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Abstract. We consider an initial value problem for a quadratically nonlinear inviscid Burgers-
Hilbert equation that models the motion of vorticity discontinuities. We use a normal form trans-
formation, which is implemented by means of a near-identity coordinate change of the independent
spatial variable, to prove the existence of small, smooth solutions over cubically nonlinear time-scales.
For vorticity discontinuities, this result means that there is a cubically nonlinear time-scale before
the onset of filamentation.
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1. Introduction. We consider the following initial value problem for an inviscid
Burgers-Hilbert equation for u(t, x; ε):

ut + εuux = H [u] ,
u(0, x; ε) = u0(x).

(1.1)

In (1.1), H is the spatial Hilbert transform, ε is a small parameter, and u0 is given
smooth initial data.

This Burgers-Hilbert equation is a model equation for nonlinear waves with con-
stant frequency [1], and it provides a formal asymptotic description of the small-
amplitude motion of vorticity discontinuities in two-dimensional inviscid, incompress-
ible fluid flows [1, 8]. In particular, Biello and Hunter [1] show that the weakly
nonlinear behavior of a vorticity discontinuity located at y = εu(t, x; ε) over cubically
nonlinear time-scales of the order ε−2 is identical to that of solutions of a Burgers-
Hilbert equation with suitably chosen coefficients, which may be normalized as in
(1.1).

We assume for simplicity that x ∈ R, in which case the Hilbert transform is given
by

H[u](t, x; ε) = p.v.
1
π

∫
u(t, y; ε)
x− y

dy.

We will show that smooth solutions of (1.1) exist for times of the order ε−2 as ε→ 0.
Explicitly, if Hs(R) denotes the standard Sobolev space of functions with s weak
L2-derivatives, we prove the following result:

Theorem 1.1. Suppose that u0 ∈ H2(R). There are constants k > 0 and ε0 > 0,
depending only on ‖u0‖H2 , such that for every ε with |ε| ≤ ε0 there exists a solution

u ∈ C
(
Iε;H2 (R)

)
∩ C1

(
Iε;H1 (R)

)
of (1.1) defined on the time-interval Iε =

[
−k/ε2, k/ε2

]
.
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The cubically nonlinear O(ε−2) lifespan of smooth solutions for the Burgers-
Hilbert equation is longer than the quadratically nonlinear O(ε−1) lifespan for the
inviscid Burgers equation ut + εuux = 0. The explanation of this enhanced lifespan
is that the quadratically nonlinear term of the order ε in (1.1) is nonresonant for
the linearized equation. To see this, note that the solution of the linearized equation
ut = H[u] is given by u = etHu0, or

u(t, x) = u0(x) cos t+ h0(x) sin t, h0 = H[u0],

as may be verified by use of the identity H2 = − I. This solution oscillates with
frequency one between the initial data and its Hilbert transform, and the effect of
the nonlinear forcing term εuux on the linearized equation averages to zero because it
contains no Fourier component in time whose frequency is equal to one. Alternatively,
one can view the averaging of the nonlinearity as a consequence of the fact that the
nonlinear steepening of the profile in one phase of the oscillation is canceled by its
expansion in the other phase.

This phenomenon is illustrated by numerical results from [1], which are repro-
duced in Figure 1.1. The transition from an O(ε−1) lifespan for large ε to an O(ε−2)
lifespan for small ε is remarkably rapid: once a singularity fails to form over the first
oscillation in time, a smooth solution typically persists over many oscillations.

Fig. 1.1. Logarithm of the singularity formation time Ts for the Burgers-Hilbert equation (1.1)
versus the logarithm of 2πε for fixed initial data u0. Numerical solutions are shown by diamonds.
The steeper line is a formal asymptotic prediction from [1] for ε � 1, which gives Ts = 2.37 ε−2.
The shallower line is the singularity formation time for the inviscid Burgers equation, which gives
Ts = ε−1. (See [1] for further details.)

In the context of the motion of a vorticity discontinuity, numerical solutions of the
incompressible Euler equations for vorticity discontinuities [2, 5] show that the forma-
tion of a singularity in a solution of (1.1) (in which ux becomes infinite) corresponds to
the ‘breaking’ of the discontinuity. After this occurs, the discontinuity folds over and
develops extremely thin, long filaments. Nevertheless, in the closely related problem
of the motion of vortex patches, it has been proved that the discontinuity remains
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smooth globally in time [4]. The result proved here for the Burgers-Hilbert equa-
tion therefore corresponds in the fluid problem to an enhanced O(ε−2) lifespan of a
vorticity discontinuity before nonlinear ‘breaking’ leads to the formation of filaments.

There are three main difficulties in the proof of Theorem 1.1. The first is that the
presence of a quadratically nonlinear term in (1.1) means that straightforward energy
estimates prove the existence of smooth solutions only on time-scales of the order
ε−1. Following the idea introduced by Shatah [9] in the context of PDEs, and used
subsequently by other authors, we remove the quadratically nonlinear term of the
order ε by a normal form or near-identity transformation, replacing it by a cubically
nonlinear term of the order ε2. The second difficulty is that a standard normal form
transformation of the dependent variable, of the type used by Shatah, leads to a loss
of spatial derivatives because we are using a lower-order linear term H[u] to eliminate
a higher-order nonlinear term εuux. The third difficulty is that (1.1) is nondispersive
and solutions of the linearized equation oscillate but do not decay in time. As a result,
we cannot use any kind of dispersive smoothing or decay to compensate for the loss of
spatial derivatives. (See [10], for example, for further discussion of nonlinear dispersive
waves.)

The key idea in this paper that avoids these difficulties is to make a transformation
of the independent variable, rather than the dependent variable. We write

h(t, x; ε) = H[u](t, x; ε) (1.2)

and define

g(t, ξ; ε) = h(t, x; ε), x = ξ − εg(t, ξ; ε). (1.3)

Then, as we will show, the transformed function g(t, ξ; ε) satisfies an integro-differential
equation of the form

gt(t, ξ; ε) = p.v.
1
π

∫
g(t, ξ̃; ε)
ξ − ξ̃

dξ̃

− 1
π
ε2∂ξ

∫
(ξ − ξ̃)gξ̃(t, ξ̃; ε)φ

(
g(t, ξ; ε)− g(t, ξ̃; ε)

ξ − ξ̃
; ε

)
dξ̃

(1.4)

where φ(c; ε) is a smooth function, given in Lemma 2.1. The term of the order ε has
been removed from (1.4), and the equation has good energy estimates that imply the
enhanced lifespan of smooth solutions.

The interpretation of the transformation (1.3) is not entirely clear. On taking the
Hilbert transform of (1.1) we get ht = −u+O(ε), so that

xt = −εgt = −εht +O(ε2) = εu+O(ε2).

Thus the transformation ξ 7→ x in (1.3) agrees up to the order ε with a transformation
from characteristic to spatial coordinates for (1.1). The coordinate ξ, however, differs
from x even when t = 0, and the use of characteristic coordinates does not appear to
simplify the analysis.

As a partial motivation for (1.3), we show in Section 3 that it agrees to leading
order in ε with a standard normal form transformation of the dependent variable that
is given in [1]. We were not able, however, to use the latter normal form transformation
to prove Theorem 1.1 because of the loss of derivatives in the higher-order terms.
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We consider (1.1) on the real line for simplicity. Equation (1.1) is nondispersive
and our proof does not depend on any dispersive decay of the solutions in time,
so a similar result would apply to spatially periodic solutions. Theorem 1.1 is also
presumably true in Hs for any s > 3/2; we consider s = 2 to avoid complications
associated with the use of fractional derivatives. A proof of singularity formation for
(1.1) under certain conditions on u0 and ε is given in [3].

2. Proof of the Theorem. In this section, we prove Theorem 1.1. It follows
from standard energy arguments (e.g. [7]) that (1.1) has a unique local H2-solution
in a time-interval Jε depending on the H2-norm of the initial data and ε. Moreover,
for any s ≥ 2, the solution remains in Hs if the initial data is in Hs and depends
continuously on the initial data in C(Jε;Hs). Thus, in order to prove Theorem 1.1 it
is sufficient to prove an a priori H2-bound for smooth solutions u ∈ C∞ (Iε;H∞(R))
where H∞(R) = ∩∞s=1H

s(R). To derive this bound, we first transform the equation
to remove the order ε term and then carry out H2-estimates on the transformed
equation. The required computations, such as integrations by parts, are justified for
these smooth solutions that decay at infinity.

2.1. Near-identity transformation. Let h denote the Hilbert transform of u,
as in (1.2). Taking the Hilbert transform of (1.1), using the identity

H
[
u2 − h2

]
= 2hu (2.1)

and the fact that u = −H[h], we find that h satisfies the equation

ht + ε {H [hhx]− hH [hx]−H [h]hx} = H [h] . (2.2)

We will make the change of variables (1.3) in (2.2), so first we discuss (1.3).
The map ξ 7→ x is smoothly invertible if |εgξ| < 1, which holds by Sobolev em-

bedding if ‖εg‖H2 is sufficiently small. Specifically, we have the Gagliardo-Nirenberg-
Moser inequality

‖gξ‖L∞ ≤ N‖g‖1/4L2 ‖gξξ‖3/4L2 , (2.3)

where we can take, for example,

N =

√
8
3
.

We assume throughout this section that

N‖εg‖1/4L2 ‖εgξξ‖3/4L2 ≤
1
2
, (2.4)

which ensures that

‖εgξ‖L∞ ≤
1
2
. (2.5)

By the chain rule,

hx =
gξ

1− εgξ
, hxx =

gξξ
(1− εgξ)3

. (2.6)
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Thus, if (2.5) holds, then∫
R
h2 dx =

∫
R
g2 (1− εgξ) dξ =

∫
R
g2 dξ,

∫
R
h2
xx dx =

∫
R

g2
ξξ

(1− εgξ)5
dξ.

Hence, since H is an isometry on Hs,

‖u‖L2 = ‖g‖L2 ,

(
2
3

)5/2

‖gξξ‖L2 ≤ ‖uxx‖L2 ≤ 25/2‖gξξ‖L2 , (2.7)

and H2-estimates for g imply H2-estimates for u.
Conversely, one can use the contraction mapping theorem on the space C0(R) of

continuous functions that decay to zero at infinity, to show that if h0 ∈ C1
0 (R) and

‖εh0x‖L∞ < 1 (2.8)

then there exists a function g0(·; ε) ∈ C0(R) such that

h0 (ξ − εg0(ξ; ε)) = g0(ξ; ε).

The function g0 is smooth if h0 is smooth, and ‖εg0ξ‖L∞ ≤ 1/2 if ‖εh0x‖L∞ ≤ 1/3.
Thus, we can obtain initial data for g from the initial data for h.

From (1.3), we have

ht =
gt

1− εgξ
, H [h] = p.v.

1
π

∫
R

[ 1− εg̃ξ̃
ξ − ξ̃ − ε(g − g̃)

]
g̃ dξ̃

where we use the notation

g = g(t, ξ; ε), g̃ = g(t, ξ̃; ε).

Using these expressions, together with (2.6), in (2.2) and simplifying the result, we
find that g(t, ξ; ε) satisfies the following nonlinear integro-differential equation:

gt = p.v.
1
π

∫
R

g̃ + ε(g − 2g̃)g̃ξ̃ − ε2(g − g̃)gξ g̃ξ̃
ξ − ξ̃ − ε(g − g̃)

dξ̃. (2.9)

We define

x = ξ − εg(t, ξ; ε), x̃ = ξ̃ − εg(t, ξ̃; ε),

as in (1.3), and rewrite the denominator in (2.9) as

1
ξ − ξ̃ − ε(g − g̃)

=
1

x− x̃
=

1
ξ − ξ̃

+ ε
g − g̃

(ξ − ξ̃)2
+ ε2

(
g − g̃
ξ − ξ̃

)2 1
x− x̃

. (2.10)

This identity is exact and involves no approximation in ε. Using (2.10), we may
express the integrand in (2.9), after some rearrangement, as

g̃ + ε(g − 2g̃)g̃ξ̃ − ε2(g − g̃)gξ g̃ξ̃
ξ − ξ̃ − ε(g − g̃)

=
g̃

ξ − ξ̃
+ ε∂ξ̃

[
g̃(g − g̃)
ξ − ξ̃

]
+ ε2

{(
g − g̃
ξ − ξ̃

)2(
g̃

x− x̃

)
+
(
g − g̃
ξ − ξ̃

)
g̃ξ̃

[
g − 2g̃
ξ − ξ̃

− gξ
]}

+ ε3
(
g − g̃
ξ − ξ̃

)2

g̃ξ̃

[
g − 2g̃
x− x̃

− gξ
]
− ε4

(
g − g̃
ξ − ξ̃

)2(
g − g̃
x− x̃

)
gξ g̃ξ̃.



6 HUNTER AND IFRIM

The term of the order ε is an exact ξ̃-derivative, which integrates out for g ∈ H∞(R),
and the equation for g becomes

gt =
1
π

p.v.
∫

R

g̃

ξ − ξ̃
dξ̃ +

1
π
ε2
∫

R

{(
g − g̃
ξ − ξ̃

)2(
g̃

x− x̃

)
+
(
g − g̃
ξ − ξ̃

)
g̃ξ̃

[
g − 2g̃
ξ − ξ̃

− gξ
]}

dξ̃

+
1
π
ε3
∫

R

(
g − g̃
ξ − ξ̃

)2

g̃ξ̃

{
g − 2g̃
x− x̃

− gξ
[
1 + ε

g − g̃
x− x̃

]}
dξ̃.

Using (2.10), we may write this equation as

gt = H[g] +
1
π
ε2
∫

R

(
g − g̃
x− x̃

){(
g̃

ξ − ξ̃

)[
g − g̃
ξ − ξ̃

− g̃ξ̃

]
+ g̃ξ̃

[
g − g̃
ξ − ξ̃

− gξ
]}

dξ̃ (2.11)

where

H[g](t, ξ; ε) = p.v.
1
π

∫
R

g(t, ξ̃; ε)
ξ − ξ̃

dξ̃

denotes the Hilbert transform of g with respect to ξ. The integral of the order ε2

in (2.11) is not a principal value integral since the integrand is a smooth function of
(ξ, ξ̃).

Finally, we observe that this equation can be put in the form (1.4).
Lemma 2.1. An equivalent form of equation (2.11) is given by

gt = H [g]− 1
π
ε2∂ξ

∫
R

(ξ − ξ̃)g̃ξ̃ φ
(
g − g̃
ξ − ξ̃

; ε
)
dξ̃, (2.12)

where

φ(c; ε) = − 1
ε2
{log (1− εc) + εc} . (2.13)

Proof. First, we check that (2.12) is well-defined. Abusing notation slightly, we
write

c =
g − g̃
ξ − ξ̃

. (2.14)

From (2.13),

φc(c; ε) =
c

1− εc
, (2.15)

so |φ(c; ε)| ≤ c2 when |εc| ≤ 1/2, which is implied by (2.5). In that case∣∣∣∣∫
R
(ξ − ξ̃)g̃ξ̃ φ (c; ε) dξ̃

∣∣∣∣ ≤ ∫
R

∣∣∣(g − g̃) g̃ξ̃c
∣∣∣ dξ̃.

We use |g − g̃| ≤ 2‖g‖L∞ in the right hand side of this inequality and apply the
Cauchy-Schwartz inequality to get∣∣∣∣∫

R
(ξ − ξ̃)g̃ξ̃ φ (c; ε) dξ̃

∣∣∣∣ ≤ 2‖g‖L∞‖gξ‖L2 ‖c‖L2 (2.16)
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where

‖c‖L2 =

[∫
R

(
g − g̃
ξ − ξ̃

)2

dξ̃

]1/2

denotes the L2-norm of c with respect to ξ̃, which is a function of ξ. Temporarily
suppressing the (t; ε)-variables and denoting the derivative of g with respect to ξ by
g′(ξ) = gξ(ξ), we have from the Taylor integral formula that

c =
∫ 1

0

g′
(
ξ + r(ξ̃ − ξ)

)
dr,

and the Cauchy-Schwartz inequality implies that

‖c‖2L2 (ξ) =
∫

R
c2 dξ̃

=
∫ 1

0

∫ 1

0

∫
R
g′
(
ξ + r(ξ̃ − ξ)

)
g′
(
ξ + s(ξ̃ − ξ)

)
dξ̃drds

≤
∫ 1

0

∫ 1

0

(∫
R
g′2
(
ξ + r(ξ̃ − ξ)

)
dξ̃

)1/2(∫
R
g′2
(
ξ + s(ξ̃ − ξ)

)
dξ̃

)1/2

drds

≤
(∫ 1

0

∫ 1

0

1√
rs
drds

)(∫
R
g′2(ξ) dξ

)
≤ 4

(∫
R
g′2(ξ) dξ

)
.

Thus,

sup
ξ∈R

(∫
R
c2 dξ̃

)1/2

≤ 2 ‖gξ‖L2 . (2.17)

Using this estimate in (2.16), we get

sup
ξ∈R

∣∣∣∣∫
R

(ξ − ξ̃)g̃ξ̃ φ (c; ε) dξ̃
∣∣∣∣ ≤ 4‖g‖L∞‖gξ‖2L2 .

Thus, the ξ̃-integral in (2.12) converges when g ∈ H1(R) and is, in fact, a uniformly
bounded function of ξ.

To verify that (2.12) agrees with (2.11), we take the ξ-derivative under the integral
in (2.12), use (2.15) which implies that

φc (c; ε) =
g − g̃
x− x̃

,

and integrate by parts in the result. This gives

gt = H [g] +
1
π
ε2
∫

R

(
g − g̃
x− x̃

)[
g̃cξ̃ − (ξ − ξ̃)g̃ξ̃cξ

]
dξ̃. (2.18)

Using the equations

cξ̃ =
c− g̃ξ̃
ξ − ξ̃

, cξ = −c− gξ
ξ − ξ̃

, (2.19)

in (2.18) and comparing the result with (2.11) proves the lemma.
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2.2. Energy Estimates. Multiplying (2.12) by g, integrating the result with
respect to ξ, and integrating by parts with respect to ξ, we find that the right-hand
side vanishes by skew-symmetry in (ξ, ξ̃) so that

d

dt
‖g‖L2 = 0. (2.20)

The conservation of ‖g‖L2 is consistent with the conservation of ‖u‖L2 , which follows
from (1.1). Hence, from (2.7), we have

‖g‖L2 = ‖g0‖L2 = ‖u0‖L2 .

We also expect to be able to obtain an estimate for ‖gξξ‖L2 since we can estimate
‖uxx‖L2 from (1.1), and we show explicitly that this is the case.

Differentiating (2.12) twice with respect to ξ, multiplying the result by gξξ, inte-
grating with respect to ξ, and integrating by parts with respect to ξ, we get

d

dt

∫
R
g2
ξξ dξ =

ε2

π
I (2.21)

where

I =
∫

R2
gξξξ∂

2
ξ

[
(ξ − ξ̃)g̃ξ̃φ(c; ε)

]
dξdξ̃. (2.22)

The following lemma estimates I in terms of the H2-norm of g.
Lemma 2.2. Suppose that I is given by (2.22) where φ is defined in (2.13), and

c is defined in (2.14). There exists a numerical constant A > 0 such that

|I| ≤ A ‖gξ‖L2 ‖gξξ‖3L2 (2.23)

whenever g ∈ H∞(R) satisfies (2.4).
Proof. We first convert the ξ̃-derivative in the expression (2.22) for I to a ξ-

derivative. Let

Φ′(c; ε) = φ(c; ε),

where a prime on Φ and related functions denotes a derivative with respect to c. It
follows from (2.19) that

(ξ − ξ̃)g̃ξ̃φ(c; ε) = (ξ − ξ̃)
[
c− (ξ − ξ̃)cξ̃

]
φ(c; ε)

= (ξ − ξ̃)cφ(c; ε)− (ξ − ξ̃)2Φξ̃(c; ε).

We use this equation in (2.22) and integrate by parts with respect to ξ̃ in the term
involving Φ. Since g is independent of ξ̃, this gives

I =
∫

R2
gξξξ∂

2
ξ

[
(ξ − ξ̃)Ψ(c; ε)

]
dξdξ̃ (2.24)

where

Ψ(c; ε) = cφ(c; ε)− 2Φ(c; ε).
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Expanding the derivatives with respect to ξ in (2.24), we have

I =
∫

R2
gξξξ

{
(ξ − ξ̃)

[
Ψ′(c; ε)cξξ + Ψ′′(c; ε)c2ξ

]
+ 2Ψ′(c; ε)cξ

}
dξdξ̃.

Using (2.14) to express cξξ in terms of gξξ, we get

cξξ =
gξξ − 2cξ
ξ − ξ̃

. (2.25)

It follows that

I =
∫

R2
gξξξ

[
gξξΨ′(c; ε) + (ξ − ξ̃)Ψ′′(c; ε)c2ξ

]
dξdξ̃

=
∫

R2

[
1
2
∂ξ (gξξ)

2 Ψ′(c; ε) + gξξξ(ξ − ξ̃)Ψ′′(c; ε)c2ξ
]
dξdξ̃.

Suppressing the argument of the function Ψ, and integrating by parts with respect
to ξ in the result to remove the third-order derivative of g, we find that I can be
expressed as

I = −
∫

R2

{
1
2

Ψ′′cξg2
ξξ + gξξ

[
Ψ′′c2ξ + (ξ − ξ̃)Ψ′′′c3ξ + 2(ξ − ξ̃)Ψ′′cξcξξ

]}
dξdξ̃.

Using (2.25) in this equation to replace cξξ by gξξ, we get

I = −5
2
I1 + 3I2 − I3

where

I1 =
∫

R2
Ψ′′(c; ε)cξg2

ξξ dξdξ̃,

I2 =
∫

R2
Ψ′′(c; ε)c2ξgξξ dξdξ̃,

I3 =
∫

R2
(ξ − ξ̃)Ψ′′′(c; ε)c3ξgξξ dξdξ̃.

(2.26)

The functions Ψ′′, Ψ′′′ are given explicitly by

Ψ′′(c; ε) =
c

(1− εc)2
, Ψ′′′(c; ε) =

1 + εc

(1− εc)3
.

In particular, if |εc| ≤ 1/2, which is the case if g satisfies (2.4), then

|Ψ′′(c; ε)| ≤ 4|c|, |Ψ′′′(c; ε)| ≤ 12. (2.27)

We will estimate the terms in (2.26) separately.
Estimating I1: Using (2.27) in (2.26), we get that

|I1| ≤ 4
∫

R2

∣∣ccξg2
ξξ

∣∣ dξ̃dξ
≤ 4 sup

ξ∈R

[∫
R
|ccξ| dξ̃

](∫
R
g2
ξξ dξ

)
≤ 4 sup

ξ∈R

[(∫
R
c2 dξ̃

)1/2(∫
R
c2ξ dξ̃

)1/2
](∫

R
g2
ξξ dξ

)
.

(2.28)
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By a similar argument to the proof of (2.17), using Taylor’s theorem with integral
remainder and the Cauchy-Schwartz inequality, we have from (2.14) and (2.19) that∫

R
c2ξ dξ̃ =

∫
R

[
g̃ − g − (ξ̃ − ξ)gξ

(ξ̃ − ξ)2

]2

dξ̃

=
∫ 1

0

∫ 1

0

∫
R

(1− r)(1− s)g′′
(
ξ + r(ξ̃ − ξ)

)
g′′
(
ξ + s(ξ̃ − ξ)

)
dξ̃drds

≤
∫ 1

0

∫ 1

0

(1− r)(1− s)(∫
R
g′′2

(
ξ + r(ξ̃ − ξ)

)
dξ̃

)1/2(∫
R
g′′2

(
ξ + s(ξ̃ − ξ)

)
dξ̃

)1/2

drds

≤
(∫ 1

0

∫ 1

0

(1− r)(1− s)√
rs

drds

)(∫
R
g2
ξξ (ξ) dξ

)
≤ 16

9
‖gξξ‖2L2 .

Thus,

sup
ξ∈R

(∫
R
c2ξ dξ̃

)1/2

≤ 4
3
‖gξξ‖L2 . (2.29)

Using (2.17) and (2.29) in (2.28), we get that

|I1| ≤ A1 ‖gξ‖L2 ‖gξξ‖3L2 ,

where A1 = 32/3 is a numerical constant.
Estimating I2: Using (2.27) and (2.29) in (2.26), we get that

|I2| ≤ 4
∫

R2

∣∣cc2ξgξξ∣∣ dξ̃dξ
≤ 4

∫
R

(
sup
ξ̃∈R
|c|

)(∫
R
c2ξ dξ̃

)
|gξξ| dξ

≤ 64
9
‖gξξ‖2L2

∫
R

(
sup
ξ̃∈R
|c|

)
|gξξ| dξ.

(2.30)

Suppressing the (t; ε)-variables, we observe from (2.14) that

sup
ξ̃∈R
|c| = sup

ξ̃∈R

∣∣∣∣g − g̃ξ − ξ̃

∣∣∣∣
= sup

ξ̃∈R

∣∣∣∣∣ 1
ξ − ξ̃

∫ ξ

ξ̃

g′(z) dz

∣∣∣∣∣
≤ g∗ξ (ξ),

where

g∗ξ (ξ) = sup
ξ̃∈R

1
|ξ − ξ̃|

∣∣∣∣∣
∫ ξ

ξ̃

|g′(z)| dz

∣∣∣∣∣
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is the maximal function of g′ = gξ, defined using intervals whose left or right endpoint
is ξ.

Using this inequality and the Cauchy-Schwartz inequality in (2.30), we find that

|I2| ≤
64
9
‖g∗ξ‖L2‖gξξ‖3L2 .

The maximal operator is bounded on L2, so there exists a numerical constant M such
that

‖g∗ξ‖L2 ≤M‖gξ‖L2 . (2.31)

For example, from [6], we can take

M = 1 +
√

2.

It follows that

|I2| ≤ A2‖gξ‖L2‖gξξ‖3L2

where A2 = 64M/9.
Estimating I3: Using (2.19) in (2.26), we we can rewrite I3 as

I3 =
∫

R2
Ψ′′′(c; ε)gξξ(c− gξ)c2ξ dξdξ̃.

Splitting this integral into two terms, we get I3 = I ′3 − I ′′3 where

I ′3 =
∫

R2
Ψ′′′(c; ε)cc2ξgξξ dξdξ̃, I ′′3 =

∫
R2

Ψ′′′(c; ε)c2ξgξgξξ dξdξ̃.

Using (2.27), we have

|I ′3| ≤ 12
∫

R2
|cc2ξgξξ| dξdξ̃, |I ′′3 | ≤ 12

∫
R2
|c2ξgξgξξ| dξdξ̃.

We estimate I ′3 in exactly the same way as I2, which gives

|I ′3| ≤ A′3‖gξ‖L2‖gξξ‖3L2

where A′3 = 64M/3. We estimate I ′′3 in a similar way to I1 as

|I ′′3 | ≤ 12 sup
ξ∈R

[∫
R
c2ξ dξ̃

](∫
R
|gξgξξ| dξ

)
,

which by use of (2.29) and the Cauchy-Schwartz inequality gives

|I ′′3 | ≤ A′′3‖gξ‖L2‖gξξ‖3L2

where A′′3 = 64/3.
Combining these estimates, we get (2.23) with

A = 48 +
128
3
M (2.32)
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where M is the maximal-function constant in (2.31).
Using (2.23) in (2.21), we find that

d

dt
‖gξξ‖L2 ≤ 1

2π
ε2A‖gξ‖L2‖gξξ‖2L2 .

Since ‖gξ‖2L2 ≤ ‖g‖L2‖gξξ‖L2 and ‖g‖L2 = ‖g0‖L2 is conserved, we get

d

dt
‖gξξ‖L2 ≤ 1

2π
ε2A‖g0‖1/2L2 ‖gξξ‖5/2L2 (2.33)

provided that (2.4) holds. It follows from (2.33) and Gronwall’s inequality that if
|ε| ≤ ε0, where ε0 is sufficiently small, then ‖gξξ‖L2 remains finite and (2.4) holds in
some time-interval 0 ≤ t ≤ k/ε2, where the constants ε0, k > 0 may be chosen to
depend only on ‖u0‖2H . The same estimates hold backward in time, so this completes
the proof of Theorem 1.1.

By solving the differential inequality (2.33) subject to the constraint (2.4), we can
obtain explicit expressions for ε0 and k. Let

E0 = ‖g0‖1/4L2 ‖g0ξξ‖3/4L2 ,

which is comparable to ‖u0‖H2 from (2.7). Then we find that Theorem 1.1 holds with

ε0 =
1

2
√

2N
1
E0

, k =
2π
3A

1
E2

0

where N is the constant in (2.3) and A is the constant in (2.32).

3. Normal form transformation. In this section, we relate the near-identity
transformation of the independent variables used above to a standard normal form
transformation of the dependent variables of the form [9]

v = u+B(u, u)

where B is a bilinear form.
We consider the normal form transformation u 7→ v given in [1]:

v = u+
1
2
ε|∂x|(h2), h = H[u]. (3.1)

Here, ∂x denotes the derivative with respect to x and |∂x| = H∂x. Differentiating (3.1)
with respect to t, using (1.1) to eliminate ut, and simplifying the result by means of
the Hilbert transform identity (2.1), we find that this transformation removes the
nonresonant term of the order ε from the equation and gives

vt +
1
2
ε2|∂x|

[
h|∂x|(u2)

]
= H[v]. (3.2)

The bilinear form in (3.1)

B(u, u) =
1
2
ε|∂x|(h2)

is not bounded on H2, but one can show that the normal form transformation (3.1)
is invertible on a bounded set in H2 when ε is sufficiently small. We omit the proof,
since this invertibility does not appear to be useful here.
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The main difficulty with the standard normal form transformation (3.1) is that we
cannot obtain good H2-estimates for v from the transformed equation (3.2). Equation
(3.2) contains second-order derivatives, rather than first-order derivatives as in (1.1),
and there is a loss of derivatives. Even knowing that we can estimate the Hs-norm
of u in terms of the Hs-norm of v, we need to use the H3-norm of v to estimate
the time-derivative of the H2-norm of v. Moreover, the use of the original Burgers-
Hilbert equation (1.1) to estimate the growth of higher-derivative norms of u, and
therefore v, in terms of the H2-norm of u appears to lead only to a logarithmic
improvement in the life-span of smooth solutions over the O(ε−1) life-span that follows
from straightforward energy estimates.

The appearance of additional derivatives in the transformed equation is a con-
sequence of using a zeroth-order linear term H[u] to remove a first-order quadratic
term εuux. In fact, for every power of εu that one gains through a normal form
transformation of the dependent variable, one introduces an additional derivative.

By contrast, higher-order linear terms lead to normal form transformations that
are easier to analyze. For example, consider the KdV equation

ut + εuux = uxxx.

Then, assuming we can ignore difficulties associated with low wavenumbers (e.g. by
considering spatially periodic solutions with zero mean), we find that the normal form
transformation

v = u− 1
6
ε
(
∂−1
x u

)2
leads to the equation

vt −
1
6
ε2u2

(
∂−1
x u

)
= vxxx.

In this case, the normal form transformation is bounded and it smooths the nonlinear
term.

To explain the connection between the normal form transformation (3.1) and
the near-identity transformation (1.3), we reformulate (3.1) as a backward-Euler ap-
proximation of an evolution equation in ε. Writing g = H[v] and taking the Hilbert
transform of (3.1), we get the ODE

g = h− εhhx. (3.3)

We regard g(t, x) as a given function and use (3.3) to determine the corresponding
function h. We may write (3.3) as

h− g
ε
− hhx = 0,

which agrees up to the order ε with an evolution equation in ε for h(t, x; ε):

hε − hhx = 0, h(t, x; 0) = g(t, x). (3.4)

By the method of characteristics, the solution of (3.4) is

h(t, x; ε) = g(t, ξ), x = ξ − εg(t, ξ),
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which is the transformation (1.3). Since (1.3) agrees to the order ε with a normal
form transformation that removes the order ε term from (1.1), this transformation
must do so also, as we verified explicitly in Section 2.

It is rather remarkable that the normal form transformation (3.1) can be imple-
mented by making a change of spatial coordinate in the equation for h, but we do
not have a good explanation for why this should be possible. The idea of replacing
an unbounded normal form transformation, such as (3.1), by a bounded normal form
flow, such as (3.4), may also be useful in other problems.
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