ∇, respec-
tively, and the material and spatial divergences by Div and div, respectively. For
example, if v is a spatial vector with components va and S is a mixed second-order
tensor with components SAa , then

(Dv)
a
A =

∂va

∂XA
, div v =

∂va

∂xa
, (Div S)a =

∂SAa
∂XA

.

1.1. The deformation gradient. The deformation gradient F(X, T ) : Rn → Rn
is the linear map that approximates the deformation x(·, T ) near X. It is defined
by

(1) F =
∂x

∂X
, F aA =

∂xa

∂XA
.

We will also use the notation F = Dx. The deformation gradient maps vectors
in the reference frame to vectors in the spatial frame. If w = FV, where w has
components wa and V has components V A, then

wa = F aAV
A.

The inverse of F is given by

F−1 =
∂X

∂x
,

(
F−1

)A
a

=
∂XA

∂xa
.

We have

FaA
(
F−1

)A
b

= δab ,
(
F−1

)A
a
F aB = δAB

where δab is the Kronecker-delta,

δab =

{
1 if a = b,
0 if a 6= b.

We define the transpose Ft of F by(
Ftv

)
·V = v · (FV) for all v,V ∈ Rn.

The components of Ft are obtained by raising and lowering the components of F(
Ft
)A
a

= gabG
ABF bB .

Similarly, the inverse transpose has components(
F−t

)a
A

= gabGAB
(
F−1

)B
b

1.2. Velocity and acceleration. The velocity U(X, T ) of a material point is
given by

U(X, T ) = xT (X, T ).

We denote the velocity expressed as a function of spatial coordinates by u(x, t),
where

u (x(X, t), t) = U(X, t).
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The chain rule implies that the material time-derivative is related to the spatial
time-derivative by

∂

∂T
=

∂

∂t
+ u · ∇,

where

u · ∇ = ua
∂

∂xa

is the covariant derivative in the direction u. In particular, the acceleration of a
material point is given by

UT = ut + u · ∇u.

1.3. Density and the Jacobian. Let ρ0(X) be the density of the medium in the
reference configuration B. The mass of a material region Ω ⊂ B is conserved, and
is given by ∫

Ω

ρ0 dX =

∫
Ωt

ρ0

J
dx

where the Jacobian J(X, T ) is defined by

(2) J = det F.

We assume throughout that det F > 0. Thus, the density ρ(x, t) in the spatial
configuration is given by

(3) ρ =
ρ0

J
.

The derivative of the Jacobian J(F) with respect to the deformation gradient is

∂J

∂F
(F)H = lim

ε→0

[
det(F + εH)− det F

ε

]
= (det F) lim

ε→0

[
det(I + εF−1H)− 1

ε

]
.

Using the fact that

det (I + εT) = 1 + ε tr T +O
(
ε2
)

as ε→ 0,

we get

(4)
∂J

∂F
(F)H = J tr

(
F−1H

)
,

∂J

∂F aA
Ha
A = J

∂XA

∂xa
Ha
A.

In particular, it follows that

JT = J tr
(
F−1FT

)
= J tr

(
∂X

∂x

∂U

∂X

)
= J tr

(
∂u

∂x

)
= J div u,

where div u = ∂xaua denotes the spatial divergence of u. Using this equation and
(3), we get the spatial form of conservation of mass

ρt + div (ρu) = 0.
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2. Compressible fluids

2.1. Thermodynamics. A unit mass of a simple fluid in thermodynamic equilib-
rium is characterized by two quantities. Any thermodynamic quantity is a function
of any other independent pair of thermodynamic quantities.

Let e, v = 1/ρ, p, T , s denote the specific internal energy, specific volume,
pressure, temperature, specific entropy, respectively, of the fluid. The functional
dependence of these quantities satisfies the basic thermodynamic identity

de = −pdv + Tds.

Let h = e+ pv denote the specific enthalpy. Then

dh = vdp+ Tds.

It follows that

d
( e
v

)
=

1

v
de− e

v2
dv

= − h

v2
dv +

T

v
ds.

Hence,

d (ρe) = hdρ+ ρTds.

Denoting a derivative with respect to ρ keeping s constant by a prime, we therefore
have

(5) e′ =
p

ρ2
, (ρe)

′
= h, h′ =

p′

ρ
.

2.2. Lagrangian formulation: barotropic fluid. We consider a barotropic fluid
whose specific internal energy e is a function of the spatial density ρ only. For exam-
ple, this is the case in isentropic flows. It follows that, in Lagrangian coordinates,
the internal energy depends on the deformation only through the Jacobian J defined
in (2).

The Lagrangian density for the fluid motion is the difference between its kinetic
and internal energy densities in the reference configuration,

L (xT ,Dx) =
1

2
ρ0x

2
T − ρ0e

(ρ0

J

)
, J = det Dx.

If ρ0 depends on X, then so does L, but, to simplify the notation, we do not show
this dependence explicitly. The corresponding variational principle is

(6) δ

∫ {
1

2
ρ0x

2
T − ρ0e

(ρ0

J

)}
dXdT = 0.
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Taking variations in (6) with respect to x, using (4) to compute the variation of
the Jacobian and (5) to rewrite e′, we get

δ

∫
LdXdT =

∫ {
ρ0xT · δxT +

ρ2
0

J2
e′δJ

}
dXdT

=

∫ {
ρ0xT · δxT + pJ tr

(
F−1δF

)}
dXdT

=

∫ {
ρ0x

aT δxaT + pJ
(
F−1

)A
b

∂δxb

∂XA

}
dXdT

= −
∫ {

ρ0x
a
TT +

∂

∂XA

[
pJgab

(
F−1

)A
b

]}
δxa dXdT

= −
∫ {

ρ0xTT + Div
[
pJF−1

]}
· δx dXdT.

It follows that

ρ0xTT = Div S (Dx) ,

where S(F) is the (first) Piola-Kirchhoff stress tensor

S = −p
(ρ0

J

)
JF−1, SAa = −p

(ρ0

J

) ∂XA

∂xa
.

The component form of the equation is

ρ0x
a
TT =

∂SaA

∂XA
.

Using the Piola identity

(7) Div
(
JF−1

)
= 0,

∂

∂XA

(
J
∂XA

∂xa

)
= 0

and the fact that F−1D = ∇, we get the spatial form of the momentum equation,

ρ (ut + u · ∇u) +∇p = 0.

2.3. Stress tensors. The Piola-Kirchhoff stress tensor is the derivative of the in-
ternal energy density

W (F) = ρ0e
( ρ0

det F

)
with respect to the deformation gradient. In components,

SAa =
∂W

∂F aA
.

The Piola-Kirchhoff stress tensor S gives the force per unit area in the reference
configuration exerted across a surface by one part of the continuum on another
part. By contrast, the Cauchy stress tensor T gives the force per unit area in the
spatial configuration.

The Piola-Kirchhoff stress tensor S is related to the Cauchy stress tensor T by

(8) S = JTF−t, SaA = JT ab
(
F−1

)b
A
,

where SaA = gabGABS
B
b .

To see this, we linearize the deformation, and consider the case of three space
dimensions for simplicity. A material parallelogram bounded by vectors Y, Z has
a non-unit normal Ñ = Y × Z whose magnitude ‖Ñ‖ is equal to the area. The
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deformation tensor F maps this to spatial parallelogram bounded by vectors y =
FY, z = FZ. The corresponding non-unit normal vector is ñ = x× y.

Using the polar decomposition, we write F = RU as the product of a rotation
R and a symmetric, positive-definite tensor U. Since the cross-product is invariant
under rotations, we have

FY × FZ = R (UY ×UZ) .

Let {EA : A = 1, 2, 3} be an orthonormal basis of eigenvectors of U with eigenvalues
{λA : A = 1, 2, 3}. Then, if EA ×EB = EC ,

UEA ×UEB = λAλB (EA ×EB) =
λAλBλC
λC

EC = (det F) U−1 (EA ×EB) .

It follows that UY ×UZ = JU−1 (Y × Z), and

(9) ñ = FY × FZ = JRU−1 (Y × Z) = JF−tÑ.

Introducing the unit normals n = ñ/‖ñ‖, N = Ñ/‖Ñ‖, the force f across the
parallelogram is given by the Cauchy stress tensor acting on the unit spatial normal
multiplied by the spatial area,

f = ‖ñ‖Tn = Tñ,

and by the Piola-Kirchhoff stress tensor acting on the unit material normal multi-
plied by the material area,

f = ‖Ñ‖SN = SÑ.

Equating these two expressions for f , and using (9), we get (8).
For a barotropic fuid, we have T = −pI, which gives

S = −pJF−t.

2.4. Hamiltonian formulation. The canonically conjugate momentum for (6) is

(10) p (X, T ) = ρ0 (X) xT (X, T ) ,

and the Hamiltonian is

(11) H (x,p) =

∫ {
1

2ρ0
p2 + ρ0e

( ρ0

det Dx

)}
dX.

The corresponding canonical Poisson bracket is

(12) {F ,G} =

∫ {
δF
δx
· δG
δp
− δF
δp
· δG
δx

}
dX.

The Lagrangian equations of motion may be written in the Hamiltonian form

xT = {x,H} , pT = {p,H} ,
where x, p are to be understood in the Poisson brackets as point-wise evaluation
functionals.

Next, we determine how this bracket acts on functionals F(ρ,m) of the Eulerian
variables, where ρ(x) is the spatial density and m(x) = ρ(x)u(x) is the spatial
momentum. From (3) and (10), we have

(13) ρ(x) =
ρ0

J(X)
, m(x) =

p(X)

J(X)
.

Suppose we vary

x(X) 7→ x(X) + δx(X), p(X) = p(X) + δp(X),
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where we omit an explicit indication of the time-dependence. Then, from (4),

J(X) 7→ J(X) + δJ(X), δJ = tr
(
F−1δF

)
,

where F = Dx, δF = Dδx.
The corresponding variations of the Eulerian variables

ρ(x) 7→ ρ(x) + δρ(x), m(x) 7→m(x) + δm(x)

are taken keeping x fixed. Denoting by ∆ρ(X), the variation of ρ keeping X fixed,
we have

∆ρ = δρ+ δx · ∇ρ.
Also, from (13) and (4)

∆ρ = − ρ0

J2
δJ = −ρ0

J
tr
(
F−1δF

)
Hence, using the equation tr

(
F−1δF

)
= div δx, we get

δρ = −ρdiv δx− δx · ∇ρ = −div (ρδx) .

Similarly,

δm = −div (m⊗ δx) +
1

J
δp,

where

div (m⊗ δx)
a

=
∂

∂xb
(
maδxb

)
.

For a functional F(ρ,m), we therefore have on integrating by parts and changing
the integration variable from x to X that

δF =

∫ {
δF
δρ
δρ+

δF
δm
· δm

}
dx

=

∫ {
−δF
δρ

div (ρδx) +
δF
δm
·
[
−div (m⊗ δx) +

1

J
δp

]}
dx

=

∫ {
ρ∇
(
δF
δρ

)
· δx + δx · ∇

(
δF
δm

)
·m +

1

J

δF
δm
· δp

}
dx

=

∫ {
J

[
ρ∇
(
δF
δρ

)
· δx + δx · ∇

(
δF
δm

)
·m
]

+
δF
δm
· δp

}
dX

It follows that

(14)
δF
δx

= J

[
ρ∇
(
δF
δρ

)
+∇

(
δF
δm

)
·m
]
,

δF
δp

=
δF
δm

,

or, in components,

δF
δxa

= J

[
ρ
∂

∂xa

(
δF
δρ

)
+mb ∂

∂xa

(
δF
δmb

)]
,

δF
δpa

=
δF
δma

.

Using (14) in the canonical Poisson bracket (12), we get

{F ,G} =

∫ {
ρ

[
∇
(
δF
δρ

)
· δG
δm
− δF
δm
· ∇
(
δG
δρ

)]
+

[
∇
(
δF
δm

)
·m
]
· δG
δm
− δF
δm
·
[
∇
(
δG
δm

)
·m
]}

dx.

(15)
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In components,

{F ,G} =

∫ {
ρ

[
∂

∂xa

(
δF
δρ

)
δG
δma

− δF
δma

∂

∂xa

(
δG
δρ

)]
+ ma ∂

∂xb

(
δF
δma

)
δG
δmb

−mb δF
δma

∂

∂xa

(
δG
δmb

)}
dx.

Writing the Lagrangian Hamiltonian (11) in terms of the Eulerian variables, we
get

H (ρ,m) =

∫ {
1

2

m2

ρ
+ ρe (ρ)

}
dx.

The Hamiltonian equation

ρt = {ρ,H}
then gives the Eulerian equation for conservation of mass,

ρt + div m = 0.

Using (5), we find that the equation

mt = {m,H}

gives

mt + div

(
m⊗m

ρ

)
+ ρ∇h = 0,

which, for smooth solutions, is equivalent to the Eulerian equation for conservation
of momentum

mt + div

(
m⊗m

ρ

)
+∇p = 0.

We write u = (ρ,m)
t
, with components uα given by u0 = ρ, ua = ma, and define

the functional derivative with respect to u by

δF
δu

=

(
δF/δρ
δF/δm

)
,

Then the Poisson bracket (15) can be written as

{F ,G} = −
∫ (

δF
δu

)t
· J(u)

[
δG
δu

]
dx

where

J(u) =

(
0 ∇tρ
ρ∇ mt∇+∇tm

)
.

In components,

{F ,G} = −
∫

δF
δuα

Jαβ(u)
δG
δuβ

dx,

where we sum over 0 ≤ α, β ≤ n, and

J00 = 0, J0b(ρ) =
∂

∂xb
ρ, Ja0(ρ) = ρ

∂

∂xa
, Jab(m) = mb ∂

∂xa
+

∂

∂xb
ma.

Hamilton’s equations are

ut + J(u)

[
δH
δu

]
= 0.
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2.5. The inviscid Burgers equation. Consider, as a special case of the above
analysis, a pressureless gas (e(ρ) = 0) in one space dimension. Choosing the density
ρ0 in the reference configuration equal to one, the variational principle is

δ

∫
1

2
x2
T dXdT = 0.

The Euler-Lagrange equation is
xTT = 0.

Introducing the velocity U(X,T ) = xT (X,T ), we may write this equation as

xT = U, UT = 0.

To write this equation in Eulerian form, we let

ρ(x, t) =
1

J(X,T )
, m(x, t) =

xT (X,T )

J(X,T )

where t = T and J = xX is the Jacobian of the transformation from Lagrangian to
Eulerian coordinates.

Then, from the preceding section, the Hamiltonian is

H(ρ,m) =

∫
1

2

m2

ρ
dx,

the Hamiltonian operator J is

J(ρ,m) =

(
0 ∂xρ
ρ∂x m∂x + ∂xm

)
.

and Hamilton’s equations are

(16) ρt +mx = 0, mt +

(
m2

ρ

)
x

= 0.

If we write m = ρu, these equations are

ρt + (ρu)x = 0, (ρu)t +
(
ρu2
)
x

= 0.

For smooth solutions, these equations are equivalent to

ρt + (ρu)x = 0, ut + uux = 0.

Thus, we recover the inviscid Burgers equation together with an equation for the
Jacobian of the transformation between spatial and characteristic coordinates.

Weak solutions of the conservation law (16) are, however, not equivalent to weak
solutions of the usual conservative form of the inviscid Burgers equation,

ut +

(
1

2
u2

)
x

= 0.
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