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Abstract

We use a Hamiltonian formalism to derive equations for weakly non-
linear scale-invariant waves. We apply the results to nonlinear surface
waves in elasticity and magnetohydrodynamics that satisfy nonlocal
generalizations of the inviscid Burgers equation.

1 Introduction

A wave motion is scale-invariant if it is governed by equations of motion and
boundary conditions which are invariant under the space-time rescaling

T — Az, t— At (1.1)

for any A > 0. Scale-invariance implies that the linearized dispersion relation
between the wavenumber k and the frequency w(k) of a unidirectional wave

is given by
w(k) = ck, (1.2)
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where the constant c is the linearized wave speed. Thus, scale-invariant wave
motions are nondispersive. Since different Fourier components propagate at
the same velocity, a linear scale-invariant wave can have an arbitrary profile.

Three waves with wavenumbers {ki, ko, k3} satisfy the three-wave reso-
nance condition for the dispersion relation (1.2) when

kl = k2+k37

since the corresponding equation for the frequencies w(k;) holds automat-
ically. Nonlinear effects are therefore particularly strong in scale-invariant
waves, and the resonant interaction of the harmonics within the wave leads
to a progressive distortion of the spatial wave profile.

Examples of nonlinear scale-invariant waves include bulk waves, such as
sound waves in compressible fluids, elastic solids, and magnetohydrodynamic
plasmas. These waves are governed by hyperbolic conservation laws, and a
suitable spatial waveform typically satisfies an inviscid Burgers equation.

Hyperbolic surface waves are scale-invariant when the geometry of the
surface along which they propagate and the boundary conditions on the
surface do not define a length scale. This is the case for nonlinear Rayleigh
waves on a half-space in elasticity ([1]-[10]), nonlinear elastic waves on
wedges [11, 12], and nonlinear surface waves on a planar discontinuity, such
as a compressible vortex sheet [13] or a tangential discontinuity in mag-
netohydrodynamics [14]. If the speed of the surface wave is less than the
speed of a bulk wave, then the self-interaction of the wave is nonlocal in
the “subsonic” reference frame moving with the wave. A suitable spatial
waveform then typically satisfies a nonlocal generalization of the inviscid
Burger’s equation [15].

In this paper, we study the general form of asymptotic equations for
weakly nonlinear, scale-invariant Hamiltonian waves. We illustrate the re-
sults with a discussion of nonlinear sound waves, Rayleigh waves, surface
waves, and wedge waves. The possibility of spatially nonlocal interactions
makes the structure of the equations richer than one might expect. The
Hamiltonian structure of the equations for nonlinear Rayleigh waves was
derived explicitly by Hamilton et. al. [3], and the present paper puts their
work in a general context. In particular, we use dimensional analysis to
show that the form of the Hamiltonian depends on the dimension of the
space of wavenumber vectors relative to the dimension of the space in which
the waves propagate.



2 Scale-invariant Hamiltonian waves

We may describe a Hamiltonian wave field by a set of complex canonical
variables [16, 17],

{a(k),a*(k) ke Rd}.

We denote the dimension of wavenumber space by d and the dimension of
physical space by n. For example, in three-dimensional space (n = 3), we
have d = 3 for bulk waves, d = 2 for surface waves, and d = 1 for wedge
waves.

The Hamiltonian H ({a(k),a*(k)}) is a real-valued functional of the
canonical variables. The complex canonical form of Hamilton’s equations
® M
da*(k)’

where §H /6a*(k) denotes the functional derivative of H with respect to
a*(k), the t-subscript denotes a derivative with respect to time ¢, and we do
not explicitly show the time dependence of a.

For weakly nonlinear waves, the Hamiltonian /4 may be expanded as

iay (k) = (2.1)

H=Ho+Hs+...,

where H,, is a homogeneous function of degree m in the canonical variables.
Diagonalization of the quadratic part of the Hamiltonian by means of a
canonical transformation gives

Hy = / w(k)a(k)a* (k) dk, (2.2)

where w(k) is the frequency of the wave with wavenumber k.
For the nondispersive, unidirectional waves that we study here, all three-
wave resonant interactions are of the “decay” type,

w(kl) = w(kz) + w(k3), ki = ko + k3. (2.3)

After the elimination of nonresonant terms by a near identity canonical
transformation [17], the cubic Hamiltonian H3 may be written in the form

/ / / 5 (ki — ko — ka) [T (k1, ko, k3) a* (k1) a (ka) a (ks)
+T* (k1,ko,k3) a (k1) a* (ko) a* (k3)] dkidkodks, (2.4)



where the three-wave interaction coefficient T satisfies the symmetry condi-
tion

T(k17k27k3) =T(k17k31k2)' (25)
The frequency w(k) has dimension
v
k)] =—
wio] =¥,

where V denotes a velocity dimension and L denotes a length dimension. For
a scale-invariant wave motion, in which the system has one or more charac-
teristic velocities but no characteristic length or time scales, the wavenumber
k provides the only available length-scale, so we must have

w(k) = e(k) k],
where ¢(k) is the wave speed in the direction k = k/|k|.
The Hamiltonian function is an energy, and therefore has dimension

[H] = MV?,

where M denotes a mass dimension. Since k € R?, integration with respect
to k has dimension L~¢. It follows from (2.2) that the dimension of the
canonical variable a(k) is

[a(k)] = (MV)/2LE+1/2,

Using this result in (2.4), we find that the dimension of the three-wave
interaction coefficient 7" is given by

v 172
. (d—3)/2
(7] ( M) L6972,

We suppose that the mass dimension M of the medium is set by a density

R = ML™". We then have
v /2 »
7] = (E) v, (2.6)

n—d+3
—
For scale-invariant waves, Eq. (2.6) implies that the interaction coefficient
T is a homogeneous function of k of degree v, meaning that for all A > 0 we
have

where

(2.7)

V=

T (Aky, Ak2, Aks) = AT (k1, ko, ks) . (2.8)



For example, in the case of bulk waves, we have d = n and v = 3/2. In the

case of waves that propagate along a surface of codimension one, such as

surface waves in three-dimensional space, we have d =n — 1 and v = 2.
The inverse Fourier transform ¢(x) of a(k),

o) = [ alk)e™> dk,
is a spatial waveform. This waveform has dimension
[p(0)] = (RV)!/2 L.

A related scale-invariant spatial wave field u(x) is given by
w(x) = / k[~ a (k)™ dk, (2.9)

which has the length-independent dimension (RV)'/2. Other scale-invariant
spatial waveforms may be constructed from Hilbert or Riesz transforms of

u(x).
3 Canonical equations

We now consider a single, unidirectional wave mode, in which case the
wavenumber k is restricted to positive real values. The variables

{a(k) : k > 0}

are complex amplitudes of the positive frequency components of the wave
field, and the conjugate variables

{a*(k) : k > 0}
are complex amplitudes of the negative frequency components.

Approximating the Hamiltonian # up to cubic terms, and carrying out
one integration in (2.4), we have

H =/0 cha(k)a* (k) dk +/0 /0 Tk + £, k, €)a* (k + €)a(k)a(€) dkde
+/ / T*(k + &, k, &)a(k + £)a” (k)a* (€) dhde. (3.1)
0 0



Computing the functional derivative of # with respect to a*(k), where & > 0,
we find that Hamilton’s equation (2.1) is

k
iau(k) = cka(k) + /0 T(k, k — £,€)a(k — £)a(€) dt
+2 /OOO T*(k + &k, )a(k + £)a™(€) de. (3.2)

It is convenient to rewrite Eq. (3.2) as a convolution equation for
{a(k) : —00 < k < o0},
where a(—k) = a*(k), of the form

iar(k) = cka(k) +sgnk /00 Ak —¢&,8)a(k —€)a(€) dE. (3.3)
The factor
1 k>0,
sgnk = 0 k=0,
-1 k>0,

is included to simplify the subsequent equations.
We assume, without loss of generality, that

Ak, &) = A&, k). (symmetry) (3:4)
The condition a(—k) = a*(k) implies that
A(=Fk,=&) = A*(k,€). (reality) (3.5)

We will show that Eq. (3.3) can be written in the canonical Hamiltonian form
(3.2) if and only if A satisfies, in addition to (3.4) and (3.5), the condition

Ak +&,-€) = A*(k,§). (Hamiltonian) (3.6)

This general symmetry property of the interaction coefficients in Hamil-
tonian systems is well-known [16], and was noted previously for nonlinear
Rayleigh waves in Refs. [1, 2, 10].

Replacing a(k) by a*(—k) for £ < 0 and using the symmetry of A, we
find that for & > 0 Eq. (3.3) implies

k
iau(k) = cha(k) + /0 A(k — €,€)alk — €)a(€) d
+2 /0 T Akt £, —€)alk + £)a* () de. (3.7)
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A comparison of (3.7) with (3.2) shows that A is related to T' by
Ak, &) =T(k+&,k,8), Alk+&,-8) =T (k+&,k,8)  for k,€>0. (3.8)
It follows from (3.4), (3.5), and (3.8) that A satisfies (3.6) for all (k,&) € R2.

Finally, Egs. (2.8) and (3.8) imply that, for scale-invariant wave motions,
the kernel A satisfies the scaling condition

AAE,NE) = NA(K,€), (scale-invariance) (3.9)

for all A > 0. We discuss the transformation properties of A in the (k,¢)-
plane in greater detail in Section 4.
The Hamiltonian # in (3.1) may be written in terms of A as

1 oo
H = 5/ clkla(k)a(—Fk) dk

SR
3 /_m /_oc A(k,)a(—k — )a(k)a(€) dkde.  (3.10)

For later use, we note a simple transformation of (3.3) that leads to an
equivalent equation of the same form. Let

b(k) = [a+ Bo(k)] a(k), (3.11)
where o, B are arbitrary real constants, not both of which are zero, and
o(k) =isgnk. (3.12)

Equations (3.3) and (3.11) imply that b(k) satisfies

iby (k) = ckb(k) + sgn k /_oo T(k — £,6)b(k — £)b(E) d, (3.13)
where
T(k,&) = [o‘ * 50(521%‘2’(’“)0(5) A(k,£). (3.14)

The kernel I" has the same transformation properties (3.4)-(3.6) and (3.9)
as A. Thus, every member of the two-parameter family of kernels (3.14)
leads to an equivalent evolution equation.

We may define spatial waveforms ¢(z) and ¢ (z) associated with a(k)
and b(k), respectively, by

o(z) =/°o a(k)e*® dk,  Y(z) =/o° b(k)e® dk.

—0oC —0oC



Then (3.11) implies that (z), ¥ (z) are related by the nonlocal, scale-
invariant transformation,

P(z) = ap(z) + SH[p(z)] (3.15)

where H denotes the Hilbert transform (which corresponds, in Fourier space,
to multiplication by o(k)).

4 Symmetry group of the kernel

In this section, we study the symmetry group of the kernel A(k,&). We
consider the group generated by the symmetry, reality, and Hamiltonian
conditions (3.4)—(3.6). The scaling condition (3.9) determines the kernel on
an entire ray in the (k,£)-plane given its value at a single point on the ray.

We denote the (k,&)-plane by P, and let J, B, C be the linear transfor-
mations on P associated with the matrices

J=<_01 _01> B=((1)(1)), C:((1)_11>. (4.1)

Thus, for example, J : (k, &) — (—k, —£) is inversion through the origin, and
B : (k,€) — (&,k) is reflection in the line k = £. The conditions (3.4)—(3.6)
imply that A : P — C satisfies

AoJ=A* AoB=A, AoC=A" (4.2)

The area-preserving linear transformations {J, B,C} generate a repre-
sentation of the order twelve dihedral group D12 on P. A convenient choice
of generators of the group is {A, B}, where the matrix of A = C'B is given

by
1 1
a=(1 )
These generators satisfy the defining relations
A =71, B>=1, AB=BA!

where [ is the identity transformation. The elements of the dihedral group
are {I,A,...,A% B,AB,...,A°B}.

A fundamental domain of the symmetry group is the region

D={(k&):0<k 0<E<k}.
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Figure 1: Symmetries of the kernel A in the Fourier plane. The fundamental
domain D is shaded. The images of D under the symmetry group are labelled
by the corresponding group element. The circles and lines identify images of
corresponding edges. The regions in which the values of A are the complex
conjugate of its values in D are indicated with a star.



The images of D under the group are shown in Figure 1. The group maps the
fundamental domain into two wedges in each of the first and third quadrants,
and four wedges in each of the second and fourth quadrants.

The kernel A is completely determined by its values Ay on D, since

AoA=A*, AoB=A. (4.3)

Explicitly, if Ag(k, &) is a symmetric function of (k,&) that is defined on the
first quadrant of the (k,&)-plane, then

A(k,&) = Ao(k,8), k>0,£>0,
A(k,f):Ag(k+£,—k), k+£>0,k <0,
A(k, &) = Ao(—k = £,6), E+£<0,6>0,

A(k, &) = Aj(—k,—§), k<0,£<L0, (4.4)
A(k, &) = Ao(—k — &,k), k>0,k+&<0,
Ak, &) = Aj(k+€,-€), k+£>0,£<0.

Any two images of D with nonempty intersection overlap on a common
edge which is fixed by the symmetry group. Thus, if A is continuous on
D\{(0,0)} and real-valued on the edges of D, then its extension to P\{(0,0)}
is continuous; but if A has nonzero imaginary part on the edges, then its
extension is discontinuous.

The kernel A(k,€) of Section 4 must be invariant under the action of
the symmetry group given in (4.3), and a group-invariant function may be
obtained by averaging an arbitrary function with respect to the action of
the group. For example, if F'(k,£) is any symmetric function of (k,&) such
that F(—k,—&) = F*(k,&), then

A(k,) = 5 [P(k,6) + P (k 46—k + F(-k—£,8].  (45)
satisfies (3.4)—(3.6).

5 Sound waves

In canonical coordinates, the normalized three-wave interaction coefficients
for sound waves in a compressible fluid are given by [17]

T(k+&,k,€) = (k+ €] kOY?,  ke>0.

10



The corresponding kernel A is

A(k,€) = (k + €||k[|€N> . (5.1)

This kernel scales according to (3.9) with v = 3/2, as required by the di-
mensional analysis in Section 2 with d = n.
We introduce noncanonical, scale-invariant variables

f(k) = V/|kla(k). (5-2)
Use of (5.1) and (5.2) in (3.3) implies that f(k) satisfies the equation

ify (k) = ckf(k) + k /_ T k- )f(6) de. (5.3)

We define a spatial waveform u(x) to be the inverse Fourier transform of

f(k), .
u(z) = /_ f(k)e™™ dk. (5.4)

Taking the inverse Fourier transform of (5.3), we get an inviscid Burgers
equation for u,
ur + cuy + (uz)z =0, (5.5)

which is well-known in nonlinear acoustics.

More generally, a scale-invariant bulk wave in any system has d = n, so
that the kernel A satisfies (3.9) with v = 3/2. We may define a new function
I'(k,€) by

A(k,§)
(1% + & k[1€])*/?

The kernel I' is homogeneous of degree zero, meaning that for A > 0,

T(Ak,AE) = T'(k, §). (5.6)

Moreover, if A satisfies (3.4)—(3.6), then so does I'. The variable f(k) defined
in (5.2) satisfies

k) = e (k1) + & [ T Dk £,6)f(k— &0 (€, 1) de,

— 00

and the inverse Fourier transform u(z) of f(k), defined in (5.4), satisfies

wy(z, t) + (cu(a:,t) + /_Z /_Z K(z -y, — 2)u(y, yu(z,t) dydz)m —0,
(5.7)

11



where K is proportional to the inverse Fourier transform of I,

,9) =15 / / D(k,&)er* ity drdg. (5.8)

In general, the kernel K is a distribution, and the convolution in (5.7) is to
be understood in the distributional sense. It follows from (3.4)—(3.6), (5.6),
and (5.8) that K satisfies the dual symmetry conditions

K(z,y) = (y, z), (symmetry)  (5.9)
K(z,y) € (reality) (5.10)
K(—z,—z + y) K(z,y), (Hamiltonian)  (5.11)
KAz, \y) = A2K(z,y), X>O0. (scale-invariance) (5.12)

If I' = 1, then K(z,y) = §(x)é(y), and (5.7) reduces to (5.5). For
nonconstant I'(k,£), Eq. (5.7) is a nonlocal generalization of the inviscid
Burgers equation (5.5). The piecewise constant kernel I' given by

I'(k,&) = a+ po(k+&)o(k)a(§),

where «, [ are real constants, and o(k) is defined in (3.12), leads to the
equation studied in Ref. [15],

ur + (cu + ou? + BH [(H[u])z] )m = 0. (5.13)

This equation can be reduced to a local inviscid Burgers equation by a
transformation of the form (3.15). Specifically, v = au — fH[u| satisfies

V¢ + cvg + (1}2)z =0.

Thus, Eq. (5.13) is a nonlocal transformation of a local equation, rather than
an intrinsically nonlocal equation. See [18] and [19] for other examples of
integro-differential evolution equations that may be reduced to a differential
evolution equation by means of a nonlocal transformation.

Eq. (5.7) cannot be reduced to a local equation by a linear, scale-invariant
transformation (3.15) when I' is not piecewise constant.

The transformation

{a(k),a" (k) : k > 0} — {u(z) : —o0 < & < o0},

defined by (5.4) and (5.2) with a*(k) = a(—k), maps the canonical Poisson
bracket

C[® [ §F &G SF oG
7.6} = _’/0 <5a(k) sa* (k) da* (k) 5a(k)) dk (5.14)
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to the bracket

Fo=| aon <53(g>> &

with associated symplectic operator

J= —2w§—m. (5.15)

Using (5.2) and (5.4) in (3.1), we find that H is given as a function of u(z)
by

H = i/ u?(z) de

4 J_
+6i7r /_ : /_ Z /_ Z K(z -y, — 2)u(z)u(y)u(z) dedydz. (5.16)

Thus, Eq. (5.7) has the Hamiltonian form

w) =35

as may be verified directly by the computation of the functional derivative
of H in (5.16) with respect to u(x) and the simplification of the result using
(5.11).

(5.17)

6 Rayleigh waves

The Hamiltonian structure of the equations for weakly nonlinear Rayleigh
waves is given in Refs. [3, 10]. For hyperelastic, isotropic solids, the evolution
equation may be written in the form (3.3) with the kernel [1, 8]

alk + &[[[€] alk + J[k[€]
[k +&l+rlkl+ €] rlk+ &+ [k] +r|¢]

ofk +llkllEl - Blk + ElIk[IE]
rlk+ &l +rk[+E] ik + &+ [k + (€]

Bk + €llki] Blk + €llklle]
T el 18] T e e Tk + e
Tlk + [lklle
el K+ & (6.1)

13



In (6.1), the constant » = ¢;/c; is the ratio of the solid’s transverse and
longitudinal wave speeds, ¢; and ¢;, and «, 3, and 7 are real constants.

The kernel (6.1) satisfies the symmetry conditions (3.4)-(3.6) and the
scaling condition (3.9) with v = 2. This value of the scaling exponent v is
consistent with the dimensional analysis in Section 2 for surface waves with
d=n—1.

Hamilton et. al. [2] obtained a model kernel for nonlinear Rayleigh waves
by neglecting the terms proportional to @ and 3 in (6.1). After a convenient
normalization, their model kernel is

_ 2k el
MO = e kel 62

The same kernel occurs in the equation for weakly nonlinear surface waves on
a tangential discontinuity in magnetohydrodynamics [14]. Since this kernel
provides a basic example of surface wave kernels, we consider it in more
detail.

The expression (6.2) for A may be written in the form (4.4) as

k¢ k>0,62>0,0rk<0,£<0,
A(k,€) =

—k(k+&) k+£6>0,k<0,0rk>0,k+£<0,

and in the form (4.5) as

ACk,€) = 5 (RN + € + [k + El[K] — (k€ + I+ EllE] — (5 + )€}
(6.3)
We may write the evolution equation (3.3) for the Fourier transform a(k) of
the surface wave profile as

o0

at(k) + icka(k) + a(k)/ Ak —&,8)a(k —&)a(€) dE =0, (6.4)

— 00

where o(k) is defined in (3.12).

The surface wave profile ¢(x) is the inverse Fourier transform of a(k),

o(z) = /_OO a(k)e*® dk. (6.5)

[e e]

To derive a spatial evolution equation for ¢(z), we use (6.3) to write
o) [ Ak = €, E)alk — €)ale) de =

%O(k) {lIkla(k)] * [|k|a(k)] — [ika(k)] * [ika(k)]}
+ikla(k)] * [[k|a(k)] — [k|[a(k)] * [ika(k)], (6.6)

14



where the star denotes convolution,

(f*g)(k) = / T f (k- €)(e) de.

We take the inverse Fourier transform of (6.4), using (6.6) and the facts that
if u(z) « f(k) and v(z) <> g(k) are Fourier transform pairs, then

up(z) < ikf(k),  Hu(z)] < o(k)f(k),  u@)v(z) < (f*g)(k),

where H denotes the Hilbert transform with respect to . The resulting
equation for ¢ is

o1+ o+ SH ([0 = ()
+ (H[ppa] — eH[p,]), = 0. (6.7)
By use of the Hilbert transform convolution theorem,
H[uv] = uH[v] + vH[u] + H[H [u] H[v]],

this equation may also be written as

o tepet 5 (H[@16)?]) +Hle pre =0. (68)
The transformation
{a(k),a"(k) : k >0} — {p(z) : —c0 < z < o0},

defined by (6.5) with a*(k) = a(—k), maps the canonical Poisson bracket in
(5.14) to the bracket

© §F 6G
e
G =2 | 5@ oo
with associated symplectic operator
J=-27H (6.9)

Expressing the Hamiltonian (3.10) of (6.2) and (6.4) in terms of ¢, we find
that

=i [ Hlp@)en(e) ds

i [ e (Bl @ - 2@} i (©10)

15



Thus, Eq. (6.7) has the Hamiltonian form

0H
o=
0= 5o
where J is given in (6.9), and H is given in (6.10).
We may use (3.11) with & = 0 and S = 1 to obtain an equivalent equation
for the Hilbert transform ¢ = H[¢] of ¢ with respect to . From (3.14) and
(6.2), the Fourier transform b of ¢ satisfies (3.13) with the kernel

_ —2i(k —+—§)k§
PO = e+ b+l

The spatial form of the equation for v is the equation given by Hamilton et.
al. (see Eq. (38) in [2])

DN | =

e+ e = 5 (¥°),, + H[YH([$a]]- (6.11)

We may also obtain this equation directly by taking the Hilbert transform
of (6.8)

The spatial form of the equation for general surface wave kernels appears
to be complicated [1, 20] and is being investigated further.

7 Wedge waves

A nonlinear elastic wave travelling along the tip of a wedge having two
plane traction-free surfaces [12] is scale-invariant with d = 1 and n = 3. For
isotropic materials, the computational evidence suggests that for wide-angle
wedges the displacement modes are symmetric about the mid-plane, while
for slender wedges they are anti-symmetric [21]. In the first case, quadrati-
cally nonlinear interactions may occur, leading to the present theory. In the
latter case, the three-wave interaction coefficients vanish, due to the anti-
symmetry, so that nonlinear effects appear only when one takes account of
four-wave interactions [11]. The Hamiltonian structure of the four-wave in-
teraction equations for scale-invariant waves could be determined in a similar
way to the structure of the three-wave interaction equations studied here.
Even in the symmetric case, the functional form of the kernel A(k,¢&) is
presently unknown, since there are no known analytical expressions for the
displacement fields of wedge modes, even within an isotropic material. A
recent approach for a model problem, exploiting the scale-invariance of the
boundary-value problem defining wedge modes, is given in Ref. [22].

16



A model kernel that is homogeneous of degree v and contains both the
inviscid Burgers kernel (5.1) and the model surface wave kernel (6.2) as
special cases is given by

2203 1k + £ |k||€)" .
(& + €] + k| + €))> 2

If d =1 and n = 3, then (2.7) implies that v = 5/2, so (7.1) with v = 5/2
provides a simple model kernel for nonlinear wedge waves.

If a satisfies (3.3) with the model kernel (7.1), then the scale-invariant
variable

(7.1)

(k) = k" a(k),

satisfies
k) = ckf () + k [P -£0S(k- 0@ de, (12
where the homogeneous degree zero kernel I' is given by
LRI
I'(k,§) = . .
w8 = (e (73

The variable f(k) is noncanonical, and I" does not satisfy the Hamiltonian
symmetry condition in (3.6), except when v = 3/2.
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