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Abstract. We numerically solve a problem for the unsteady transonic small
disturbance equations that describes the diffraction of a weak shock into an
expansion wave. In the context of a shock moving into a semi-infinite wall, this
problem describes the interaction between the reflected part of the shock and
the part that is transmitted beyond the wall. We formulate the equations in
self-similar variables, and obtain numerical solutions using high resolution finite
difference schemes. Our solutions appear to show that the shock dies out at the
sonic line, rather than forms at an interior point of the supersonic region.
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1 Introduction

In classical numerical simulations of steady transonic flow over an airfoil, the shock
which terminates the supersonic region appears to form exactly on the sonic line (see,
for example, [1, 3, 5, 6, 7]). However, high-resolution numerical calculations done on
this problem and a corresponding situation in unsteady two-dimensional flow in [8]
show that the shock actually forms at a point where the underlying system (steady
or self-similar) is strictly hyperbolic, and the flow is supersonic. The calculations in
[8] show that the shock forms when compressive characteristics reflect off the sonic
line and converge inside the supersonic, hyperbolic region. This mechanism of shock
formation had originally been proposed by Guderley in [2].

The numerical experiments in [8] provide a direct observation of Guderley’s pro-
posed supersonic shock formation. Those experiments suggest that shock formation
generically occurs inside the supersonic region and away from the sonic line, although
it may be possible in specific situations to cause the characteristics to converge exactly
on the sonic line.

In this paper we numerically study a problem related to the formation of a shock
described above: it is the disappearance of a shock that diffracts self-similarly into an
expansion wave. We express the governing equations in self-similar variables, and we
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Figure 1.1: A weak shock moving downwards at slightly supersonic velocity, into and
past a semi-infinite wall. Solid lines are shocks; dotted lines are expansion waves.

solve the self-similar equations using high-resolution schemes. We obtain solutions that
are highly refined in the area of the shock disappearance point. In view of the numerical
solutions for shock formation in [8], our solutions for shock disappearance are perhaps
surprising: they appear to show that the shock disappears exactly on the sonic line,
and not at a supersonic point.

We now describe the physical basis for the shock diffraction problem we solve here,
which was introduced in [4]. Consider a weak plane shock moving at Mach number M
slightly larger than 1 into a semi-infinite wall, as in Fig. 1.1. This problem is self-similar,
so the solution depends only on (x/t, y/t), where x and y are spatial coordinates and t
is time. The incident shock diffracts around the wall, and an expansion wave (dotted
line) propagates behind it. The reflected shock also diffracts around the wall, meeting
the diffracted expansion at the point S. At S, there is a continuous transition from
shock wavefront to expansion wavefront, and one of the main questions concerning this
transition point is whether or not it is sonic. It is the solution near S that we seek.

An asymptotic matching analysis, described in [4], shows that the solution near a
point such as S is given in the weak shock limit by the solution of an “inner” shock-
diffraction problem for the unsteady transonic small disturbance equations (UTSDE).
This inner problem consists of the UTSDE together with matching data, and is given in
Section 2 (equations (2.1)–(2.2)). In this paper, we present numerical solutions of this
inner shock-diffraction problem for the UTSDE computed in self-similar coordinates.
There are several advantages to using our self-similar formulation rather than the stan-
dard unsteady formulation of the equations. First, solving the problem in self-similar
form enables local grid refinement procedures to be implemented relatively easily, be-
cause solutions of the self-similar equations are stationary. As well, a grid continuation
procedure is possible, whereby solutions are partially converged on coarse grids, inter-
polated onto more refined grids, and ultimately fully converged on the most refined
grid. Finally, numerical evidence ([9]) suggests that shocks are captured more sharply
in numerical solutions of the self-similar equations than in solutions of the unsteady
equations. We use extreme local grid refinement in order to determine the nature of
the flow (sonic or supersonic) at the shock disappearance point S. Our motivation for
solving a problem for the UTSDE valid only near the shock disappearance point, rather
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than solving a problem for the full Euler equations on the global domain indicated in
Fig 1.1, is that, for the same computational cost, we can obtain a much more finely
resolved solution near the area of interest - the shock disappearance point - than we
could using the Euler equations.

The organization of the rest of the paper is as follows. In Section 2, we describe the
shock-diffraction problem for the UTSDE, and in Section 3 we outline the numerical
method used to solve this problem. In Section 4 we present our numerical solutions,
which provide evidence that the shock disappearance point is a sonic point. In Section 5,
we discuss questions raised by these solutions, and compare them to the numerical
solutions for the formation of shocks in [8]. In Section 6 we summarize our conclusions.

2 The shock-diffraction problem for the UTSDE

The shock-diffraction problem for the UTSDE consists of the UTSDE,

ut +

(
1

2
u2

)
x

+ vy = 0,

uy − vx = 0,

(2.1)

in t > 0, with the initial, or matching, condition

u ∼ αy
t

√
−
(
x

t
+
y2

4t2

)
as

x

t
+
y2

4t2
→ −∞,

u = 0 for
x

t
+
y2

4t2
sufficiently large and positive.

(2.2)

Here, the variables u(x, y) and v(x, y) are proportional to the x and y velocity com-
ponents, respectively. The small positive parameter α is proportional to the strength
of the wave. Solutions of (2.1)–(2.2) asymptotically describe, in the weak shock limit,
solutions of the full Euler equations near a point where a shock propagates into a con-
stant state and diffracts into an expansion wave. See [4] for details of the formulation
of this problem.

The problem (2.1)–(2.2) is self-similar, so its solution depends only on ξ = x/t and
η = y/t. Writing (2.1) in terms of ξ and η we get

−ξuξ − ηuη +

(
1

2
u2

)
ξ

+ vη = 0,

uη − vξ = 0.

(2.3)

The initial condition (2.2) in the unsteady problem (2.1)–(2.2) becomes a far field
boundary condition in the corresponding self-similar formulation of the problem. Writ-
ing (2.2) in terms of ξ and η gives

u ∼ αη
√
−(ξ +

η2

4
), v ∼ −2

3
α(−(ξ +

η2

4
))3/2 as ξ + η2/4→ −∞. (2.4)
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The far field behavior of v given in (2.4) follows from the far field behavior of u and
the second equation in (2.3). We also have from (2.2) that

u = 0, v = 0 for ξ + η2/4 sufficiently large and positive. (2.5)

Equations (2.3)–(2.5) are a formulation of the shock-diffraction problem in self-
similar form. The data in boundary condition (2.4) exactly satisfies the linearization
of (2.3). However, this data is continuous and has a square-root singularity at the
wavefront, which in the linearized approximation is located at ξ + η2/4 = 0. This is
qualitatively incorrect since the solution of the nonlinear problem has a discontinuity
across a shock at the wavefront. The following “nonlinearized” far field boundary data,
which has the correct qualitative behavior at the wavefront (located in the nonlinearized
approximation at ξ+η2/4 = 0 for η < 0 and ξ+η2/4 = 3α2η2/4 for η > 0), was obtained
in [4]:

u ∼ αη
√
−(ξ +

η2

4
) + α2η2 + α2η2,

v ∼ −2

3
α

(√
−(ξ +

η2

4
) + α2η2 + αη

)3

.

(2.6)

Equations (2.6) provide more accurate far field matching data than the linearized
matching data (2.4). We will refer to equations (2.3), (2.5)–(2.6) as the shock-diffraction
problem in self-similar form.

Equation (2.3) is hyperbolic when u < ξ + η2/4, and elliptic when u > ξ + η2/4. It
changes type across the sonic line

ξ +
η2

4
= u(ξ, η). (2.7)

For the numerical computations, it is convenient to define a “sonic function”

S = u− (ξ + η2/4). (2.8)

When S < 0 the flow is supersonic, and when S > 0 the flow is subsonic.

3 The Numerical Method

The numerical method we use was developed in [8, 9] specifically for solving self-similar
problems for the UTSDE. The method uses special self-similar variables,

r =
x

t
+
y2

4t2
, θ =

y

t
, τ = log t,

ũ = u− r, ṽ = v − 1

2
θu.

(3.1)

We note that the sonic line (2.7) is a parabola in the (ξ, η)-plane for a constant solution
of (2.3) with, say, u = u0 (for non-constant solutions the sonic line has some more
complicated shape.) The coordinates in (3.1) have the effect of straightening the sonic
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line: for a constant state with u = u0, (2.7) is a vertical line in the (r, θ)-plane with
equation r = u0. Writing (2.1) in terms of the variables in (3.1), and introducing a
potential φ(r, θ, τ) such that

ũ(r, θ, τ) = φr, ṽ(r, θ, τ) = φθ, (3.2)

one gets

φrτ +

(
1

2
φ2
r

)
r

+ φθθ +
3

2
φr +

1

2
r = 0. (3.3)

Equation (3.3) forms the backbone of the numerical method. The advantage of the
self-similar formulation (3.3) is that it can be solved using standard transonic finite
difference techniques, in contrast to the situation for the usual self-similar formulation,
given by (2.3). To illustrate this, the plots in Fig. 3.1(a) and (b) depict grid stencils
indicating the mesh points used in a standard first-order upwind discretization of equa-
tions (2.3) and (3.3), respectively. (The discretization of (2.3) is with respect to ξ and η,
while the spatial discretization of (3.3) is with respect to r and θ.) Both sets of stencils
are plotted in the (ξ, η)-plane, and the parabolas in these plots are the sonic line (2.7)
for a constant state. In these plots, upwind stencils are plotted at several sample mesh
points in the supersonic portion of the flowfield. The characteristics of each family
(which are tangent to the sonic line) are drawn through these sample points, labeled
A,B, and C. In Fig. 3.1(a), at mesh point A the analytical domain of dependence,
bounded by the two incoming characteristics, is contained in the numerical domain
of dependence, bounded by the vertical segments, so the CFL condition is satisfied
and the upwind discretization is stable. At mesh points like B and C, however, the
analytical domain of dependence contains points outside of the numerical domain of
dependence. Hence, the CFL condition is violated, and the standard upwind scheme
for (2.3) is unstable (although it might be possible to design a stable scheme using some
more complicated choice of stencil mesh points). On the other hand, in Fig. 3.1(b),
because the grid is discretized with respect to the parabolic coordinate r, as indicated,
the CFL condition is respected at all points in the supersonic portion of the flowfield.
Hence, the upwind scheme for (3.3) is stable.

A crucial feature of the numerical method is the use of local grid refinement in
the area of interest - here, the shock disappearance point. We build a sequence of
successively refined, nonuniform, logically rectangular finite difference grids. Each grid
uses uniform grid spacing inside a small box surrounding the shock disappearance point.
Outside of this box, the grid is exponentially stretched in both grid directions. The
uniform grid region of each grid in the sequence of grids is refined by a factor of two
in relation to the uniform grid region of the preceding grid. We use grid continuation,
in which solutions obtained on coarse grids are interpolated onto more refined grids
and converged on those grids. We continue the refinement process until additional
refinement results in no observable change in the solution near the shock disappearance
point, indicating grid convergence. Details of our interpolation procedure, and further
discussion of our grid continuation and grid refinement strategies, are given in [8].

The basic scheme for solving (3.3) is as follows. We define a non-uniform grid ri in
the r-direction and θj in the θ-direction, where ri+1 = ri + ∆r+

i and θj+1 = θj + ∆θ+
j .
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(a) Upwind scheme for (2.3) (unstable) (b) Upwind scheme for (3.3) (stable)

Figure 3.1: Stability of upwind differencing in the supersonic region. In (a), grid
stencils for upwind discretization of the standard self-similar UTSDE (2.3), and in (b),
stencils for upwind discretization of (3.3). The parabola in (a) and (b) is the sonic line
(2.7) corresponding to a constant state. Flow to the right of the sonic line is supersonic,
and flow to the left is subsonic.

Denoting an approximate solution of (3.3) by φni,j ≈ φ(ri, θj , n∆τ), where ∆τ is a fixed
time step, we discretize (3.3) in artificial time τ using

φn+1
r − φnr

∆τ
+ f(φr)

n
r + φn+1

θθ +
3

2
φn+1
r +

1

2
r = 0, (3.4)

where the flux function f is defined by

f(ũ) =
1

2
ũ2. (3.5)

To make the notation simpler, we define discrete pseudo-velocities:

ũi,j =
φi+1,j − φi,j

∆r+
i

, ṽi,j =
φi,j − φi,j−1

∆θ−j
,

where

∆r+
i = ri+1 − ri,

∆θ±j = ±(θj±1 − θj).

Then our discrete approximation to (3.3) is

ũn+1
i,j − ũni,j

∆τ
+

F (ũni,j , ũ
n
i+1,j)− F (ũni−1,j , ũ

n
i,j)

∆r+
i

+
ṽ n+1
i,j+1 − ṽ

n+1
i,j

∆θ+j +∆θ−j
2

+
3

2
ũn+1
i,j +

1

2
ri = 0. (3.6)
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In this equation, F is a numerical flux consistent with the flux f in (3.5). In our
computations, we use a second-order minmod-limited numerical flux (see [9] for details).

In terms of the potential φ defined in (3.2), the boundary conditions (2.5)–(2.6)
become (see [4])

φ(r, θ) =


α2rθ2 − 2

3α
4θ4 − 2

3αθ(−r + α2θ2)3/2 − 1
2r

2, θ < 0, r ≤ 0,
−r2/2, θ < 0, r > 0,

α2rθ2 − 2
3α

4θ4 − 2
3αθ(−r + α2θ2)3/2 − 1

2r
2, θ > 0, r ≤ 3α2θ2/4,

−r2/2, θ > 0, r > 3α2θ2/4.
(3.7)

In order to solve the shock-diffraction problem in self-similar form (equations (2.3),
(2.5)–(2.6)), we solve equation (3.6) subject to boundary condition (3.7). Because the
problem we are solving is self-similar, the time derivative term in (3.6) vanishes as
τ → +∞ (the same is true for (3.3), from which (3.6) was obtained by discretization.)
Hence, we solve (3.6) by iterating a solution forward in artificial time τ until it converges
to a steady state. We sweep from right to left in r, consistent with the direction of
propagation of the characteristics for (2.3), which is in the −r direction. Additional
discussion of the numerical method is given in [8, 9].

4 Numerical Results

We computed solutions of (2.3), (2.5)–(2.6) for α equal to 0.2, 0.3, and 0.4. Figure 4.1
gives an overall picture of the solution for each of the three values of α. The plots on
the left of Fig. 4.1 are contour plots of u as a function of (x/t, y/t). The plots on the
right present an alternate depiction of u as a function of (x/t, y/t), with u plotted as
a surface z = u(x/t, y/t) instead of as contours. The dashed red line in the plots in
(a), (c) and (e) is the sonic line (2.7). Flow to the right of the sonic line is supersonic,
and flow to the left of it is subsonic. The u-contour levels are indicated on the contour
plots. The computational domain has curved left and right boundaries because of the
coordinates used in (3.1).

The plots in Fig. 4.1 show that there is a shock located at the sonic line for y/t
greater than some given value (which is a function of α) that we will call (y/t)∗, and an
expansion wave at the sonic line for y/t < (y/t)∗. At y/t = (y/t)∗, the shock appears
to reach zero strength and turn continuously into an expansion wave. For example,
for α = 0.3, from the plots in (c) and (d) the shock appears to reach zero strength at
a value of (y/t)∗ close to −2. For a fixed value of α the shock strength increases as
y/t increases, as shown. Additionally, as α increases, the shock wavefront increases in
strength, and moves further to the right (this is the reason that the right numerical
boundary for α = 0.4 was extended further to the right than it was for the lower values
of α, as shown in Fig. 4.1(e)).

In order to determine more accurately where the shock reaches zero strength, in
Fig. 4.2(a) we plot u-contours and the sonic line in a small region near the apparent
shock disappearance location, for α = 0.3. In this region local grid refinement was used.
The locally refined grid size and the u-contour spacing are given in the figure caption.
Because the state ahead of the sonic line is constant with u = 0, and u jumps from
this value ahead of the shock to positive values behind it, the point where the shock
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Figure 4.1: Contour plots ((a), (c), and (e)) and surface plots ((b), (d), and (f)) of
u for increasing values of α. The dashed red line in (a), (c), and (e) is the sonic line.
The nearly vertical jump in the surface plots on the right is the shock.
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Figure 4.2: In (a), a contour plot of u close to the shock die out point, α = 0.3.
The flow is supersonic to the right of the sonic (dashed) line, and subsonic to the
left; the u = 0 contour is indicated on the plot. The u-contour spacing is 0.015. The
region shown contains the refined uniform grid, which has 3000 × 3000 grid points
(∆(x/t) = ∆(y/t) = 1 × 10−5). In (b), cross sections of the sonic function S taken
through the shock at y/t = −1.5, y/t = −1.75, and y/t = −2. The high-resolution
numerical method captures the shock in one to two points, as shown.

disappears is located approximately at the intersection of the u = 0 contour with the
sonic line. This contour is indicated on the plot, and, from the plot, the point where
the shock dies out appears to be located at (y/t)∗ ≈ −2.2. In Fig. 4.2(b) we plot cross
sections of the sonic function S (equation (2.8)) taken horizontally through the shock
at three values of y/t slightly above this shock disappearance point. As the shock is
crossed from right to left in the direction of flow, S jumps from negative (supersonic)
values to positive (subsonic) values, as shown, so the shock is a transonic shock at
these locations. The shock strength, as measured by the jump in S, is quite weak at
y/t = −2.0, as indicated. However, these cross sections do not show what happens
very close to the point where the shock disappears, which occurs at a lower value of
y/t than those shown here.

The plots in Figs. 4.1–4.2 appear to show that the shock dies out at a point on
the sonic line, rather than inside the supersonic region. In order to determine whether
the shock dies out exactly on the sonic line, in Fig. 4.3 we plot cross sections of the
sonic function S taken horizontally across the shock at four closely spaces values of y/t
very close to the apparent shock disappearance location (y/t)∗ ≈ −2.2. Proceeding in
the direction of decreasing y/t, the shock profiles at y/t = −2.2,−2.225, and −2.25
resemble those in Fig. 4.2(b), and indicate that the shock is transonic (and very weak)
at these locations. At y/t = −2.275, as shown, the shock has almost completely
disappeared. (For smaller values of y/t, the jump in S completely disappeared, being
replaced by a smooth compression which remained centered on S = 0.) Because the
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Figure 4.3: Cross sections of the sonic function S taken horizontally across the shock
very close to the apparent disappearance point. The shock appears to die out at
y/t ≈ −2.275, on the sonic line.
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Figure 4.4: Contour plots of u showing the effect of use of (a) linearized, and (b)
nonlinearized matching data. The contour spacing is 0.2 in both (a) and (b), and both
solutions were computed using a uniform grid with 1000 × 1000 points. The dashed
red line is the sonic line.
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jump in S at y/t = 2.275 is from a supersonic to a subsonic value, the shock dies out
on the sonic line, at approximately this location.

Finally, it was pointed out in Section 2 that the “nonlinearized” matching data
(2.6), which we used in our computations, provides more accurate far-field matching
data than the linearized data (2.4). In Figure 4.4, we illustrate the effect on the solution
of the use of this nonlinearized matching data. Figure 4.4(a) shows u-contours from
a computation using (2.4) as the numerical boundary condition, with α = 0.3. For
comparison, the solution computed using (2.6) as the boundary condition is shown
in the plot in (b) (this solution was depicted earlier in Fig. 4.1(c)). These solutions
were computed using identical grids, and the contour levels are shown on the plots. The
solutions are qualitatively similar, but the values of u at identical locations (x/t, y/t) are
different. The shocks in the two solutions are also in different locations. Additionally,
the sonic (dashed) line in the solution computed using the linearized data does not exit
the numerical domain smoothly, but reflects off the bottom boundary. This appears to
be caused by a mismatch between the actual solution and the solution enforced at the
boundary by the condition (2.4).

5 Discussion

These numerical results, showing the disappearance of a shock on a sonic line, con-
trast with the numerical solutions of steady and self-similar transonic flow problems in
[8], which show the formation of shocks away from the sonic line. We illustrate this
contrasting behavior in Fig. 5.1. The plot in Fig. 5.1(a) shows a numerical solution
of the steady transonic airfoil problem for the steady TSDE, as obtained in [8]. The
plot shows u-contours and the sonic line in a region containing the supersonic bubble
and terminal shock over the airfoil, and illustrates that the shock appears to form on
or very close to the sonic line. The plot in (b) shows cross sections of a sonic function
for the steady TSDE taken across the shock near the apparent formation point (as
indicated, negative values of this sonic function indicate supersonic flow and positive
values indicated subsonic flow). The y locations at which the cross sections were taken
are indicated on the plot in (b). These cross sections indicate that the shock forms at
y ≈ 0.230. Further, cross sections taken very close to this value of y contain jumps
in sonic function from supersonic to supersonic values, as shown, which indicates that
the shock forms in the supersonic region. Similarly, the plot in Fig. 5.1(c) depicts a
numerical solution of a self-similar problem for the UTSDE describing the interaction
of diverging rarefactions. Shown in this plot are u-contours and the sonic line close to
the region where a shock forms, and again, the shock appears to form on the sonic line.
The plot in (d) shows cross sections of the sonic function S for the self-similar UTSDE
taken across the shock near its formation point. The cross sections taken very close to
the actual formation point located at y/t ≈ 1.738 contain jumps in S from supersonic
to supersonic values. This again indicates that the shock forms at a supersonic point,
away from the sonic line. The contrast between the shock profile plots in Fig. 5.1(b,d),
and the one in Fig. 4.3, is striking.

In obtaining the final, highly refined solution shown in Figs. 4.2(a) and the accom-
panying shock profile plots in Figs. 4.2(b)-4.3, we computed solutions on successively
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Figure 5.1: Numerical solutions for two problems for shock formation, as obtained
in [8]. The plot in (a) depicts a solution of the steady TSDE for transonic flow over
an airfoil at M∞ = 0.8. Shown are u-contours and the (dashed) sonic line; the u-
contour spacing is 0.03. The plot in (b) shows cross sections of the sonic function taken
across the shock near the formation point; these profiles show that the shock begins
between y = 0.230 and y = 0.2225, in the supersonic region. The plot in (c) shows
u-contours and the sonic (dashed) line depicting a solution of a self-similar problem
for the UTSDE describing diverging rarefactions; the u-contour spacing is 0.0075. The
plot in (d) shows cross sections of sonic function S near the apparent shock formation
point, showing that the shock forms at y/t ≈ 1.738 in the supersonic region. The
locally refined grids in these two solutions have grid spacings of ∆x = ∆y = 1× 10−5

in (a), and ∆(x/t) = ∆(y/t) = 5× 10−6 in (c).
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refined grids, interpolated those onto more refined grids, and continued the process un-
til no further change was observed in the solution near the shock disappearance point.
This suggests that the final solution shown is grid converged. In addition, the resolu-
tion of the most refined grid used in the computation in this paper is comparable to
the resolution of the locally refined grids used in the computations for shock formation
in [8] (these grid resolutions are given in the captions for Figs. 4.2 and 5.1). Hence, it
appears unlikely that further mesh refinement in this problem will result in the shock
disappearance point moving off the sonic line and into the supersonic region, but we
cannot rule out such a possibility.

We found that the use of the “nonlinearized” matching data in (2.6) as a numerical
boundary condition gave results that were significantly different, and better, than those
obtained using the linearized matching data in (2.4). The two solutions depicted in
Fig. 4.4(a–b), which were computed on identical grids and at identical parameter values,
but using the two different boundary conditions, illustrate several of the differences.
First, the nonlinearized matching data displaces the shock forwards in relation to its
location given by the linearized data, as illustrated (see (3.7)). We also found that
the wavefronts (shock or expansion) exited the numerical boundaries smoothly when
the noninearized data was used, but that sometimes there were reflections when the
linearized data was used. This is illustrated in the plot in (a), which shows a reflected
wave behind the expansion wavefront at the bottom boundary. In addition, there were
differences in the values of (u, v) in the subsonic portion of the flowfields, as illustrated
by the different contour colors in the two plots. This is due to the fact that the two
boundary conditions yield different values of (u, v) on the numerical boundaries, and
(2.3) is elliptic in this part of the numerical domain. We also found that solutions
converged with no difficulty when the nonlinearized boundary condition was used. On
the other hand, when (2.4) was used, solutions would sometimes fail to converge, or
converge very slowly. All of these effects appear to be due to the fact that (2.6) provides
more accurate far-field matching data than (2.4).

We found that computing solutions using sufficiently large values of α was numer-
ically unstable, and we were unable to obtain solutions for α larger than 0.45. This
instability is not relevant for the original weak-shock diffraction problem, which cor-
responds to the limit α → 0. Nevertheless, the parameter α cannot be removed from
the UTSDE problem by rescaling, and these numerical results raise the question (not
addressed here) of whether bifurcations from the small-α solution occur as α increases,
conceivably leading to the non-existence of solutions when α is sufficiently large.

6 Conclusion

We have presented numerical solutions of a problem describing a shock that propagates
into a constant supersonic state and diffracts self-similarly into an expansion wave.
Our solutions provide evidence that the shock disappears on the sonic line. This is
in contrast to solutions for shock formation in steady transonic flows and self-similar
flows by compression of characteristics reflected off the sonic line, which show that the
shock typically forms inside the supersonic region.
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