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Abstract

We derive an asymptotic solution of the vacuum Einstein equations that describes
the propagation and diffraction of a localized, large-amplitude, rapidly-varying
gravitational wave. We compare and contrast the resulting theory of strongly
nonlinear geometrical optics for the Einstein equations with nonlinear geometri-
cal optics theories for variational wave equations. c© 2000 Wiley Periodicals,
Inc.

1 Introduction

Geometrical optics1 and its generalizations, such as the geometrical theory of
diffraction, are a powerful approach to the study of wave propagation, for both lin-
ear and nonlinear waves. In this paper, we develop a theory of strongly nonlinear
geometrical optics for gravitational wave solutions of the vacuum Einstein equa-
tions. Specifically, we derive asymptotic equations that describe the diffraction of
localized, large-amplitude, rapidly-varying gravitational waves.

These equations are a generalization of the straightforward non-diffractive, non-
linear geometrical optics equations for large-amplitude gravitational waves derived
in [2]. This strongly nonlinear theory differs fundamentally from the weakly non-
linear theory for small-amplitude gravitational waves obtained by Choquet-Bruhat
[11] and Isaacson [22] because it captures the direct nonlinear self-interaction of
the waves.

1 Here, we use the term ‘geometrical optics’ to refer to any asymptotic theory for the propagation
of short-wavelength, high-frequency waves, irrespective of its area of physical application.
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The Einstein equations may be derived from a variational principle, and —
when written with respect to a suitable gauge — they form a system of wave equa-
tions for the gravitational field. In order to explain the structure of nonlinear ge-
ometrical optics theories for gravitational waves and to motivate the form of our
asymptotic expansion, it is useful to consider first such theories for a general class
of variational wave equations.

We describe straightforward and diffractive geometrical optics theories for vari-
ational wave equations in Section 2. In the weakly nonlinear theory for waves with
periodic waveforms, the scalar amplitude-waveform function a(θ, v) of the wave
depends on a ray variable v and periodically on a ‘fast’ phase variable θ . The
wave-amplitude a satisfies the Hunter-Saxton equation (2.12),

(1.1)
{

av +

(
1
2
3a2

)
θ

+ Na
}
θ

=
1
2
3

{
a2
θ − 〈a2

θ 〉
}
,

where the angular brackets denote an average with respect to θ . The coefficient 3
of the nonlinear terms in (1.1) may be interpreted as a derivative of the wave speed
with respect to the wave amplitude. In addition, the wave-amplitude is coupled
with a slowly-varying mean field. The mean-field satisfies a system (2.22) of vari-
ational wave equations of the same form as the original system with a source term
proportional to the mean energy-density of the wave 〈a2

θ 〉.
An application of this weakly-nonlinear expansion to the Einstein equations

leads to the theory of Choquet-Bruhat [11] and Isaacson [22]. In that case, the
nonlinear coefficients corresponding to 3 in the equations for the amplitudes of
the gravitational waves are identically zero. This theory therefore describes the
nonlinear interaction between a high-frequency, oscillatory gravitational wave and
a slowly-varying mean gravitational field, but does not describe the direct nonlinear
self-interaction of the gravitational wave itself.

In Section 2.4, we make a distinction between ‘genuinely nonlinear’ wave-
fields in variational wave equations, for which3 is never zero, and ‘linearly degen-
erate’ wave-fields for which3 identically zero (see Definition 2.1). All wave-fields
in the Einstein equations are linearly degenerate. As observed in [13, 14, 16, 19,
29], for example, this fact reflects a fundamental degeneracy in the nonlinearity of
the Einstein equations in comparison with general quasilinear wave equations.

A property of the Einstein equations related to their linear degeneracy is that
they possess an exact solution for non-distorting, large-amplitude, plane waves,
the Brinkmann solution [9, 10, 26, 27]. One can use this solution as the basis
of a strongly nonlinear geometrical optics theory for large-amplitude gravitational
waves, which leads to a generalization of the colliding plane wave equations [2].
We outline the resulting non-diffractive theory in Section 2.5.

We derive our diffractive, strongly nonlinear geometrical optics solution of the
vacuum Einstein equations in Section 3. This solution describes the propagation
and diffraction of a thin, large-amplitude gravitational wave, such as a pulse or
‘sandwich’ wave. The simplest, and most basic, case is that of a plane-polarized
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gravitational wave diffracting in a single direction. We summarize the resulting
asymptotic equations here.

We suppose that the polarization of the wave is aligned with the diffraction
direction. Then, with respect to a suitable coordinate system (u, v, y, z), the metric
g of the wave adopts the form

(1.2) g = −2e−M(
du − εY dy

)
dv + e−U (

eV dy2
+ e−V dz2)

+ O(ε2).

Here, ε is a small parameter. The leading-order metric component functions U ,
V , M and the first-order function Y depend upon a ‘fast’ phase variable θ , an
‘intermediate’ transverse variable η, and the ‘slow’ ray variable v, where

θ =
u
ε2
, η =

y
ε
.

The phase u is light-like and the transverse coordinate y is space-like.
This metric describes a gravitational wave whose wavefronts are close to the

null-hypersurface u = 0. The wave is plane-polarized in the (y, z)-directions and
diffracts in the y-direction.

To write equations for the metric component functions in a concise form, we
define a derivative Dη and functions φ, ψ by

Dη = eU (
∂η + Y ∂θ

)
,(1.3)

φ = DηM − eU Yθ ,(1.4)
ψ = Dη(U + V ).(1.5)

We note that εDη = eV (dy)], where ] denotes the ‘raising’ operator from one-
forms to vector fields.

Then (U, V,M, Y ) are functions of (θ, η, v)which satisfy the following system
of PDEs:

Uθθ −
1
2

(
U 2
θ + V 2

θ

)
+ UθMθ = 0,(1.6)

(φ + ψ)θ = ψ(U + V )θ ,(1.7)

Uθv − UθUv =
1
2

e−(U+V +M)
{

Dηφ + Dηψ −
1
2
φ2

− φψ − ψ2
}
,(1.8)

Vθv −
1
2
(UθVv + UvVθ ) =

1
2

e−(U+V +M)
{
−Dηφ +

1
2
φ2

}
,(1.9)

Mθv +
1
2
(UθUv − VθVv) =

1
2

e−(U+V +M)
{
−Dηψ −

1
2
φ2

+ ψ2
}
.(1.10)

This system is the main result of our analysis. It is an asymptotic reduction of
the full vacuum Einstein equations to a (1 + 2)-dimensional system of PDEs. The
system provides a model nonlinear wave equation for general relativity, and should
be useful, for example, in studying the focusing of nonplanar gravitational waves
and the effect of diffraction on the formation of singularities. We plan to study
these topics in future work.
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We discuss (1.6)–(1.10) in Section 4. The constraint equation (1.6) is a nonlin-
ear ODE in θ in which η, v appear as parameters. As shown in Proposition 4.1, this
constraint is preserved by the remaining equations. Equation (1.7) is a linear, non-
homogeneous ODE in θ for Y , whose coefficients depend on θ - and η-derivatives of
(U, V,M). It may therefore be regarded as determining Y in terms of (U, V,M).
Equations (1.8)–(1.10) form a system of evolution equations for (U, V,M) which
is coupled with Y . The main part of the system consists of a (1+2)-dimensional
wave equation in (θ, η, v) for (U + V ), where (θ, v) are characteristic coordinates.

When Y = 0 and all functions are independent of η, equations (1.6)–(1.10)
reduce to the colliding plane wave equations without the v-constraint equation (see
Section 2.5). When all functions depend on (ξ, η) with ξ = θ − λv for some
constant λ, we get a system of PDEs in two variables that is studied further in [1].
This system describes space-times that are stationary with respect to an observer
moving close to the speed of light.

We also derive asymptotic equations for the diffraction of gravitational waves
with general polarizations in two transverse directions. These equations are given
by (3.12)–(3.14), (C.1), and (C.3)–(C.5), but they are much more complicated than
the ones for plane-polarized waves written out above.

2 Geometrical optics

The Einstein equations do not form a hyperbolic system of PDEs because of
their gauge-covariance, but they are hyperbolic when written with respect to a suit-
able gauge. In order to develop and interpret geometrical optics solutions for the
Einstein equations, it is useful to begin by studying geometrical optics solutions
for hyperbolic systems of variational wave equations.

We remark that there is an analogy between geometrical optics theories for hy-
perbolic systems of conservation laws [19] and variational wave equations. For
example, the inviscid Burgers equation [12, 20] is the analog of the Hunter-Saxton
equation (2.14), and the unsteady transonic small disturbance equation [18] is the
analog of the two-dimensional Hunter-Saxton equation (2.15). One can also de-
rive large-amplitude geometrical optics theories for linearly degenerate waves in
hyperbolic conservation laws (see [33, 34], for example) that are analogous to the
large-amplitude theories described here for the Einstein equations.

There are other nonlinear geometrical optics theories for dispersive waves, most
notably Whitham’s ‘averaged Lagrangian method’ [37, 38] for large-amplitude
dispersive waves. These dispersive theories have a different character from the
ones for nondispersive hyperbolic waves. Nonlinear dispersive waves have specific
waveforms — given by traveling wave solutions — in which the effects of disper-
sion and nonlinearity balance, whereas nondispersive hyperbolic wave equations
and the Einstein equations have traveling wave solutions with arbitrary waveforms,
which may distort as the waves propagate.
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In straightforward, non-diffractive theories of geometrical optics, waves are lo-
cally approximated by plane waves and propagate along rays. In linear geometrical
optics, the wave amplitude satisfies an ODE (the transport equation) along a ray; in
nonlinear geometrical optics, the amplitude-waveform function satisfies a nonlin-
ear PDE in one space dimension (a generalization of the transport equation) along
a ray. This difference arises because linear hyperbolic waves propagate without
distortion, so one requires only an ODE along each ray to determine the change
in the wave amplitude; by contrast, wave-steepening and other effects distort the
waveform of nonlinear hyperbolic waves, so one requires a PDE along each ray to
determine the change in the wave amplitude and the waveform.

Straightforward geometrical optics, and a local plane-wave approximation, break
down when the effects of wave-diffraction become important; for example, this oc-
curs when a high-frequency wave focuses at a caustic, or when a wave beam of
large (relative to its wavelength), but finite, transverse extent spreads out. The ef-
fects of diffraction on a high-frequency wave may be described by the inclusion of
additional length-scales in the straightforward geometrical optics asymptotic solu-
tion, and one then obtains asymptotic PDEs with a larger number of independent
variables.

Perhaps the most basic asymptotic solution that incorporates the effect of wave
diffraction is the ‘parabolic approximation’ described below for wave equations.
In Section 3, we derive analogous asymptotic solutions of the Einstein equations
that describe the diffraction of large-amplitude gravitational waves.

2.1 The wave equation
We begin by recalling geometrical optics theories for the linear wave equation

(2.1) gt t = ∇ ·
(
c2

0∇g
)
.

Here, g(t, x) is a scalar function, the wave speed c0(t, x) is a given smooth func-
tion, and x ∈ Rd . Although well-known, these theories provide a useful back-
ground for our analysis of nonlinear variational wave equations and the Einstein
equations.

We look for a short-wavelength asymptotic solution g = gε of (2.1), depending
on a small parameter ε, of the form

gε(t, x) ∼ a
(

u(t, x)
ε2

, t, x
)

as ε → 0.

The solution depends on a ‘fast’ phase variable2

θ =
u
ε2

and ‘slow’ space-time variables (t, x).

2 Here, we use u/ε2 as a phase variable, rather than u/ε, for consistency with the diffractive
expansion below.



6 G. ALı̀ AND J. K. HUNTER

One finds that the scalar-valued phase function u(t, x) satisfies the eikonal
equation

(2.2) u2
t = c2

0|∇u|
2.

The amplitude-waveform function a(θ, t, x) satisfies the equation

(2.3) aθv + Naθ = 0,

where

(2.4) ∂v = ut∂t − c2
0∇u · ∇

is a derivative along the rays associated with the phase u, and N (t, x) is given by

(2.5) N =
1
2

{
ut t − ∇ ·

(
c2

0∇u
)}
.

Equation (2.3) has solutions of the form

a(θ, t, x) = A(t, x)F (θ) ,

where A(t, x) is a wave-amplitude that satisfies an ODE along a ray (the transport
equation of linear geometrical optics)

(2.6) Av + N A = 0,

and F(θ) is an arbitrary function that describes the waveform of the wave. For
example, if F(θ) = eiθ , then the solution describes an oscillatory harmonic wave;
if

F(θ) =

{
θn θ > 0,
0 θ ≤ 0,

then the solution describes a wavefront across which the normal derivative of g of
order n jumps; if F(θ) has compact support, then the solution describes a pulse;
and if F(θ) has different limits as θ → ±∞, then the solution describes a wave
that carries a jump in g.

The term N A in the transport equation (2.6) describes the effect of the ray
geometry on the wave amplitude. The coefficient N becomes infinite when rays
focus at a caustic. The straightforward geometrical optics solution then becomes
invalid, and diffractive effects must be taken into account [31].

There are many ways in which diffraction modifies straightforward geometrical
optics. Here, we consider one of the simplest diffractive expansions, given by

gε(t, x) ∼ a
(

u(t, x)
ε2

,
y(t, x)
ε

, t, x
)

as ε → 0.

This asymptotic solution depends upon an additional ‘intermediate’ variable

η =
y
ε
,

where y(t, x) is a scalar-valued transverse phase. This ansatz describes a high-
frequency wave whose wavefronts are close to u = constant that diffracts in the
y-direction.
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One finds that u satisfies the eikonal equation, as before, and yv = 0, mean-
ing that y is constant along the rays associated with u. Moreover, the amplitude-
waveform function a(θ, η, t, x) satisfies the equation

(2.7) aθv + Naθ +
1
2

Daηη = 0,

where the coefficient D(t, x) of the diffractive term is given by

(2.8) D = y2
t − c2

0|∇ y|
2.

For harmonic solutions, we have

a(θ, η, t, x) = A(η, t, x)eiθ ,

and equation (2.7) reduces to a Schrödinger equation

i {Av + N A} +
1
2

D Aηη = 0.

This ‘parabolic approximation’ and its generalizations are widely used in the study
of wave propagation.

In the simplest case of the diffraction of plane wave solutions of the two-
dimensional wave equation with wave speed c0 = 1,

gt t = gxx + gyy,

we may choose

u =
t − x
√

2
, y = y, v =

t + x
√

2
.

Equation (2.7) is then

(2.9) aθv =
1
2

aηη.

This equation describes waves that propagate in directions close to the positive x-
direction, and is a wave equation in which θ and v are characteristic coordinates.
We will see that equations with a similar structure to (2.9) in their highest-order
derivatives arise from the Einstein equations.

2.2 A variational wave equation
Next, we consider the following nonlinear, scalar wave equation [21]

(2.10) gt t − ∇ ·
(
c2(g)∇g

)
+ c(g)c′(g)|∇g|

2
= 0,

where a prime denotes the derivative with respect to g and we assume that the wave
speed c R → R+ is a smooth, non-vanishing function. This equation is derived
from the variational principle

δ

∫ {
1
2

g2
t −

1
2

c2(g)|∇g|
2
}

dtdx = 0.

The global existence of conservative weak solutions of (2.10) in one space-dimension
is established in [8].
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The structure of the nonlinear terms in (2.10) resembles that of the Einstein
equations, although the effects of nonlinearity are qualitatively different because
of the linear degeneracy of the Einstein equations.

We look for an asymptotic solution of (2.10) of the form [16, 19, 21]

gε(t, x) ∼ g0(t, x)+ ε2a
(

u(t, x)
ε2

, t, x
)

as ε → 0.

This solution represents a small-amplitude, high-frequency perturbation of a slowly-
varying field g0. The amplitude and the wavelength of the perturbation are chosen
to be of the same order of magnitude because this leads to a balance between the
effects of weak nonlinearity and the ray geometry.

First, we suppose that the amplitude-waveform function a(θ, t, x) is a periodic
function of the phase variable θ . We assume, without loss of generality, that its
mean with respect to θ is zero.

We find that the phase u satisfies the eikonal equation (2.2) with c0 = c (g0).
The mean-field g0 satisfies the nonlinear wave equation

(2.11) g0t t − ∇ ·
(
c2

0∇g0
)
+ c0c′

0|∇g0|
2
+ |∇u|

2c0c′

0〈a
2
θ 〉 = 0,

where the angular brackets denote an average with respect to θ over a period, and
c′

0 = c′ (g0). Equation (2.11) has the same form as the original wave equation
(2.10), with an additional source term proportional to the mean energy-density of
the wave-field.

The amplitude-waveform function a(θ, t, x) satisfies the periodic Hunter-Saxton
equation,

(2.12)
{

av +

(
1
2
3a2

)
θ

+ Na
}
θ

=
1
2
3

{
a2
θ − 〈a2

θ 〉
}
,

where ∂v is the ray derivative defined in (2.4), N is given by (2.5), and

(2.13) 3 = −|∇u|
2c0c′

0.

The coefficient 3 is proportional to the derivative of the wave-speed with respect
to the wave amplitude, and it provides crucial information about the effect of non-
linearity on the waves; for a given g0, we obtain a nonlinear PDE for the amplitude-
waveform function only when 3 6= 0.

We may ensure that the higher-order terms in this expansion for waves with
periodic waveforms also depend periodically on θ . As a result, no secular terms
arise in the expansion, and it is uniformly valid as ε → 0 for (t, x) = O(1) and
θ = O(ε−2). If we consider waves with localized waveforms, such as pulses or
jumps, then we cannot in general eliminate secular terms in θ , but we may obtain
an asymptotic solution that is valid near3 the wave-front u = 0 in which we neglect

3 Specifically, the expansion is valid when θ = O(1), or u = O(ε2), and t = O(1).
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mean-field effects. Thus, the background field g0(t, x) is a solution of the original
wave equation, and a(θ, t, x) satisfies

(2.14)
{

av +

(
1
2
3a2

)
θ

+ Na
}
θ

=
1
2
3a2

θ .

For results concerning the global existence of weak solutions of (2.14), see [7] and
references given there.

It is straightforward to include diffractive effects in the expansion for localized
waves. The asymptotic solution has the form

gε(t, x) ∼ g0(t, x)+ ε2a
(

u(t, x)
ε2

,
y(t, x)
ε

, t, x
)

as ε → 0.

Here, g0 is a solution of the original wave equation, the phase u satisfies the eikonal
equation at g0, the transverse function y is constant along the rays associated with
u, and a(θ, η, t, x) satisfies a (1 + 2)-dimensional generalization of the Hunter-
Saxton equation (2.14),

(2.15)
{

av +

(
1
2
3a2

)
θ

+ Na
}
θ

+
1
2

Daηη =
1
2
3a2

θ ,

where D is given by (2.8).

2.3 Hyperbolic systems of variational wave equations
In this section, we consider a class of hyperbolic systems of nonlinear wave

equations that are derived from a variational principle whose action is a quadratic
function of the derivatives of the field with coefficients depending on the field [21]

(2.16) δ

∫
Aαβpq(g)

∂g p

∂xα
∂gq

∂xβ
dx = 0.

Here, x = (x0, . . . , xd) ∈ Rd+1 are space-time variables,

g =
(
g1, . . . , gm)

Rd+1
→ Rm

are dependent variables, Aαβpq Rm
→ R are smooth coefficient functions, and we

use the summation convention. We assume that

Aαβpq = Aβαpq = Aαβqp .

The Euler-Lagrange equations associated with (2.16) are

(2.17) G p
[
g
]

= 0,

where

(2.18) G p
[
g
]

=
∂

∂xα

{
Aαβpq (g)

∂gq

∂xβ

}
−

1
2
∂Aαβqr

∂g p
(g)

∂gq

∂xα
∂gr

∂xβ
.

We assume that (2.17) forms a hyperbolic system of PDEs. The scalar wave equa-
tion considered in the previous section is the simplest representative of this class of
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equations. For discussions of recent local existence results for quasilinear systems
of wave equations and the Einstein equations, see [5, 25].

The weakly nonlinear geometrical optics solution of (2.17) has the form [16,
19, 21]

(2.19) gε(x) ∼ g0(x)+ ε2a
(

u(x)
ε2

, x
)

R(x) as ε → 0,

where g0 Rd+1
→ Rm is a background field, u Rd+1

→ R is a phase function,
a R × Rd+1

→ R is an amplitude-waveform function, and R Rd+1
→ Rm is a

vector field.
The phase u satisfies the eikonal equation

(2.20) det
[
uxαuxβ Aαβpq (g0)

]
= 0.

We introduce the singular m × m matrix C with components

(2.21) Cpq = uxαuxβ Aαβpq (g0) .

Then the vector R in (2.19), with components R p, is a null-vector of C , so that
Cpq Rq

= 0. Here, and in (2.19), we assume that we are dealing with a simple
characteristic, meaning that the null-space of C is one-dimensional.

We write the scalar-valued amplitude-waveform function a(θ, x) as a function
of the ‘fast’ phase variable θ = u/ε2 and the slow variables x . If a(θ, x) is a peri-
odic function of θ with zero mean, then the mean-field g0(x) satisfies the equation

(2.22) G p
[
g0

]
=

1
2

Hp
〈
a2
θ

〉
,

where the angular brackets denote an average with respect to θ , and

(2.23) Hp = uxαuxβ
∂Aαβqr

∂g p
(g0) Rq Rr .

Equation (2.22) has the same form as the original equation (2.17) for g with an
additional source term proportional to 〈a2

θ 〉. The Hp are interaction coefficients
that describe the effect of the wave on the mean-field.

The equation for a is (2.12) with

∂v = 2uxβ Aαβpq (g0) R p Rq∂xα ,

3 = uxαuxβ
∂Aαβqr

∂g p
(g0) R p Rq Rr ,(2.24)

N =
∂

∂xα
{
uxβ Aαβpq (g0) R p Rq}

− uxα
∂Aαβqr

∂g p
(g0)

∂gr
0

∂xβ
R p Rq .

For localized waveforms, the mean-field interactions may be neglected, and we can
obtain diffractive versions of this expansion as before.

These equations generalize easily to the case when (2.17) has a multiple char-
acteristic of constant multiplicity n ≥ 2. In that case, one obtains a mean-field
equation whose source term is a sum of averages of products of θ -derivatives of the
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amplitude-waveform functions, and an n×n system of Hunter-Saxton equations for
the amplitude-waveform functions. In particular, if the vectors {R1, . . . , Rn} form
a basis of the null-space of the matrix C defined in (2.21), then the coefficients
3i jk of the nonlinear terms in the system of equations for the amplitude-waveform
functions are given by

(2.25) 3i jk = uxαuxβ
∂Aαβqr

∂g p
(g0) R p

i Rq
j Rr

k , 1 ≤ i, j, k ≤ n.

2.4 Linearly degenerate wave equations
The coefficient 3 in (2.24) may be interpreted as a derivative of a wave speed

with respect to the wave amplitude, as is explained further in [3]. Motivated by the
corresponding definition for hyperbolic conservation laws introduced by Lax [28],
we make the following definition.

Definition 2.1. A simple characteristic of a hyperbolic system of variational equa-
tions (2.17)–(2.18) is genuinely nonlinear (respectively, linearly degenerate) if, for
every g0 ∈ Rm and every non-zero du ∈ Rd+1 belonging to the solution branch
of (2.20) associated with the characteristic, the quantity 3 defined in (2.24) is
non-zero (respectively, zero). A multiple characteristic of constant multiplicity n
is linearly degenerate if all coefficients 3i jk defined in (2.25) are zero. We say
that a system is genuinely nonlinear (respectively, linearly degenerate) if all of its
characteristics are genuinely nonlinear (respectively, linearly degenerate).

Thus, for linearly degenerate wave equations, the amplitude-waveform function
in the weakly nonlinear theory corresponding to the ansatz (2.19) satisfies a linear
PDE. Quadratically nonlinear interactions with a mean-field may still occur, how-
ever: it follows from (2.23)–(2.24) that 3 = Hp R p, so we may have 3 = 0 but
Hp 6= 0.

Even if a characteristic of a nonlinear wave equation is not linearly degenerate,
a loss of genuine nonlinearity may occur in which 3 vanishes at a particular point
g0 ∈ Rm and direction du ∈ Rd+1.

For example, from (2.13), the scalar wave equation (2.10) is genuinely nonlin-
ear if c′(g) 6= 0 for all g ∈ R, has a loss of genuine nonlinearity if c′(g) = 0 for
some g ∈ R, and is linearly degenerate if c is constant, when it reduces to the lin-
ear wave equation. Systems of wave equations may be linearly degenerate without
reducing to linear PDEs.

We emphasize that these definitions of genuine nonlinearity and linear degen-
eracy for wave equations are analogous to but different from the definitions for
hyperbolic conservation laws. If a genuinely nonlinear variational wave equation
for g were rewritten as a first-order hyperbolic system for g and F = ∂g, it would
be classified as a linearly degenerate first-order hyperbolic system since the wave
speeds of the original wave equation are independent of the derivative ∂g. For
further discussion of linearly degenerate hyperbolic systems see [6].
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Our interest here in linearly degenerate variational systems of wave equations
is that they may possess large-amplitude, non-distorting, plane wave solutions. In
that case, weakly nonlinear geometrical optics does not capture the nonlinear self-
interaction of a wave, and one requires a strongly nonlinear theory. Non-distorting
plane wave solutions exist only if the equations satisfy an additional degeneracy
condition, namely that the coefficients Hp in (2.23) vanish on the plane wave so-
lutions. We study these questions for general variational systems in [3]. Here, we
discuss the corresponding theory for the Einstein equations.

2.5 The Einstein equations
The Einstein equations do not fall exactly into the class of variational wave

equations defined in Section 2.3 because of their gauge-covariance. They can be
derived from a variational principle of the form (2.16), obtained after an integration
by parts in the Einstein-Hilbert action, but the resulting Euler-Lagrange equations
are not hyperbolic. Nevertheless — as is well-known — they become hyperbolic
when written with respect to suitable coordinates, such as wave (or harmonic) coor-
dinates. The equation for the metric g, with components gµν , then adopts a similar
form to (2.17)–(2.18), namely

∂

∂xα

{
gαβ

∂gµν
∂xβ

}
− Hµν(g) (∂g, ∂g) = 0,

where Hµν is a quadratic form in the metric derivatives ∂g with coefficients de-
pending on g. (See [30] for an explicit expression.)

The weakly nonlinear expansion described in Section 2.3 for variational sys-
tems of wave equations corresponds to the expansion of Choquet-Bruhat [11] and
Isaacson [22] for the Einstein equations. The Einstein equations have multiple
characteristics, so one obtains a system of equations for the amplitude-waveform
functions, but all of the nonlinear coefficients (2.25) in these equations are zero.
Thus, in this sense, the Einstein equations form a linearly degenerate system of
variational wave equations.

Physically, the linear degeneracy is a consequence of the transverse nature of
gravitational waves. The velocity of a gravitational wave that propagates in the
x-direction is determined by the (t, x)-metric components, but (in a suitable trans-
verse gauge) the wave carries variations in the (y, z)-metric components. Thus, the
wave amplitude does not affect the wave velocity.

The linear degeneracy of the Einstein equations is related to the ‘polarized null
condition’ of Choquet-Bruhat [13, 14] and the ‘weak null condition’ of Lindblad
and Rodnianski [29]. This condition is what permits the existence of global smooth
small-amplitude perturbations of Minkowski space-time [15, 24, 30], for example,
and similar results would not be true for (1 + 3)-dimensional variational wave
equations in which 3 6= 0. See also [4] for related global existence results for
other quasilinear wave equations.
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The Einstein equations possess non-distorting, plane wave solutions for large-
amplitude gravitational waves, and these solutions form the basis of a strongly
nonlinear geometrical optics theory for large-amplitude gravitational waves. It
does not, however, appear possible to obtain a self-consistent theory for oscilla-
tory large-amplitude waves, since the mean energy-momentum associated with
an extended wave-packet would generate a very strong background curvature of
space-time. This restriction is related to the fact that mean-field interactions with
oscillatory waves already occur at leading order in the small-amplitude theory. We
therefore consider localized waves.

An asymptotic theory for the propagation of localized, large-amplitude, rapidly
varying gravitational waves into slowly varying space-times was developed in [2].
In this theory, the metric of a plane-polarized wave may be written with respect to
a suitable coordinate system (u, v, y, z) as

(2.26) g = −2e−Mdu dv + e−U+V dy2
+ e−U−V dz2

+ O(ε2).

Here, the leading-order metric component functions U , V , M depend on θ , v,
where the ‘fast’ phase variable θ is given by

θ =
u
ε2
.

The metric components may also depend on y, z, but these variables occur as
parameters in the asymptotic equations.

Then (U, V,M) are functions of (θ, v) which satisfy the following PDEs:

Uθθ −
1
2

(
U 2
θ + V 2

θ

)
+ UθMθ = 0,(2.27)

Uθv − UθUv = 0,(2.28)

Vθv −
1
2
(UθVv + UvVθ ) = 0,(2.29)

Mθv +
1
2
(UθUv − VθVv) = 0.(2.30)

Equations (2.28)–(2.30) are wave equations for (U, V,M) in characteristic coordi-
nates (θ, v), and (2.27) is a constraint which is preserved by (2.28)–(2.30).

These equations correspond to a well-known exact solution of the Einstein
equations, the colliding plane wave solution [17, 23, 35, 36], without the usual
constraint equation in v,

Uvv −
1
2

(
U 2
v + V 2

v

)
+ UvMv = 0.

This constraint need not be satisfied if the slowly-varying space-time into which
the wave propagates is not that of a counter-propagating gravitational wave. If it
is not satisfied, then the resulting metric is an asymptotic solution of the Einstein
equations but not an exact solution.

The asymptotic equations we derive in this paper are a diffractive generalization
of (2.27)–(2.30).
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3 The asymptotic expansion

In this section, we outline our asymptotic expansion of the Einstein equations,
and specialize it to the case of plane-polarized gravitational waves that diffract
in a single direction. Our goal is to explain the structure of the expansion and
the resulting perturbation equations. The detailed algebra is summarized in the
appendices.

3.1 The general expansion
Let g be a Lorentzian metric. We denote the covariant components of g with

respect to a local coordinate system xα by gαβ . The connection coefficients 0λαβ
and the covariant components Rαβ of the Ricci curvature tensor associated with g
are defined by

0λαβ =
1
2

gλµ
(
∂gβµ
∂xα

+
∂gαµ
∂xβ

−
∂gαβ
∂xµ

)
,(3.1)

Rαβ =
∂0λαβ

∂xλ
−
∂0λβλ

∂xα
+ 0λαβ0

µ
λµ − 0µαλ0

λ
βµ.(3.2)

Here, and below, Greek indices α, β, λ, µ run over the values 0, 1, 2, 3. The vac-
uum Einstein equations may be written as

(3.3) Rαβ = 0.

We look for asymptotic solutions of (3.3) with metrics of the form

g = g
(

u(xα)
ε2

,
ya(xα)
ε

, xα; ε
)
,(3.4)

g(θ, ηa, xα; ε) =
0
g (θ, ηa, xα)+ ε

1
g (θ, ηa, xα)+ ε2 2

g (θ, ηa, xα)+ O(ε3).

Here, ε is a small parameter, u is a phase, ya with a = 2, 3 are transverse variables,
and

θ =
u
ε2
, ηa

=
ya

ε
are ‘stretched’ variables. The ansatz in (3.4) corresponds to a metric that varies
rapidly and strongly in the u-direction, with less rapid variations in the ya-directions,
and slow variations in xα.

We remark that the form of this ansatz is relative to a class of local coordinate
systems, since an ε-dependent change of coordinates can alter the way in which
the metric depends on ε. It would be desirable to give a geometrically intrin-
sic characterization of such an ansatz and to carry out the expansion in a global,
coordinate-invariant way, but we do not attempt to do so here.

We use (3.4) in the Einstein equations (3.3), expanding derivatives of a function
f with respect to xµ as

(3.5)
∂

∂xµ
f
(

u
ε2
,

ya

ε
, xα

)
=

1
ε2

f,θuµ +
1
ε

f,ā ya
µ + f,µ,
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and then treating (θ, ηa, xα) as independent variables. In (3.5) and below, we use
the shorthand notation

f,θ =
∂ f
∂θ

∣∣∣∣
ηa ,x

, f,ā =
∂ f
∂ηa

∣∣∣∣
θ,x
, f,µ =

∂ f
∂xµ

∣∣∣∣
θ,ηa

,(3.6)

uµ =
∂u
∂xµ

, ya
µ =

∂ya

∂xµ
.

We will omit commas from derivatives when this does not lead to any confusion.
Using the expansions of the connection coefficients and the Ricci curvature

components given in Appendix A, we find that to get a non-trivial asymptotic solu-
tion of (3.3) at the leading orders, the phase u must be null to leading order, and the
transverse variables ya must be constant along the rays associated with u to lead-
ing order. Moreover, the leading-order metric must have the form of the colliding
plane wave metric.

To carry out the expansion in detail, we use the gauge-covariance of the Einstein
equations to make a choice of coordinates that is adapted to the metric in (3.4). We
assume that u is approximately null up to the order ε2 and that y2, y3 are constant
along the rays associated with u up to the order ε. Furthermore, we assume that we
can extend (u, y2, y3) to a local coordinate system

(x0, x1, x2, x3) = (u, v, y2, y3).

Then, as shown in Appendix B, we can use appropriate gauge transformations,
which involve a near identity transformation of the phase and the transverse vari-
ables, to write a general metric (3.4) as

g = 2
0
g01 dx0dx1

+
0
gab dxadxb(3.7)

+ε

{
2

1
g1a dx1dxa

+
1
gab dxadxb

}
+ ε2 2

gi j dx i dx j
+ O(ε3).

In (3.7) and below, indices i, j, k, . . . take on the values 1, 2, 3, while indices
a, b, c, . . . take on the values 2, 3. We raise and lower indices using the leading
order metric components; for example, we write(

0
g αβ

)
=

(
0
g αβ

)−1

, hα =
0
g αβhβ .

We also show in Appendix B that we have one additional gauge freedom in
(3.7), involving a nonlinear transformation of the phase, which we can use to set
either

0
g01= 1

or one of the three components
1
g12,

1
g13,

2
g11

equal to zero. We will exploit this gauge freedom later, since it is convenient in
formulating a variational principle for the asymptotic equations (see Appendix D).
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We use (3.7) in (3.1)–(3.2) and expand the result with respect to ε. We find that

(3.8) Rαβ =
1
ε4

−4
R αβ +

1
ε3

−3
R αβ +

1
ε2

−2
R αβ +O(ε−1),

where explicit expressions for the nonzero components of the Ricci tensor up to
the order ε−2 are summarized in Appendix C.

Using (3.8) in (3.3) and equating coefficients of ε−4, ε−3 and ε−2 to zero, we
get

−4
R αβ = 0,(3.9)
−3
R αβ = 0,(3.10)
−2
R αβ = 0.(3.11)

These perturbation equations lead to a closed set of equations for the leading-order
and first-order components of the metric, as we now explain.

The only component of (3.9) that is not identically satisfied is

(3.12)
−4
R 00= 0.

From (3.12) and (C.1), it follows that
0
gαβ satisfies

−
1
2
(

0
g ab 0

gab,θ ),θ +
1
2

0
g 01 0

g01,θ
0
g ab 0

gab,θ −
1
4

0
g ac 0

gbc,θ
0
g bd 0

gad,θ= 0.

This equation is a constraint on the leading order metric which involves only θ -
derivatives, and has the same form as the constraint equation for a single gravita-
tional plane wave.

The nonzero components of the Ricci tensor at the next order in ε are
−3
R 00,

−3
R 0a .

The condition

(3.13)
−3
R 0a= 0,

yields equations for
1
g1a and their derivatives with respect to θ , with nonhomoge-

neous terms depending on θ - and η-derivatives of the leading order metric. Thus,
(3.13) provides two equations relating the first-order perturbation in the metric to
the leading order metric.

The equation
−3
R 00= 0

is a single equation that is homogeneous in the first-order components
1
gab, as can

be seen from (C.2). A nonzero solution of this equation corresponds physically to
a free, small-amplitude gravitational wave of strength of the order ε propagating
in the space-time of the large-amplitude gravitational wave. Retaining a nonzero
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solution of this homogenous equation would not change our final equations for the
large-amplitude wave, and for simplicity we assume that

1
gab= 0.

This assumption is also consistent with the higher-order perturbation equations.
At the next order in ε, the nonzero components of the Ricci curvature are

−2
R 00,

−2
R 01,

−2
R 0a,

−2
R ab .

The perturbation equations for
−2
R 00 and

−2
R 0a in (3.11) give non-homogenous equa-

tions for the second-order metric components
2
gab,

2
g1a,

with source terms depending on the lower-order components of the metric. These
equations are satisfied by a suitable choice of the second-order metric components,
and they are decoupled from the equations for the leading-order and first-order
metric components. We therefore do not consider them further here.

The remaining perturbation equations are

(3.14)
−2
R 01= 0,

−2
R ab= 0.

By use of the gauge freedom mentioned at the beginning of this section, we may
set

2
g11= 0.

In that case, (3.14) provides a set of four equations relating the leading-order and
first-order metric components, and their derivatives.

We remark that, in general, one cannot eliminate secular terms from the asymp-
totic solution that are unbounded as the ‘fast’ phase variable θ tends to infinity. As
a result, the validity of the asymptotic equations is restricted to a thin layer of
thickness of the order ε2 about the hypersurface u = 0, where θ = O(1). A
global asymptotic solution can be obtained by matching the ‘inner’ solution inside
this layer with appropriate ‘outer’ solutions, such as slowly varying space-times
on either side of the wave. In this paper, however, we focus on the construction
of asymptotic solutions for localized gravitational waves, and do not consider any
matching problems.

Summarizing these results, we find that after a suitable gauge transformation,
an asymptotic solution of the Einstein equations (3.3) of the form (3.4) may be
written as

g = 2
0
g01 dx0dx1

+
0
gab dxadxb

+ 2ε
1
g1a dx1dxa

+ O(ε2),(3.15)

where u = x0, ya
= xa and the six metric components

0
g01,

0
gab,

1
g1a
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satisfy a system (3.12)–(3.14) of seven equations. Equation (3.12) is an ODE in θ ,
and, in the case of plane-polarized waves, we show that it is a gauge-type constraint
that is preserved by the remaining equations (3.13)–(3.14).

The explicit form of the equations follows from the expressions in (C.1), (C.3)–
(C.5) for the corresponding components in the expansion of of the Ricci tensor that
appear in (3.12)–(3.14). In general, these equations are very complicated, but they
simplify considerably in special cases.

3.2 Plane-polarized gravitational waves
In this section, we specialize our asymptotic solution to the case of a plane-

polarized gravitational wave that diffracts in a single direction, and write out the
resulting equations explicitly.

We choose coordinates

(3.16) (x0, x1, x2, x3) = (u, v, y, z)

in which the metric has the form (3.15). We suppose that the metric depends on
the variables θ , η, v where the phase variable θ and the transverse variable η are
defined by

θ =
u
ε2
, η =

y
ε
,

and is independent of the second transverse variable ζ = z/ε. This means that the
wave diffracts only in the y-direction. We could also allow the metric to depend on
z, which would appear in the final equations as a parameter.

We consider a leading-order metric that has the form of the colliding plane wave
metric for a plane-polarized wave, polarized in the (y, z)-directions. We have seen
that we need only retain the higher order components

1
g1a,

2
g11 .

From (C.3), one component of (3.13) is homogeneous in
1
g13, since there is no

dependence on ζ , and we may assume that
1
g13= 0.

We therefore take the special form of the metric in (3.7) given by

g = −2e−Mdudv + e−U+V dy2
+ e−U−V dz2(3.17)

+2εY e−Mdydv + ε2T e−Mdv2
+ O(ε2),

where the functions (U, V,M, Y, T ) depend on (θ, η, v). We recall that we have
the gauge-freedom to set either M , Y , or T equal to zero. In writing the equations,
we choose to set T = 0. We then get the metric (1.2).

The asymptotic metric (3.17) must satisfy equations (3.12)–(3.14). First, using
(3.17) in (3.12) and simplifying the result, we obtain, after some algebra, the θ -
constraint equation (1.6).
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Next, using (3.17) and (C.3), we find that the only nontrivial component of
(3.13) is

(3.18)
−3
R 02= 0.

After the introduction of Dη, φ, ψ defined in (1.3)–(1.5) and some algebra, we find
that (3.18) may be written as (1.7).

Finally, using (3.17) and (C.4)–(C.5), we find that the only nontrivial compo-
nents of (3.14) are

(3.19)
−2
R 01= 0,

−2
R 22= 0,

−2
R 33= 0.

After some algebra, we may write these equations as (1.8)–(1.10). We have also
checked the results by use of MAPLE.

3.3 The variational principle
Equations (3.12)–(3.14) can be derived from a variational principle, which is

obtained by expanding the variational principle for the Einstein equations. In order
to formulate a variational principle, it is necessary to retain the component

T =
2
g11,

which was set equal to zero in our previous choice of coordinates. Variations with
respect to this component yield the gauge-type constraint (3.12), and it may be set
to zero after taking variations with respect to it.

The general form of the asymptotic variational principle is given in Appen-
dix D. Here, we specialize it to the case of a plane-polarized gravitational wave
considered in Section 3.2. Using the metric (3.17) in (D.3) we find, after some
algebra, that the variational principle (D.4) for (1.6)–(1.10) is

δS(1) = 0, S(1) =

∫
L (−2) dθ dv dη,

where the Lagrangian L (−2) may be written as

L (−2)
= e−U

{
2Mθv + 4Uθv − VθVv − 3UθUv(3.20)

−Tθθ + Tθ (Mθ + 2Uθ )+ T (Mθθ + 2Uθθ −
3
2U 2

θ −
1
2 V 2

θ )

+e−(U+V +M) [
−2Dηφ − Dηψ +

3
2φ

2
+ 2φψ + ψ2] }

.

Variations of S(1) with respect to the second-order metric component T lead to
the θ -constraint equation (1.6). Variations with respect to the first-order metric
component Y , which appears in φ, ψ , and Dη, lead to equation (1.7). Variations
with respect to U , V , M lead to the evolution equations (1.8)–(1.10), after we set
T = 0.
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4 Properties of the equations

In this section, we study some properties of the equations for plane-polarized
waves that are derived in the previous section. We write out the structure of the
highest-order derivatives that appear in the equations, and use this to formulate a
reasonable IBVP for them. We also show that the θ -constraint equation is preserved
by the evolution in v, and that the linearized equations are consistent with the
linearized equations for gravitational waves in the parabolic approximation.

4.1 Structure of equations and an IBVP
In this subsection, we consider the structure of equations (1.6)–(1.10) in more

detail. The first equation, (1.6), is an ODE with respect to θ relating (U, V,M). As
we show in the next section, this equation is a gauge-type constraint which holds
for all v if it holds for v = 0, say. We may therefore neglect this equation provided
that the initial data at v = 0 is compatible with it.

The remaining equations (1.7)–(1.10) form a system of equations for U , V , M ,
Y . In order to exhibit their structure, we rewrite them in a way that shows explicitly
how the highest, second-order, derivatives appear.

Using (1.3)–(1.5), we may rewrite equation (1.7) as

Yθθ − {(V + M)θY }θ +

{
1
2

U 2
θ − UθVθ −

1
2

V 2
θ

}
Y(4.1)

= (U + V + M)θη + MηUθ − (U + V )ηVθ .

If U , V , M are assumed known, then this equation is a linear ODE in θ for Y .
We may rewrite equations (1.8)–(1.10) as

(U + V + M)θv −
1
2
(U + V )θ (U + V )v(4.2)

=
1
2

e−(U+V +M)
{
−

1
2
φ2

− φψ

}
,

(U + V )θv −
1
2

Uθ (U + V )v −
1
2

Uv (U + V )θ ,(4.3)

=
1
2

e−(U+V +M) {D2
η(U + V )− φψ − ψ2}

Uθv − UθUv(4.4)

=
1
2

e−(U+V +M)
{

D2
η(U + V + M)− Dη

(
eU Yθ

)
−

1
2
φ2

− φψ − ψ2
}
.

Examining the terms that involve second order derivatives, we see that these equa-
tions consist of a (1 + 2)-dimensional wave equation in (θ, η, v) for (U + V ),
and two (1 + 1)-dimensional wave equations in (θ, v), for (U + V + M) and U ,
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in which (θ, v) are characteristic coordinates. An additional second-order deriva-
tive term, proportional to DηYθ , appears in the equation for U . The function Y is
also coupled with the evolution equations through the dependence of the transverse
derivative Dη, given in (1.3), on Y .

In order to specify a unique solution of these equations, we expect that we
need to supplement the ODE (4.1) with data for Y and Yθ on θ = 0, say, and
the evolution equations (4.2)–(4.4) with characteristic initial data for (U, V,M) on
θ = 0 and v = 0. Thus, a reasonable IBVP for (4.1)–(4.4) in the region θ > 0,
−∞ < η < ∞, and v > 0 is

(U, V,M) = (U0, V0,M0) on v = 0,
(U, V,M) = (U1, V1,M1) on θ = 0,
(Y, Yθ ) = (Y0, Y1) on θ = 0.

Here, (U0, V0,M0) are given functions of (θ, η) that satisfy the constraint

U0θθ −
1
2

(
U 2

0θ + V 2
0θ

)
+ U0θM0θ = 0,

and (U1, V1,M1, Y0, Y1) are given compatible functions of (η, v). This data may
be interpreted as initial data for the state of the wave on the hypersurface v = 0,
and boundary data on the leading wavefront θ = 0.

4.2 The constraint equations
In this section, we show that the constraint equation (1.6) is preserved.

Proposition 4.1. Suppose that (U, V,M, Y ) are smooth functions that satisfy (1.7)–
(1.10). Let

(4.5) F = Uθθ −
1
2

(
U 2
θ + V 2

θ

)
+ UθMθ .

Then

(4.6) Fv = UvF.

Proof. We write the evolution equations (1.8)–(1.10) as

Uθv − UθUv =
1
2

e−(U+V +M)A,(4.7)

Vθv −
1
2
(UθVv + UvVθ ) =

1
2

e−(U+V +M)B,(4.8)

Mθv +
1
2
(UθUv − VvVθ ) =

1
2

e−(U+V +M)C,(4.9)
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where, using the notation defined in (1.3)–(1.5),

A = Dηφ + Dηψ −
1
2
φ2

− φψ − ψ2,(4.10)

B = −Dηφ +
1
2
φ2,(4.11)

C = −Dηψ −
1
2
φ2

+ ψ2.(4.12)

Differentiating (4.5) with respect to v, and using (4.7)–(4.9) and (4.5) to replace
Uθv, Vθv,Mθv and Uθθ in the result, we find that

(4.13) Fv = UvF +
1
2

e−(U+V +M)D,

where

(4.14) D = Aθ − (U + V )θ A − Vθ B + UθC.

Differentiating equation (4.10) for A with respect to θ , introducing the commutator[
∂θ , Dη

]
of ∂θ and Dη, and using equations (1.5) and (1.7), we compute that

Aθ = ∂θ

{
Dη(φ + ψ)−

1
2
φ2

− φψ − ψ2
}

(4.15)

= Dη(φ + ψ)θ +
[
∂θ , Dη

]
(φ + ψ)− (φ + ψ)φθ − (φ + 2ψ)ψθ

= Dη {ψ(U + V )θ }

−(φ + ψ)φθ − (φ + 2ψ)ψθ +
[
∂θ , Dη

]
(φ + ψ)

= (U + V )θ Dηψ + ψDη(U + V )θ
−(φ + ψ)φθ − (φ + 2ψ)ψθ +

[
∂θ , Dη

]
(φ + ψ)

= (U + V )θ Dηψ + ψ∂θ Dη(U + V )− ψ
[
∂θ , Dη

]
(U + V )

−(φ + ψ)φθ − (φ + 2ψ)ψθ +
[
∂θ , Dη

]
(φ + ψ)

= (U + V )θ Dηψ + ψψθ − (φ + ψ)φθ − (φ + 2ψ)ψθ
+

[
∂θ , Dη

]
(φ + ψ)− ψ

[
∂θ , Dη

]
(U + V )

= (U + V )θ Dηψ − (φ + ψ)(φ + ψ)θ

+
[
∂θ , Dη

]
(φ + ψ)− ψ

[
∂θ , Dη

]
(U + V )

= (U + V )θ
{

Dηψ − ψ(φ + ψ)
}

+
[
∂θ , Dη

]
(φ + ψ)− ψ

[
∂θ , Dη

]
(U + V ).

From the definition of Dη in (1.3), it follows that[
∂θ , Dη

]
= Uθ Dη + eU Yθ∂θ .
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Hence, using (1.5) and (1.7), we get[
∂θ , Dη

]
(φ + ψ) = Uθ Dη(φ + ψ)+ eU Yθ (φ + ψ)θ

= Uθ Dη(φ + ψ)+ ψeU Yθ (U + V )θ ,[
∂θ , Dη

]
(U + V ) = Uθ Dη(U + V )+ eU Yθ (U + V )θ

= Uθψ + eU Yθ (U + V )θ .

Using these equations in (4.15), and simplifying the result, we find that

Aθ = (U + V )θ
(
Dηψ − φψ − ψ2)

+ Uθ

(
Dηφ + Dηψ − ψ2) .

Finally, using this equation and (4.10)–(4.12) in (4.14), and simplifying the result,
we find that D = 0. It follows from (4.13) that F satisfies (4.6). �

4.3 Linearization
We consider the small-amplitude limit of (1.6)–(1.10) in which

U, V,M, Y → 0.

From the constraint equation (1.6), we have U = O(V 2), so U is of higher-order
in a linearized approximation and can be neglected, while V describes the wave-
profile. (See §35.9–§35.10 in [32] for further discussion.)

From (1.3)–(1.4), we also have in this approximation that

Dη = ∂η,

φ = Mη − Yθ ,
ψ = Vη.

Linearization of (1.7) yields
(φ + ψ)θ = 0,

while linearization the evolution equations (1.8)–(1.10) gives

0 =
1
2
(φ + ψ)η,

Vθv = −
1
2
φη,

Mθv = −
1
2
ψη.

Neglecting functions of integration for simplicity, we find that these equations
are satisfied if M = −V and Y = 0. In that case, V satisfies an equation of the
form (2.9):

Vθv =
1
2

Vηη.

The corresponding linearized metric is given by

g = 2(1 − V )dudv + (1 + V )dy2
+ (1 − V )dz2.
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Linearization of the Einstein equations, with a suitable choice of gauge, leads
to a set of linear wave equations for the metric components. One can verify that
this linearization of our asymptotic solution agrees with what is obtained by an ap-
plication of the parabolic approximation described in Section 2.1 to the linearized
Einstein equations for plane-polarized waves.

Appendix A: Expansion of connection coefficients and Ricci tensor

In this appendix, we write out the expansions as ε → 0 of the connection
coefficients and the Ricci curvature components associated with a metric whose
components have the form

gαβ = gαβ

(
u(x)
ε2

,
ya(x)
ε

, x; ε

)
,

gαβ
(
θ, ηa, x; ε

)
=

0
gαβ

(
θ, ηa, x

)
+ ε

1
gαβ

(
θ, ηa, x

)
+ ε2 2

gαβ
(
θ, ηa, x

)
+ O(ε3).

The contravariant metric components gαβ satisfy

gαµgµβ = δαβ .

Expanding this equation in a power series in ε and solving for gαβ , we get

gαβ =
0
g αβ − ε

1
g αβ − ε2

(
2
g αβ−

0
gµν

1
g αµ

1
g βν

)
+ O(ε3),(A.1)

=
0
h αβ + ε

1
h αβ + ε2 2

h αβ + O(ε3),

where
0
g αβ is the inverse of

0
gαβ . Here and below, we use the leading order metric

components to raise indices, so that

1
g αβ =

0
g αµ

0
g βν

1
gµν,

2
g αβ =

0
g αµ

0
g βν

2
gµν .

We note that, with this convention, the first-order term in the expansion of the
contravariant metric components gαβ with respect to ε is

1
h αβ = −

1
g αβ,

not
1
g αβ .
We use the notation for derivatives in (3.6). The expansion of the connection

coefficients (or Christoffel symbols) given in (3.1) is

0λαβ =
1
ε2

−2
0
λ
αβ +

1
ε

−1
0
λ
αβ+

0
0
λ
αβ + O(ε),
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where

−2
0
λ
αβ =

1
2

0
g λµ

(
0
gβµ,θ uα+

0
gαµ,θ uβ−

0
gαβ,θ uµ

)
,

−1
0
λ
αβ =

1
2

0
g λµ

(
0
gβµ,ā ya

α+
0
gαµ,ā ya

β−
0
gαβ,ā ya

µ

)
+

1
2

0
g λµ

(
1
gβµ,θ uα+

1
gαµ,θ uβ−

1
gαβ,θ uµ

)
−

1
2

1
g λµ

(
0
gβµ,θ uα+

0
gαµ,θ uβ−

0
gαβ,θ uµ

)
,

0
0
λ
αβ =

1
2

0
g λµ

(
0
gβµ,α +

0
gαµ,β −

0
gαβ,µ

)
+

1
2

0
g λµ

(
1
gβµ,ā ya

α+
1
gαµ,ā ya

β−
1
gαβ,ā ya

µ

)
−

1
2

1
g λµ

(
0
gβµ,ā ya

α+
0
gαµ,ā ya

β−
0
gαβ,ā ya

µ

)
+

1
2

0
g λµ

(
2
gβµ,θ uα+

2
gαµ,θ uβ−

2
gαβ,θ uµ

)
−

1
2

1
g λµ

(
1
gβµ,θ uα+

1
gαµ,θ uβ−

1
gαβ,θ uµ

)
+

1
2

2
h λµ

(
0
gβµ,θ uα+

0
gαµ,θ uβ−

0
gαβ,θ uµ

)
.

The expansion of the Ricci tensor is

Rαβ =
1
ε4

−4
R αβ +

1
ε3

−3
R αβ +

1
ε2

−2
R αβ +O(ε−1),

where

−4
R αβ =

−2
0
µ
αβ,θuµ−

−2
0
µ
βµ,θuα+

−2
0
µ
αβ

−2
0
ν
µν−

−2
0
µ
αν

−2
0
ν
βµ,

−3
R αβ =

−1
0
µ
αβ,θuµ−

−1
0
µ
βµ,θuα+

−2
0
µ
αβ,ā ya

µ−
−2
0
µ
βµ,ā ya

α

+
−2
0
µ
αβ

−1
0
ν
µν+

−1
0
µ
αβ

−2
0
ν
µν−

−2
0
µ
αν

−1
0
ν
βµ−

−1
0
µ
αν

−2
0
ν
βµ,

−2
R αβ =

0
0
µ
αβ,θuµ−

0
0
µ
βµ,θuα+

−1
0
µ
αβ,ā ya

µ−
−1
0
µ
βµ,ā ya

α

+
−2
0
µ
αβ,µ−

−2
0
µ
βµ,α+

−2
0
µ
αβ

0
0
ν
µν+

0
0
µ
αβ

−2
0
ν
µν

−
−2
0
µ
αν

0
0
ν
βµ−

0
0
µ
αν

−2
0
ν
βµ+

−1
0
µ
αβ

−1
0
ν
µν−

−1
0
µ
αν

−1
0
ν
βµ.
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Appendix B: Gauge transformations

We consider a Lorentzian metric g and local coordinates xα in which

g = gαβdxα dxβ .

We denote the contravariant form of g by

g] = gαβ∂α∂β .

We suppose that the metric g depends upon a small parameter ε, and has the
asymptotic expansion (3.4) as ε → 0 where u, ya , a = 2, 3, are independent
functions. Furthermore, we assume that

g](du, du) = O(ε2),(B.1)
g](du, dya) = O(ε), a = 2, 3.(B.2)

The first condition states that du is an approximate null form up to the order ε2.
The second condition states that ya is constant along the rays associated with u up
to the order ε.

In this appendix, we show that under these assumptions, after a near-identity
transformation of the phase u and the transverse variables ya , we can choose local
coordinates xα in which u = x0, ya

= xa and the metric adopts the form in (3.7):

g = 2
0
g01 dx0dx1

+
0
gab dxadxb(B.3)

+ε

{
2

1
g1a dx1dxa

+
1
gab dxadxb

}
+ ε2 2

gi j dx i dx j
+ O(ε3).

As before, indices α, β, . . . take on the values 0, 1, 2, 3; indices i, j, k, . . . take on
the values 1, 2, 3; and indices a, b, c, . . . take on the values 2, 3.

We also show that by a nonlinear transformation of the phase u, we can impose
any one of the following four conditions:

0
g01= 1,

1
g12= 0,

1
g13= 0,

2
g11= 0.

To begin with, given a metric of the form (3.4), we choose a local coordinate
system xα in which

(B.4) x0
= u, xa

= ya.

Then (B.1)–(B.2) are equivalent to

(B.5)
0
g 00

=
1
g 00

= 0,
0
g 0a

= 0.

These conditions imply that

(B.6)
0
g11= 0,

0
g1a= 0.

Moreover, we must have

(B.7) det
0
gab> 0,
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which implies that the ya are space-like coordinates.
The expansion (3.4) and the conditions (B.4), (B.6) are invariant under coordi-

nate transformations of the form

xα → xα + ε29α

(
x0

ε2
,

xa

ε
, x; ε

)
,

90(θ, ηa, x; ε) = ε
1
9

0 (
θ, ηa, x

)
+ ε2 2

9
0 (
θ, ηa, x

)
+ O(ε3),

9 i (θ, ηa, x; ε) =
0
9

i (
θ, ηa, x

)
+ ε

1
9

i (
θ, ηa, x

)
+ ε2 2

9
i (
θ, ηa, x

)
+ O(ε3).

Here, and below, we write

θ =
x0

ε2
, ηa

=
xa

ε
.

First, we make a change of coordinates of the form

x0
→ x0, x i

→ x i
+ ε2 0

9
i (θ, ηa, x).

At the order zero in ε, the metric components transform according to
0
g00 →

0
g00 +2

0
9

i
,θ

0
g0i +

0
9

i
,θ

0
9

j
,θ

0
gi j ,

0
g0i →

0
g0i +

0
9

j
,θ

0
gi j ,

0
gi j →

0
gi j ,

where we use the notation in (3.6) for θ -derivatives. From (B.7), the matrix
0
gab is

invertible, and therefore we can choose
0
9 i
,θ so that

0
g00= 0,

0
g0a= 0.

In that case, the zero-order metric
0
g takes the form given in (B.3).

Second, we make a change of coordinates of the form

xα → xα + ε3 1
9
α(θ, ηa, x).

The metric (B.3) is unchanged at the order zero under the action of this transfor-
mation. At the order one, the components transform according to

1
g00 →

1
g00 +2

1
9

1
,θ

0
g01,

1
g01 →

1
g01 +

1
9

0
,θ

0
g01,

1
g0a →

1
g0a +

1
9

b
,θ

0
gab,

1
gi j →

1
gi j .
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Choosing
1
9 α appropriately, we can use these transformations to make

1
g0α= 0.

Moreover, the condition (B.5) implies that

1
g11 = −

(
0
g01

)2 1
g 00

= 0.

In that case, the first-order metric
1
g takes the form given in (B.3).

Third, we make a change of coordinates of the form

xα → xα + ε4 2
9
α(θ, ηa, x).

The metric (B.3) is unchanged at the orders zero and one. At the order two, the
metric components transform according to

2
g00 →

2
g00 +2

2
9

1
,θ

0
g01,

2
g01 →

2
g01 +

2
9

0
,θ

0
g01,

2
g0a →

2
g0a +

2
9

b
,θ

0
gab,

2
gi j →

2
gi j .

Choosing
2
9 α appropriately, we can use these transformations to make

2
g0α= 0,

and the resulting metric then has the form given in (B.3).
We remark that the choice of u = x0 for the phase and ya

= xa for the trans-
verse variables means that the coordinate changes above imply a change of the
phase u and the transverse variables ya appearing in (3.4) of the form

u → u + ε38

(
u
ε2
,

ya

ε
, x; ε

)
, ya

→ ya
+ ε29a

(
u
ε2
,

ya

ε
, x; ε

)
.

These transformations correspond to a near-identity transformation of the ‘fast’
phase θ and ‘intermediate’ transverse variables ηa ,

(B.8) θ → θ + ε8
(
θ, ηa, x; ε

)
, ηa

→ ηa
+ ε9a (

θ, ηa, x; ε
)
.

This transformation of the phases leads to a gauge-equivalent metric, and does not
result in any loss of generality in the asymptotic solution.

Next, we show that there is an additional gauge freedom in (B.3) that is related
to a nonlinear transformation of the phase. We consider a phase transformation

u → ε28

(
u
ε2
,

ya

ε
, x

)
,
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with a corresponding transformation of the ‘fast’ phase

(B.9) θ → 8(θ, ηa, x).

Under this transformation, the metric in (3.4) transforms as

g
(

u
ε2
,

ya

ε
, x; ε

)
→ g

(
8

(
u
ε2
,

ya

ε
, x

)
,

ya

ε
, x; ε

)
.

The transformed metric has the same form as the original one with respect to the
transformed phase. Consequently, we have the freedom within the asymptotic the-
ory to make such a change of phase. The significant difference from the previous
transformations is that (B.9) involves a leading-order, nonlinear transformation of
the ‘fast’ phase, whereas (B.8) involves a near-identity transformation.

In view of (B.4), we therefore consider a change of coordinates of the form

(B.10) x0
→ ε28

(
x0

ε2
,

xa

ε
, x

)
.

Up to the order ε2, this coordinate change acts only on the following components
of the metric (B.3):

0
g01→ 8,θ

0
g01,

1
g1a→

1
g1a +8,ā

0
g01,

2
g11→

2
g11 +28,θ

0
g01 .

Thus, we can use (B.10) to set
0
g01= 1 or one of the three components

1
g12,

1
g13,

2
g11

equal to zero. More generally, we can choose8 so that any appropriate relationship
involving these four components is satisfied. The choice

2
g11= 0

is convenient because then θ is a characteristic variable of the asymptotic equations,
and they adopt a somewhat simpler form.

Finally, we record here the explicit contravariant form of the metric tensor cor-
responding to (B.3). We have

g] = 2
0
g 01∂0∂1+

0
g ab∂a∂b − ε

{
2

1
g 0a∂0∂a+

1
g ab∂a∂b

}
(B.11)

+ε2
{

2
h 00∂2

0 + 2
2
h 0a∂0∂a+

2
h ab∂a∂b

}
+ O(ε3),

with
2
h 00

= −(
2
g 00

−
0
gcd

1
g 0c 1

g 0d),
2
h 0a

= −(
2
g 0a

−
0
gcd

1
g 0c 1

g ad),
2
h ab

= −(
2
g ab

−
0
gcd

1
g ac 1

g bd).
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In (B.11), the components
0
g 01 and

0
g ab are defined by

0
g 01 0

g01= 1,
0
g ac 0

gcb= δa
b .

Moreover,
0
g 01 is used to raise the sub-index 1, and

0
g ab is used to raise the sub-

indices 2, 3. Thus, for example, we have

1
g 00

= (
0
g 01)2

1
g11,

2
g 0a

=
0
g 01 0

g ab 2
g1b .

It follows from (B.11) that the transformed phase u = x0 and the transformed
transverse coordinates ya

= xa satisfy (B.1)–(B.2).

Appendix C: Nonzero connection coefficients and Ricci tensor
components

It this appendix, we write out expressions for the nonzero connection coeffi-
cients and Ricci tensor components for the metric given in (3.7). These results
follow by specialization of the expressions given in Appendix A to a metric of the
form (3.7) with u = x0 and ya

= xa .

As before, we use the notation for derivatives in (3.6).

Nonzero connection coefficients at order ε−2:

−2
0

0
00 =

0
g 01 0

g01,θ ,
−2
0

1
ab = −

1
2

0
g 01 0

gab,θ ,
−2
0

a
0b =

1
2

0
g ac 0

gbc,θ .

Nonzero connection coefficients at order ε−1:

−1
0

0
0a =

1
2

0
g 01(

0
g01,ā +

1
g1a,θ )−

1
2

1
g 0b 0

gab,θ ,

−1
0

1
1a =

1
2

0
g 01(

0
g01,ā −

1
g1a,θ ),

−1
0

1
ab = −

1
2

0
g 01 1

gab,θ ,

−1
0

a
01 = −

1
2

0
g ac(

0
g01,c̄ −

1
g1c,θ ),

−1
0

a
0b =

1
2

0
g ac 1

gbc,θ −
1
2

1
g ac 0

gbc,θ ,

−1
0

a
bc =

1
2

0
g ad(

0
gbd,c̄ +

0
gcd,b̄ −

0
gbc,d̄)+

1
2

1
g 0a 0

gbc,θ .
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Nonzero connection coefficients at order ε0:
0
0

0
00 =

0
g 01 0

g01,0,
0
0

0
01 =

1
2

1
g 0c(

0
g01,c̄ −

1
g1c,θ )+

1
2

0
g 01 2

g11,θ ,

0
0

0
0a =

1
2

0
g 01(

2
g1a,θ +

0
g01,a)−

1
2

1
g 0c 1

gac,θ +
1
2

2
h 0c 0

gac,θ ,

0
0

0
ab =

1
2

0
g 01(

1
g1b,ā +

1
g1a,b̄ −

0
gab,1)

−
1
2

1
g 0c(

0
gbc,ā +

0
gac,b̄ −

0
gab,c̄)−

1
2

2
h 00 0

gab,θ ,

0
0

1
11 =

1
2

0
g 01(2

0
g01,1 −

2
g11,θ ),

0
0

1
1a =

1
2

0
g 01(

0
g01,a −

2
g1a,θ ),

0
0

1
ab = −

1
2

0
g 01(

0
gab,0 +

2
gab,θ ),

0
0

a
01 =

1
2

0
g ac(

2
g1c,θ −

0
g01,c)−

1
2

1
g ac(

1
g1c,θ −

0
g01,c̄),

0
0

a
0b =

1
2

0
g ac(

2
gbc,θ +

0
gbc,0)−

1
2

1
g ac 1

gbc,θ ,+
1
2

2
h ac 0

gbc,θ ,

0
0

a
1b =

1
2

0
g ac(

0
gbc,1 +

1
g1c,b̄ −

1
g1b,c̄)−

1
2

1
g 0a(

0
g01,b̄ −

1
g1b,θ ),

0
0

a
bc =

1
2

1
g 0a 1

gbc,θ −
1
2

2
h 0a 0

gbc,θ +
1
2

0
g ad(

1
gbd,c̄ +

1
gcd,b̄ −

1
gbc,d̄)

−
1
2

1
g ad(

0
gbd,c̄ +

0
gcd,b̄ −

0
gbc,d̄)+

1
2

0
g ad(

0
gbd,c +

0
gcd,b −

0
gbc,d).

Nonzero component of the Ricci curvature tensor at order ε−4:
−4
R 00= −

1
2
(

0
g ab 0

gab,θ ),θ +
1
2

0
g 01 0

g01,θ
0
g ab 0

gab,θ(C.1)

−
1
4

0
g ac 0

gbc,θ
0
g bd 0

gad,θ .

Nonzero components of the Ricci curvature tensor at order ε−3:
−3
R 00= −

1
2

1
g a

a,θθ +
1
2

0
g 01 0

g01,θ
1
g a

a,θ −
1
2

0
g bd 0

gbc,θ
1
g c

d,θ ,(C.2)

−3
R 0a=

1
2
(

0
gab

0
g 01 1

g b
1,θ ),θ +

1
4

0
g cd 0

gcd,θ
0
gab

0
g 01 1

g b
1,θ +

1
2
(

0
g bc 0

gab,θ ),c̄(C.3)

−
1
2
(

0
g 01 0

g01,ā +
0
g cd 0

gcd,ā),θ +
1
4

0
g bc 0

gab,θ
0
g de 0

gde,c̄

+
1
4

0
g 01 0

g01,ā
0
g cd 0

gcd,θ −
1
4

0
g bd 0

gcd,θ
0
g ce 0

gbe,ā .

Nonzero components of the Ricci curvature tensor at the order ε−2:
−2
R 00,

−2
R 01,

−2
R 0a,

−2
R ab .
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The components
−2
R 00 and

−2
R 0a are the analogs of

−1
R 00 and

−1
R 0a for the higher order

components of the metric, and will not be listed here. The remaining components
of the Ricci tensor are listed below:

−2
R 01= −

(
0
g 01 0

g01,1 +
1
2

0
g cd 0

gcd,1

)
,θ

−
1
4

0
g ab 0

gbc,θ
0
g bd 0

gad,1(C.4)

+
1
2

(
(

0
g01,ā −

1
g1a,θ )

1
g 0a

)
,θ

−
1
2

(
(

0
g01,ā −

1
g1a,θ )

0
g ab

)
,b̄

+
1
4
(

0
g01,ā −

1
g1a,θ )

(
1
g 0a 0

g cd 0
gcd,θ −

0
g ab 0

g cd 0
gcd,b̄

)
,

−2
R ab= −

0
g 01 0

gab,1θ +
1
2

0
g 01 0

g cd(
0
gac,θ

0
gbd,1 +

0
gac,1

0
gbd,θ )(C.5)

−
1
4

0
g 01 0

g cd(
0
gcd,1

0
gab,θ +

0
gcd,θ

0
gab,1)+

∗

Rab

+
1
2
(

1
g 0c 0

gab,θ ),c̄ +
1
2

1
g 0c 0

gab,θ (
0
g 01 0

g01,c̄ +
1
2

0
g de 0

gde,c̄)

+
1
2
(

1
g 0c 0

gab,c̄),θ +
1
2

1
g 0c 0

gab,c̄ (
0
g 01 0

g01,θ +
1
2

0
g de 0

gde,θ )

+
1
2
(

0
g 01 0

gac
1
g c

1,b̄),θ +
1
2

0
g 01 0

gac
1
g c

1,b̄(
0
g 01 0

g01,θ +
1
2

0
g de 0

gde,θ )

+
1
2
(

0
g 01 0

gbc
1
g c

1,ā),θ +
1
2

0
g 01 0

gbc
1
g c

1,ā(
0
g 01 0

g01,θ +
1
2

0
g de 0

gde,θ )

−
1
2

0
g 01 0

g cd 0
gac,θ

1
g1b,d̄ +

1
2

0
g cd 1

g 0e 0
gac,θ (

0
gbe,d̄ −

0
gbd,ē)

−
1
2

0
g 01 0

g cd 0
gbc,θ

1
g1a,d̄ +

1
2

0
g cd 1

g 0e 0
gbc,θ (

0
gae,d̄ −

0
gad,ē)

−
1
2
(

1
g 0

c

1
g 0c 0

gab,θ ),θ−
1
g 0

c

1
g 0c 0

gab,θ (
0
g 01 0

g01,θ +
1
2

0
g de 0

gde,θ )

+
1
2

1
g 0

e

1
g 0e 0

g cd 0
gac,θ

0
gbd,θ −

1
2

0
g 01 0

gac
1
g c

1,θ

0
g 01 0

gbd
1
g d

1,θ .

In (C.5),

∗

Rab=
1
2

(
0
g cd(

0
gbd,ā +

0
gad,b̄ −

0
gab,d̄)

)
,c̄

+
1
2

0
g cd(

0
gbd,ā +

0
gad,b̄ −

0
gab,d̄)(

0
g 01 0

g01,c̄ +
1
2

0
g e f 0

ge f,c̄)

−(
0
g 01 0

g01,ā +
1
2

0
g cd 0

gcd,ā),b̄ −
1
2

0
g 01 0

g01,ā
0
g 01 0

g01,b̄

−
1
4

0
g ce(

0
gde,ā +

0
gae,d̄ −

0
gad,ē)

0
g d f (

0
gb f,c̄ +

0
gc f,b̄ −

0
gcb, f̄ ),
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denotes the components of the Ricci tensor of the zero order metric
0
gαβ regarded

as a function of the variables ηa only.

Appendix D: Variational principle

The variational principle for the vacuum Einstein field equations is

δS = 0, S =

∫
L d4x,(D.1)

L = R
√

− det g,

where R is the scalar curvature,

R = gαβRαβ .

Using (A.1) and (3.8) to expand the scalar curvature, we obtain

R =
1
ε4

−4
R +

1
ε3

−3
R +

1
ε2

−2
R +O(ε−1),

−4
R=

0
g αβ

−4
R αβ,

−3
R=

0
g αβ

−3
R αβ −

1
g αβ

−4
R αβ,

−2
R=

0
g αβ

−2
R αβ −

1
g αβ

−3
R αβ +

2
h αβ

−4
R αβ .

For a metric of the form (B.3), we find that
−4
R= 0,
−3
R= 0,(D.2)
−2
R= 2

0
g 01 −2

R 01 +
0
g ab −2

R ab −2
1
g 0a −3

R 0a +
2
h 00 −4

R 00 .

We use (D.2) in (D.1) and expand the result with respect to ε. This gives

L =
1
ε2

L (−2)
+ O(ε−1),

with

L (−2)
=

{
2

−2
R 01 +

0
g01

0
g ab −2

R ab −2
1
g a

1

−3
R 0a +

2
h 0

1

−4
R 00

} √
det

0
gab.(D.3)

We make the change of variables in the integration

d4x = du dv dy dz = ε3dθ dv dη dz,

and omit the integration with respect to the parametric variable z. The leading
order asymptotic variational principle then becomes

(D.4) δS(1) = 0, S(1) =

∫
L (−2) dθ dv dη.



34 G. ALı̀ AND J. K. HUNTER

Variations of S(1) with respect to the second order metric component
2
g11 give the

constraint (3.12). Variations with respect to the first order metric components
1
g0a

give the equation (3.13). Variations with respect to
0
g01 and

0
gab give the evolution

equations (3.14).
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[33] Serre, D., Oscillations non-linéaires de haute frquence; dim = 1, in Nonlinear Partial Differ-
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