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Abstract

We prove short-time existence of smooth solutions for a class of non-
linear, and generally spatially nonlocal, Hamiltonian evolution equa-
tions that describe the self-interaction of weakly nonlinear scale-invariant
waves. These equations include ones that describe weakly nonlinear hy-
perbolic surface waves, such as nonlinear Rayleigh waves in elasticity.

1 Introduction

In this paper we prove the short-time existence of solutions of a class of
quadratically nonlinear evolution equations in one space-dimension. The
equations are, in general, spatially nonlocal; an example is the singular
integro-differential equation

ϕt +
1
2
H
[
ψ2
]
xx

+ ψϕxx = 0,

where H denotes the Hilbert transform with respect to x and ψ = H[ϕ].
According to the result we prove here, the initial value problem for this
equation has a unique short-time solution in the Sobolev space Hs when
s > 5/2.

This class of equations arises from a Hamiltonian description [33] of
weakly nonlinear, translation-invariant, scale-invariant waves [2]. By ‘scale-
invariant’ we mean that the wave motion is invariant under space-time
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rescalings x 7→ ηx, t 7→ ηt for all η > 0. As a result, the wave motion
does not depend on any intrinsic length or time scales, and any space-time
parameters on which it does depend must have the dimension of velocity.1

One consequence of this scale-invariance is that the wave motion is non-
dispersive.

A specific physical motivation for studying this class of equations comes
from quasi-linear hyperbolic surface waves, such as Rayleigh waves in elas-
ticity.2 Surface waves that satisfy half-space or planar interface problems
for systems of conservation laws (without source terms) are scale-invariant
because neither the PDE nor the geometry define an intrinsic length scale.

We refer to surface waves, like Rayleigh waves, that decay exponen-
tially away from the boundary on which they propagate, as ‘genuine’ sur-
face waves, in contrast to ‘radiative’ or ‘leaky’ surface waves that propagate
bulk waves into the interior. Weakly nonlinear ‘genuine’ surface waves are
described asymptotically by nonlocal equations, whereas purely ‘radiative’
surface waves are typically described by standard local PDEs (see [3] for an
example). One of our main goals is to prove short-time existence for these
nonlocal surface wave equations, and it is useful to put them in the context
of a broader Hamiltonian framework.

These surface wave equations are of interest, in particular, because they
describe the formation of singularities in quasi-linear hyperbolic waves on
the boundary of a half-space, a mechanism that differs from the familiar one
of shock formation in the interior of a domain. Their study should also shed
light on the nonlinear well-posedness of IBVPs for hyperbolic PDEs, and
on the stability of shocks and other interfaces, when the uniform Lopatinski
condition fails as a result of the presence of ‘genuine’ surface waves. (See [1],
[5] for further discussion, and [29] for a local existence result for nonlinear
boundary value problems in elasticity that permit Rayleigh waves.)

The canonical spectral form of the wave equation we study here is given
in (2.3). This equation describes the spectral evolution of a wavefield sub-
ject to three-wave resonant interactions between wavenumbers {k,m, n}
such that k + m + n = 0. These three-wave resonances always occur for
scale-invariant waves, since they are nondispersive. Equation (2.3) depends
on a given kernel, or interaction coefficients, T : Z3 → C. Provided that
T (k,m, n) is not identically zero when k + m + n = 0, we expect that the

1Wave motions, such as gravity water waves on deep water, that depend only on an
acceleration rather than a velocity are not scale-invariant in the sense we use the term
here.

2The term ‘surface wave’ is also used to refer to water waves, whose properties are
different from the non-dispersive surface waves we discuss here.
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dominant weakly nonlinear effects are those given in (2.3); thus, this equa-
tion provides a general description of nonlinear, scale-invariant waves in one
space dimension when higher-order resonances can be neglected.

The Hamiltonian formalism used to derive (2.3) does not imply that the
resulting equation is well-posed. Short-time existence is not obvious, and
suitable bounds on the interaction coefficients appear to be required. (See
[13] for some examples of related nonlocal, but non-Hamiltonian, evolution
equations that are ill-posed, and the discussion of compacton-type equations
in Section 3.4.) Consequently, the result we prove here provides a useful
validation of the corresponding equations as consistent models for the self-
interaction of nonlinear waves.

Solutions of this equation typically form singularities in finite time, so
that, in general, a short-time existence result for smooth solutions is the
best one can hope for. Singularity formation and the global existence of
appropriate weak solutions are interesting questions, but we do not address
them here. Unlike local existence, global existence presumably depends on
the specific kernel, making a general global existence theory unlikely.

In proving our existence result, we find it convenient to study a non-
canonical form of (2.3), given in (2.9), which may be regarded as a nonlocal
generalization of the inviscid Burgers equation. The proof uses a standard
Galerkin procedure, although we work in Fourier space because of the spa-
tially nonlocal structure of the evolution equation.

The Hamiltonian structure of (2.3) imposes certain reality and symmetry
conditions on the kernel T , given in (2.4). Scale-invariance further implies
that T is a homogeneous function whose degree ν is a parameter that char-
acterizes the space-time scaling invariance of the equation. This parameter
takes the value 3/2 for bulk waves and 2 for surface waves, but our analysis
applies to kernels of arbitrary degree.

It is convenient to treat the cases ν ≥ 3/2 and ν < 3/2 separately. For
ν ≥ 3/2, which is our main case of interest, we assume that the interac-
tion coefficients satisfy the bound in (4.9). This condition appears to be
necessary to develop a local Hs-existence theory, and it is satisfied by the
kernels that arise in surface wave problems. Our existence result is stated in
Theorem 1, and the main estimate is given in Proposition 2. One quantity
of interest is the number of square-integrable spatial derivatives required to
prove short-time existence. As we show, short-time existence holds in Hs

for the nonconservative equation (2.9) when s > ν. An existence result for
ν < 3/2, under the assumption that the interaction coefficients satisfy the
bound in (4.30), is given in Theorem 2.

In Section 2, we write out the general equation in various forms (canon-
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ical and noncanonical, spatial and spectral). In Section 3, we give some
examples that arise from specific choices of the kernel T . These include the
inviscid Burgers equation, the Hunter-Saxton equation, asymptotic equa-
tions for nonlinear surface waves, and equations related to compacton equa-
tions. In Section 4, we prove the local existence result, and in Section 5 we
state an inequality used in the proof.

2 The evolution equation

We consider an equation for a scalar-valued function ϕ(x, t) of the form

ϕt + H [b(ϕ,ϕ)] = 0. (2.1)

Here, H denotes the Hilbert transform with respect to the one-dimensional
spatial variable x, and b(ϕ,ϕ) is a quadratically nonlinear function. The
skew-adjoint Hilbert transform plays the role of a Hamiltonian operator,
and b(ϕ,ϕ) is the variational derivative of a cubically nonlinear Hamiltonian
functional.

The specific structure of the equation is most easily described in Fourier
space. We study spatially periodic solutions for definiteness, so that

ϕ : T× I → R

where T is the circle of length 2π, and I = (−t∗, t∗) is a time interval. Most
of the results extend in a straightforward way to equations defined on R
instead of T.

We denote the Fourier coefficients of ϕ by ϕ̂ : Z× I → C, where

ϕ(x, t) =
∞∑

k=−∞
ϕ̂(k, t)eikx,

ϕ̂(k, t) =
1
2π

∫
T
ϕ(x, t)e−ikx dx.

The Hilbert transform is defined by

H[ϕ](x, t) = − 1
2π

p.v.
∫

T
cot
(
x− y

2

)
ϕ(y, t) dy,

Ĥ[ϕ](k, t) = isgn k ϕ̂(k, t),

where

sgn k =


1 k > 0,
0 k = 0,

−1 k < 0.
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The bilinear form b is defined in Fourier space by

b̂(ϕ,ψ)(k, t) =
∞∑

n=−∞
T (−k, k − n, n)ϕ̂(k − n, t)ψ̂(n, t), (2.2)

where T : Z3 → C is a given kernel. Only the values of T (k,m, n) with
k +m+ n = 0 appear in (2.2), so we could omit one of the arguments, but
it is convenient to include all of them to exhibit the Hamiltonian symmetry
property stated below. It then follows from (2.1) and (2.2) that ϕ̂(k, t)
satisfies the evolution equation

ϕ̂t(k, t) + isgn k
∞∑

n=−∞
T (−k, k − n, n)ϕ̂(k − n, t)ϕ̂(n, t) = 0. (2.3)

We assume that T : Z3 → C satisfies the following reality, symmetry,
Hamiltonian, and scaling conditions:

T (k,m, n) = T ∗(−k,−m,−n),
T (k,m, n) = T (k, n,m), (2.4)
T (k,m, n) = T (m,n, k),
T (ηk, ηm, ηn) = ηνT (k,m, n) for all η > 0.

Here, a star denotes the complex-conjugate. The symmetry of T (k,m, n)
under cyclic permutations of {k,m, n} gives (2.3) a Hamiltonian structure
and plays a crucial role in our local existence proof. For simplicity, we also
assume that

T (0,m, n) = T (k, 0, n) = T (k,m, 0) = 0,

so that there are no mean-field interactions.
The homogeneity of T of degree ν corresponds to an invariance of (2.1)

under rescalings
t 7→ ηt, x 7→ ηx, ϕ 7→ ην−1ϕ.

Dimensional analysis [2] shows that the parameter ν is related to the co-
dimension (n− d) of the waves by

ν =
n− d+ 3

2
. (2.5)

Here, d is the dimension of the wavenumber space, and n is the spatial
dimension of the quantity that sets the mass dimension of the wave motion;
for example, if this quantity is a density, then n is the dimension of the space
in which the waves propagate. It follows that ν = 3/2 for bulk waves with
d = n, and ν = 2 for surface waves with d = n− 1.
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2.1 Hamiltonian structure

For simplicity, we consider functions whose spatial mean is zero, so that
ϕ̂(0, t) = 0. (This involves no loss of generality, since ϕ̂(0, t) is constant in
time.) We define the Hamiltonian

H(ϕ̂, ϕ̂∗) =
∞∑

m,n=1

{T (−m− n,m, n)ϕ̂∗(m+ n, t)ϕ̂(m, t)ϕ̂(n, t)

+ T ∗(−m− n,m, n)ϕ̂∗(m, t)ϕ̂∗(n, t)ϕ̂(m+ n, t)} .

The complex canonical form of Hamilton’s equations,

iϕ̂t(k, t) =
δH
δϕ̂∗

(k, t) for k ∈ N,

then gives

iϕ̂t(k, t) =
k−1∑
n=1

T (−k, k − n, n)ϕ̂(k − n, t)ϕ̂(n, t)

+2
∞∑

n=1

T ∗(−k − n, k, n)ϕ̂(k + n, t)ϕ̂∗(n, t).

The first term on the right-hand side of this equation describes the upward
transfer of energy to higher wavenumbers, while the second term describes
the reverse downward transfer. These equations may be rewritten as (2.3)
for k ∈ Z by use of the properties of T and the fact that ϕ̂∗(k, t) = ϕ̂(−k, t).
Thus, equation (2.3) is Hamiltonian and {ϕ̂(k, t), ϕ̂∗(k, t) | k ∈ N} are com-
plex canonical variables.

The Hamiltonian is conserved in time on smooth solutions, but it is
an indefinite functional since it is cubically nonlinear. A positive-definite
functional that is conserved on smooth solutions is the momentum

P =
∞∑

k=1

kϕ̂∗(k, t)ϕ̂(k) =
1
4π

∫
T

[
|∂x|1/2 ϕ(x, t)

]2
dx. (2.6)

We do not know of other conserved functionals of (2.3) for general T , but
the a priori estimate provided by the conservation of P (or the dissipation
of P for weak solutions) is not sufficient to imply global existence.
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2.2 Noncanonical variables

It is convenient to introduce noncanonical dependent variables

u : T× I → R, û : Z× I → C

defined by

u(x, t) = |∂x|1/2 ϕ(x, t), û(k, t) = |k|1/2ϕ̂(k, t).

When rewritten in terms of û, equation (2.3) becomes

ût(k, t) + ik
∞∑

n=−∞
S(−k, k − n, n)û(k − n, t)û(n, t) = 0, (2.7)

where
S(k,m, n) =

T (k,m, n)

|kmn|1/2
for kmn 6= 0. (2.8)

We define S(0,m, n) = S(k, 0, n) = S(k,m, 0) = 0. The corresponding
spatial form of (2.7) is then

ut + a(u, u)x = 0, (2.9)

where the bilinear form a is given by

â(u, v)(k, t) =
∞∑

n=−∞
S(−k, k − n, n)û(k − n, t)v̂(n, t). (2.10)

The form a in (2.9) is related to b in (2.1) by

b(ϕ,ψ) = |∂x|1/2 a
(
|∂x|1/2 ϕ, |∂x|1/2 ψ

)
. (2.11)

Equation (2.9) is invariant under the rescalings

t 7→ ηt, x 7→ ηx, u 7→ ην−3/2u.

As we will show in the next section, under suitable assumptions on S,
the bilinear form a(u, v) may be regarded as a kind of ‘nonlocal product’ of
u and v, so that (2.9) is a nonlocal generalization of the inviscid Burgers
equation. Our main result is that if the kernel S(k,m, n) satisfies the bound
in (4.8) below, where µ = ν − 3/2 ≥ 0, then the initial value problem for
(2.9)–(2.10) has a unique smooth solution for short times taking values in
the Sobolev space Hs(T) for s > ν. Equivalently, equation (2.1)–(2.2) has a
short-time Hs-solution for s > ν + 1/2.
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3 Examples

In this section, we give a some examples of equations that belong to the class
described in the previous section. The simplest, and standard, example is the
inviscid Burgers equation, but this class of equations is surprising rich, and
includes other interesting PDEs and integro-differential equations. These
examples also illustrate various different possibilities for local and global
existence.

3.1 Burgers equation

Suppose that
T (k,m, n) = |kmn|1/2. (3.12)

Then S(k,m, n) = 1 for kmn 6= 0, and the noncanonical equation (2.9)
corresponding to (3.12) is the inviscid Burgers equation

ut +
(
u2
)
x

= 0, (3.13)

as can be seen from (2.10) by use of the convolution theorem. The kernel
(3.12) is homogeneous of degree 3/2, corresponding to n = d in (2.5), and
this equation describes bulk waves, such as weakly nonlinear sound waves.

Theorem 1 states local existence for (3.13) in Hs with s > 3/2, which
is the usual short-time existence result for first-order quasilinear hyperbolic
equations in one space dimension. Nontrivial periodic solutions form singu-
larities in finite time, but the inviscid Burgers equation has global dissipative
weak solutions that satisfy appropriate entropy conditions. These solutions
are not, however, compatible with the Hamiltonian structure of (3.13).

3.2 Hunter-Saxton equation

Consider the kernel

T (k,m, n) =
1
2
|kmn|1/2

(
1
ik

+
1
im

+
1
in

)
for kmn 6= 0, (3.14)

with T (k,m, n) = 0 when kmn = 0. Then

S(k,m, n) =
1
2

(
1
ik

+
1
im

+
1
in

)
for kmn 6= 0.

The corresponding noncanonical equation (2.9) is

ut +
(
u∂−1

x u
)
x
− 1

2
(
u2 −

〈
u2
〉)

= 0, (3.15)
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where ∂−1
x is the anti-differentiation operator on zero-mean, periodic func-

tions, and the angular brackets denote the spatial average over a period. It
follows that v = ∂−1

x u satisfies the Hunter-Saxton equation [14],

vt + vvx −
1
2
∂−1

x

(
v2
x −

〈
v2
x

〉)
= 0. (3.16)

The kernel (3.14) has degree ν = 1/2, corresponding to n = d − 2 in
(2.5). This is consistent with the derivation of (3.16) in [14] for orientation
waves in a massive director field. The waves propagate in three-dimensional
space, so d = 3, and the mass parameter of the medium is set by the moment
of inertia per unit volume of the director field, which has dimension M/L,
so n = 1.

Theorem 2 (with λ = 1) implies the short-time existence of Hs-solutions
of (3.15) for s > 1/2, and hence Hs-solutions of (3.16) for s > 3/2. This
agrees with the short-time existence result of Yin [31]. Nontrivial periodic
solutions of the Hunter-Saxton equation form singularities in finite time,
and the equation has global weak solutions, including both dissipative and
energy-conserving weak solutions ([6], [15], [34]). The conservative weak
solutions are compatible with the Hamiltonian structure of the equation.

It is interesting to note that (3.16) is completely integrable ([4], [16]),
and also arises as the high-frequency limit of the integrable Camassa-Holm
equation [7],

vt + 2κvx + 3vvx = (vt + vvx)xx −
1
2
(
v2
x

)
x
.

3.3 Surface wave equations

As discussed in the introduction, weakly nonlinear asymptotics for ‘genuine’
hyperbolic surface waves typically leads to nonlocal scale-invariant equa-
tions. These equations inherit a Hamiltonian structure from the Hamilto-
nian structure of the primitive physical equations (such as hyperelasticity
or magnetohydrodynamics).

Perhaps the simplest kernel arising for surface waves is given by

T (k,m, n) =
2|kmn|

|k|+ |m|+ |n|
, (3.17)

leading to the spectral evolution equation

ϕ̂t(k, t) + isgn k
∞∑

n=−∞

2|k||k − n||n|
|k|+ |k − n|+ |n|

ϕ̂(k − n, t)ϕ̂(n, t) = 0. (3.18)
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This equation was proposed by Hamilton et al ([10], [11]) as a model equa-
tion for nonlinear Rayleigh waves, and it describes the propagation of surface
waves on a tangential discontinuity in incompressible magnetohydrodynam-
ics [1].

The kernel in (3.17) is homogeneous of degree ν = 2. This degree is
consistent with the result of dimensional analysis in (2.5), since the dimen-
sion d of the wavenumber space of surface waves that propagate along the
boundary is one less that the spatial dimension n of the medium (whose
density sets the mass parameter of the wave motion).

The spatial form of (3.18) may be written explicitly as ([2], [11])

ϕt +
1
2
H
[
ψ2
]
xx

+ ψϕxx = 0, (3.19)

where H is the Hilbert transform and ψ = H[ϕ]. This equation corresponds
to (2.1) with

b(ϕ,ϕ) =
1
2
(
ψ2
)
xx
−H [ψϕxx]

= − δ

δϕ

∫
ψψxϕx dx.

The appearance of second-order spatial derivatives in the expression for
b is misleading since some cancelation occurs. It follows from (2.11) and
Proposition 1 (with µ = 1/2) that b : Hs ×Hs → Hs−1 involves the ‘loss’
of only one derivative when s > 3/2.

Theorem 1 implies that the noncanonical equation associated with (3.19)
has short-time Hs-solutions when s > 2, so (3.19) has Hs-solutions when
s > 5/2.

Numerical computations ([1], [11], [27]) show that solutions of (3.19)
form singularities in which the derivative ϕx blows up, but ϕ appears to
remain continuous. The global existence of appropriate weak solutions is an
open question. As far as we have been able to determine, equation (3.19) is
not completely integrable.

Similar equations describe the evolution of weakly nonlinear Rayleigh
waves on an elastic half-space. In that case, ϕ(x, t) corresponds to the hori-
zontal displacement of the boundary of the half-space. For weakly nonlinear
Rayleigh waves on an isotropic elastic half-space, ϕ̂(k, t) satisfies an equa-
tion of the form (2.3) with the kernel (see [17], [18], [21], [24], [25], [32], for
example)

T (k, n,m) =
α|k||m||n|

|k|+ r|m|+ r|n|
+

α|k||m||n|
r|k|+ |m|+ r|n|
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+
α|k||m||n|

r|k|+ r|m|+ |n|
+

β|k||m||n|
r|k|+ |m|+ |n|

+
β|k||m||n|

|n|+ r|m|+ |n|
+

β|k||m||n|
|k|+ |m|+ r|n|

+
γ|k||m||n|

|k|+ |m|+ |n|
. (3.20)

Here, 0 < r = ct/cl < 1 is the ratio of the elastic solid’s transverse and
longitudinal wave speeds, ct and cl respectively, and α, β, γ are nonlinear
elastic constants. The corresponding equation for ϕ(x, t) has short-time
Hs-solutions for s > 5/2.

More complicated, but qualitatively similar, kernels arise for nonlinear
Rayleigh waves on a non-isotropic elastic half-space ([12], [22]). Kernels with
a different degree of homogeneity (ν = 5/2) arise in the weakly nonlinear
description of elastic edge waves ([20], [26]) .

3.4 Compacton equations

The kernel
T (k,m, n) = i |kmn|1/2 kmn (3.21)

leads to a noncanonical equation (2.9) that is a local PDE,

ut +
(
u2

x

)
xx

= 0.

Differentiating this equation with respect to x and setting ux = v, we get

vt +
(
v2
)
xxx

= 0. (3.22)

This equation is the high-frequency limit of the K(2, 2)-equation introduced
by Rosenau and Hyman [28]:

vt +
(
v2
)
x

+
(
v2
)
xxx

= 0. (3.23)

The K(2, 2)-equation has ‘compacton’ solutions (that is, compactly sup-
ported traveling waves) given by

v(x, t) =
4c
3

cos2
(
x− ct

4

)
if |x− ct| ≤ 2π,

and v(x, t) = 0 if |x− ct| > 2π. Some numerical solutions of (3.23) are given
in [9], [23].
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Although (3.22) does not have compacton solutions, it has travelling
wave solutions that describe the local non-smooth behavior of the compacton
solutions of (3.23) near the ‘edges’ of the compacton; for example:

v(x, t) =
c

12
(x− ct)2 if x ≤ ct,

and v(x, t) = 0 if x > ct. The relationship between (3.22) and (3.23) is thus
similar to the one between the Hunter-Saxton and Camassa-Holm equations,
including the local description of the non-smooth behavior of the ‘peakon’
solutions of the Camassa-Holm equation by solutions of the Hunter-Saxton
equation. As far as we know, however, neither (3.22) nor (3.23) is completely
integrable.

An expansion of the spatial derivatives in (3.22),

vt + 2vvxxx + 6vxvxx = 0,

leads to a backward diffusion term when vx > 0, which suggests that the
equation may not be well-posed. The short-time existence proof given here
does not apply to (3.22) since its kernel does not satisfy (4.9) below, and
this condition seems to be necessary to obtain L2-Sobolev estimates. It is
conceivable that other estimates could lead to short-time existence for (3.22)
or (3.23), but no such results appear to be known (although it is possible
that a Cauchy-Kowalevski type argument could be used for analytic initial
data [8]).

More generally, the kernel

T (k,m, n) = |kmn|1/2 (ikmn)p

of degree ν = 3p+ 3/2, has the corresponding noncanonical equation

ut + ∂p+1
x (∂p

xu)
2 = 0,

which may be regarded as a higher-order generalization of the inviscid Burg-
ers equation, to which it reduces when p = 0. Our short-time existence result
does not apply to this equation when p > 0.

4 Local existence of smooth solutions

We consider an initial value problem for the noncanonical form of the equa-
tion described in Section 2:

ut + a(u, u)x = 0, (4.1)
u(x, 0) = f(x).
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Here, u : T × I → R, with I an open time interval containing the origin,
f : T → R is given initial data, and the bilinear form a is defined by

â(u, v)(k, t) =
∞∑

n=−∞
S(−k, k − n, n)û(k − n, t)v̂(n, t). (4.2)

We assume that the kernel S : Z3 → C satisfies

S(k,m, n) = 0 if kmn = 0, (4.3)
S(k,m, n) = S∗(−k,−m,−n), (4.4)
S(k,m, n) = S(k, n,m), (4.5)
S(k,m, n) = S(m,n, k), (4.6)
S(ηk, ηm, ηn) = ηµS(k,m, n) for η > 0, (4.7)

These properties follow from those of T in (2.4) and the definition of S in
(2.8), with

µ = ν − 3
2
.

We will focus our attention on kernels S with nonnegative degree µ ≥ 0. We
consider kernels of negative degree in Section 4.4.

In order to develop a local existence theory, we assume that S satisfies
the following condition for some constant C and all k,m, n ∈ Z:

|S(k,m, n)| ≤ Cmin {|k|µ, |m|µ, |n|µ} ; (4.8)

equivalently, T satisfies

|T (k,m, n)| ≤ C |kmn|1/2 min
{
|k|ν−3/2, |m|ν−3/2, |n|ν−3/2

}
. (4.9)

For example, the kernel (3.12) for the inviscid Burgers equation satisfies
(4.9) with ν = 3/2 and C = 1. The surface-wave kernel (3.17) satisfies (4.9)
with ν = 2 and C = 1, since

2|kmn|1/2

|k|+ |m|+ |n|
≤ min

{
|k|1/2, |m|1/2, |n|1/2

}
,

and the Rayleigh-wave kernel (3.20) satisfies (4.9) with ν = 2 and

C =
1
2

(
3|α|
r

+
3|β|
r

+ |γ|
)
.

By contrast, the compacton-type kernel (3.21) does not satisfy (4.9).
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4.1 Notation

We denote by Ḣs(T), or Ḣs for short, the Hilbert space of periodic functions
with zero mean and square integrable derivatives of the order s,

Ḣs(T) =

{
f : T → R |

∞∑
k=−∞

|k|2s
∣∣∣f̂(k)

∣∣∣2 <∞, f̂(0) = 0

}
.

As inner product and norm on Ḣs, we use

〈f, g〉s =
∞∑

k=−∞
|k|2sf̂(k)ĝ(−k),

‖f‖s =

( ∞∑
k=−∞

|k|2s
∣∣∣f̂(k)

∣∣∣2)1/2

.

In particular,

‖f‖0 =
(

1
2π

∫
T
|f(x)|2 dx

)1/2

.

For f̂ : Z → C, we also define

∥∥∥f̂∥∥∥
`p

=

( ∞∑
k=−∞

∣∣∣f̂(k)
∣∣∣p)1/p

so that
‖f‖s =

∥∥∥|k|sf̂∥∥∥
`2
. (4.10)

4.2 The bilinear form

First, we obtain some properties of the bilinear form a given by (4.2). In
the simplest case when S(k,m, n) = 1 for kmn 6= 0, corresponding to µ = 0,
the form a is a multiplication operator on Ḣs for s > 1/2:

a(u, v) = uv − 1
2π

∫
T
uv dx. (4.11)

As the following proposition shows, the form a has similar properties to a
multiplication operator for any kernel S that satisfies (4.8), although we
need some additional smoothness to ensure that Ḣs is an algebra under the
product defined by a.
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Proposition 1 Let a(u, v) be defined by (4.2), where S : Z3 → C satisfies
(4.3)–(4.8). Suppose that s > µ+ 1/2.
(a) Then a : Ḣs × Ḣs → Ḣs is a bounded symmetric bilinear form.
(b) For all u, v ∈ Ḣs+1,

a(u, v)x = a(ux, v) + a(u, vx). (4.12)

(c) For all u, v, w ∈ Ḣs,

1
2π

∫
T
ua(v, w) dx =

1
2π

∫
T
va(w, u) dx, (4.13)

and there is a constant Ms−µ > 0 such that∣∣∣∣ 1
2π

∫
T
ua(v, w) dx

∣∣∣∣ ≤ CMs−µ‖u‖s‖v‖0‖w‖0. (4.14)

Proof. Using (4.2), we get

‖a(u, v)‖2
s =

∑
k

|k|2s
∣∣∣â(u, v)(k)∣∣∣2

=
∑

k

∣∣∣∣∣|k|s∑
n

S(−k, k − n, n)û(k − n)v̂(n)

∣∣∣∣∣
2

. (4.15)

For s > 0 and m,n ∈ R, we have

|m+ n|s ≤ Bs (|m|s + |n|s) ,

where

Bs =
{

1 if 0 < s ≤ 1,
2s−1 if s ≥ 1.

Using this inequality, with m = k − n, and (4.8) in (4.15), we get

‖a(u, v)‖2
s ≤ B2

s

∑
k

∣∣∣∣∣∑
n

(|k − n|s + |n|s) |S(−k, k − n, n)û(k − n)v̂(n)|

∣∣∣∣∣
2

≤ B2
sC

2
∑

k

∣∣∣∣∣∑
n

(|k − n|s|n|µ + |k − n|µ|n|s) |û(k − n)v̂(n)|

∣∣∣∣∣
2

≤ B2
sC

2
∥∥∥(|k|s|û|) ∗ (|k|µ|v̂|) + (|k|µ|û|) ∗ (|k|s|v̂|)

∥∥∥2

`2
.
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Here, we denote the convolution of f̂ , ĝ : Z → C by

f̂ ∗ ĝ(k) =
∞∑

n=−∞
f̂(k − n)ĝ(n).

It follows that

‖a(u, v)‖s ≤ BsC
{∥∥∥(|k|s|û|) ∗ (|k|µ|v̂|)

∥∥∥
`2

+
∥∥∥(|k|µ|û|) ∗ (|k|s|v̂|)

∥∥∥
`2

}
.

Using Young’s inequality,∥∥∥f̂ ∗ ĝ∥∥∥
`2
≤
∥∥∥f̂∥∥∥

`1
‖ĝ‖`2 , (4.16)

we get that

‖a(u, v)‖s ≤ BsC
{
‖u‖s

∥∥∥|k|µ|v̂|∥∥∥
`1

+
∥∥∥|k|µ|û|∥∥∥

`1
‖v‖s

}
. (4.17)

If s > 1/2, we have for all f ∈ Ḣs that∥∥∥f̂∥∥∥
`1
≤Ms ‖f‖s , (4.18)

where

Ms =

(
2
∞∑

n=1

1
n2s

)1/2

. (4.19)

Hence, if s > µ+ 1/2, inequalities (4.17) and (4.18) imply that

‖a(u, v)‖s ≤ 2BsCMs−µ‖u‖s‖v‖s.

Thus, a is bounded on Ḣs. The symmetry and bilinearity of a is obvious.
To prove (4.12), we observe that

̂a(u, v)x(k) = ikâ(u, v)(k)

= ik
∑

n

S(−k, k − n, n)û(k − n)v̂(n)

=
∑

n

i(k − n)S(−k, k − n, n)û(k − n)v̂(n)

+
∑

n

inS(−k, k − n, n)û(k − n)v̂(n)

= ̂a(ux, v)(k) + ̂a(u, vx)(k).
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Equation (4.13) follows from the fact that

1
2π

∫
T
ua(v, w) dx =

∑
k

û(−k)â(v, w)(k)

=
∑
k,n

S(−k, k − n, n)û(−k)v̂(k − n)ŵ(n)

is symmetric under cyclic permutations of u, v, w. Moreover, using (4.8), the
Cauchy-Schwartz inequality, Young’s inequality, and (4.18) in this equation,
we get for s > µ+ 1/2 that∣∣∣∣ 1

2π

∫
T
ua(v, w) dx

∣∣∣∣ ≤ C
∑
k,n

|k|µ |û(−k)v̂(k − n)ŵ(n)|

≤ C
∥∥∥(|k|µ|û|) ∗ (|v̂|)

∥∥∥
`2
‖ŵ‖`2

≤ C
∥∥∥|k|µû∥∥∥

`1
‖v̂‖`2 ‖ŵ‖`2

≤ CMs−µ ‖u‖s ‖v‖0 ‖w‖0 . �

The form a satisfies other Sobolev inequalities. In Proposition 1, we
prove only the ones that we need to use below.

4.3 Local existence

We define
Ks = CCsMs−µ−1, (4.20)

where C is the constant in (4.8), Cs is the constant in (5.2), and Ms is given
by (4.19).

Theorem 1 Suppose that S : Z3 → C satisfies (4.3)–(4.7) and (4.8) with
µ ≥ 0, the form a is given by (4.2), and s > µ + 3/2. Then, for any
f ∈ Ḣs(T), the initial-value problem (4.1) has a unique local solution

u ∈ C
(
I; Ḣs(T)

)
∩ C1

(
I; Ḣs−1(T)

)
(4.21)

defined on the time interval I = (−t∗, t∗), where

t∗ =
1

Ks ‖f‖s

. (4.22)
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Proof. Let PN : Ḣs(T) → Ḣs(T) denote the orthogonal projection

PN

( ∞∑
k=−∞

f̂(k)eikx

)
=

N∑
k=−N

f̂(k)eikx. (4.23)

We introduce the Galerkin approximations

uN (x, t) =
N∑

k=−N

ûN (k, t)eikx

that satisfy the system of ODEs

uN
t + PNa

(
uN , uN

)
x

= 0, (4.24)

uN (x, 0) = PNf(x).

The main estimate for the local existence proof is given in the following
Proposition.

Proposition 2 Suppose uN (x, t) satisfies (4.24) and s > µ+ 3/2. Then∣∣∣∣ ddt ∥∥uN
∥∥

s

∣∣∣∣ ≤ Ks

∥∥uN
∥∥2

s
, (4.25)

where Ks is defined in (4.20).

Proof. Dropping the superscript N to simplify the notation, we compute
from (4.24), (4.23), and (4.2) that

d

dt

∑
k

|k|2sû(k, t)û(−k, t)

+2i
∑
k,n

k|k|2sS(−k, k − n, n)û(−k, t)û(k − n, t)û(n, t) = 0. (4.26)

Using the cyclic symmetry of S(k,m, n), we can rewrite this equation as

d

dt

∑
k

|k|2s |û(k, t)|2

+
2i
3

∑
k,n

{
k|k|2s − (k − n)|k − n|2s − n|n|2s

}
S(−k, k − n, n)û(−k, t)û(k − n, t)û(n, t) = 0.

18



Using the inequality (5.2), we find that∣∣∣∣∣ ddt∑
k

|k|2s |û(k, t)|2
∣∣∣∣∣

≤ 2Cs

3

∑
k,n

{|k|s|k − n|s|n|+ |k − n|s|n|s|k|+ |n|s|k|s|k − n|}

|S(−k, k − n, n)| |û(−k, t)û(k − n, t)û(n, t)| . (4.27)

Using (4.8) in the right hand side of (4.27), and applying the appropriate
bound on each term, we get∣∣∣∣∣ ddt∑

k

|k|2s |û(k, t)|2
∣∣∣∣∣

≤ 2CCs

3

∑
k,n

{
|k|s|k − n|s|n|µ+1 + |k − n|s|n|s|k|µ+1

+|n|s|k|s|k − n|µ+1
}
|û(−k, t)û(k − n, t)û(n, t)|

≤ 2CCs

∑
k,n

|k|s|k − n|s|n|µ+1 |û(−k, t)û(k − n, t)û(n, t)| .

Using the Cauchy-Schwartz inequality and Young’s inequality (4.16) on the
right hand side of this inequality, we get∣∣∣∣ ddt∥∥∥|k|sû∥∥∥2

`2

∣∣∣∣ ≤ 2CCs

∥∥∥|k|sû∥∥∥
`2

∥∥∥(|k|s|û|) ∗ (|k|µ+1|û|)
∥∥∥

`2
,

≤ 2CCs

∥∥∥|k|sû∥∥∥2

`2

∥∥∥|k|µ+1û
∥∥∥

`1
.

It then follows from (4.10) and (4.18) that if s > µ+ 3/2, then∣∣∣∣ ddt‖u‖2
s

∣∣∣∣ ≤ 2CCsMs−µ−1‖u‖3
s.

Simplifying this equation and using (4.20) we get (4.25). �

Using Gronwall’s inequality, we deduce from (4.25) that

∥∥uN
∥∥

s
(t) ≤

‖f‖s

1−Ks ‖f‖s |t|
,

so the Galerkin approximations exist in |t| < t∗, where t∗ is given by (4.22).
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It follows from Proposition 1 and standard arguments (for example, [30],
§16.1, or [19]) that we can extract a subsequence (uN ) of Galerkin approxi-
mations such that

uN → u ∈ Cw

(
J ; Ḣs

)
(4.28)

on any closed interval J ⊂ I, where u is a distributional solution of (4.1).
(Here, Cw denotes the space of weakly continuous functions.) Proposition 2
and Gronwall’s inequality imply that t 7→ ‖u(t)‖s is continuous. It follows
that u is strongly Ḣs-continuous, and thus satisfies (4.21) since a is strongly
continuous on Ḣs.

To prove uniqueness, we suppose that u, v are two solutions of (4.1)
with the regularity stated in (4.21). Then, using integration by parts and
the properties of a given in Proposition 1, we compute that

d

dt
‖u− v‖2

0 =
1
2π

d

dt

∫
T

(u− v)2 dx

= − 1
π

∫
T

(u− v) [a(u, u)x − a(v, v)x] dx

= − 1
π

∫
T

(u− v) a(u+ v, u− v)x dx

=
1
π

∫
T

(u− v)x a(u+ v, u− v) dx

=
1
π

∫
T

(u+ v) a (u− v, ux − vx) dx

=
1
2π

∫
T

(u+ v) a (u− v, u− v)x dx

= − 1
2π

∫
T

(u+ v)x a (u− v, u− v) dx.

Since s > µ+ 3/2, it follows from this equation and (4.14) that∣∣∣∣ ddt ‖u− v‖2
0

∣∣∣∣ ≤ CMs−µ−1‖u+ v‖s ‖u− v‖2
0 .

Hence, u = v by Gronwall’s inequality, and the solution is unique. �

4.4 Negative degree kernels

In this section, we consider kernels S of negative degree µ = −λ < 0 that
satisfy the following condition for some constant C and all kmn 6= 0:

|S(k,m, n)| ≤ C

min {|k|λ, |m|λ, |n|λ}
. (4.29)
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This corresponds to the assumption that T satisfies the condition

|T (k,m, n)| ≤ C |kmn|1/2

min
{
|k|3/2−ν , |m|3/2−ν , |n|3/2−ν

} . (4.30)

where ν = 3/2 − λ < 3/2. In particular, (4.30) is satisfied by the Hunter-
Saxton kernel (3.14) with ν = 1/2 and C = 3/2.

Let
Ks,λ = CCs,λMs+λ−1,

where C is the constant in (4.29), Cs,λ is the constant in (5.1), and Ms is
given by (4.19).

Theorem 2 Suppose that S : Z3 → C satisfies (4.3)–(4.7) and (4.29) with
λ > 0, the form a is given by (4.2), and

s > max
{

3
2
− λ,

1
2

}
.

Then, for any f ∈ Ḣs(T), the initial-value problem (4.1) has a unique local
solution

u ∈ C
(
I; Ḣs(T)

)
∩ C1

(
I; Ḣs−1(T)

)
.

defined on the time interval I = (−t∗, t∗), where

t∗ =
1

Ks,λ ‖f‖s

.

Proof. The proof is essentially the same as before. For s > 1/2, we get that
a : Ḣs × Ḣs → Ḣs is a continuous bilinear form. From (4.26) and (4.29),
the Galerkin approximations satisfy∣∣∣∣∣ ddt∑

k

|k|2s |û(k, t)|2
∣∣∣∣∣

≤ 2
3

∑
k,n

∣∣k|k|2s − (k − n)|k − n|2s − n|n|2s
∣∣

|S(−k, k − n, n)| |û(−k, t)û(k − n, t)û(n, t)|

≤ 2C
3

∑
k,n

∣∣k|k|2s − (k − n)|k − n|2s − n|n|2s
∣∣

min {|k|λ, |k − n|λ, |n|λ}
|û(−k, t)û(k − n, t)û(n, t)| .
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Using (5.1) in this equation, and summing over cyclic permutations, we find
that ∣∣∣∣∣ ddt∑

k

|k|2s |û(k, t)|2
∣∣∣∣∣ ≤ 2CCs,λ

∑
k,n

|k|s|k − n|s|n|1−λ

|û(−k, t)û(k − n, t)û(n, t)|

≤ 2CCs,λ

∥∥∥|k|1−λû
∥∥∥

`1

∥∥∥|k|sû∥∥∥2

`2
.

Hence, using (4.18), with s > 3/2− λ, and simplifying the result, we get∣∣∣∣ ddt ‖u‖s

∣∣∣∣ ≤ CCs,λMs+λ−1 ‖u‖2
s ,

and the local existence result follows. �

5 An Inequality

For completeness, we prove an inequality used in our local existence proof.

Proposition 3 For s > 0 and λ ≥ 0, there exists a constant Cs,λ such that
for all nonzero k,m, n ∈ R with k +m+ n = 0,∣∣k|k|2s +m|m|2s + n|n|2s

∣∣
min {|k|λ, |m|λ, |n|λ}

≤ Cs,λ

{
|k|s|m|s|n|1−λ + |n|s|k|s|m|1−λ + |m|s|n|s|k|1−λ

}
. (5.1)

Proof. We can assume without loss of generality that 0 < m ≤ n and
k = −(m+ n) < 0. Writing x = m/n, we have∣∣k|k|2s +m|m|2s + n|n|2s

∣∣
|m|λ {|k|s|m|s|n|1−λ + |n|s|k|s|m|1−λ + |m|s|n|s|k|1−λ}

= fs,λ(x),

where fs,λ : (0, 1] → (0,∞) is given by

fs,λ(x) =
(x+ 1)2s+1 − x2s+1 − 1

(x+ 1)s (xs+λ + x) + (x+ 1)1−λxs+λ
.

This function is continuous on (0, 1] and has a finite limit as x→ 0+, with

fs,λ

(
0+
)

=


0 if 0 < s+ λ < 1,
(2s+ 1)/3 if s+ λ = 1,
2s+ 1 if s+ λ > 1.
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Hence fs,λ is bounded on (0, 1] by Cs,λ, say, which proves (5.1). �

In particular, if λ = 0, we write fs = fs,0 and Cs = Cs,0, so that∣∣k|k|2s +m|m|2s + n|n|2s
∣∣

≤ Cs {|k|s|m|s|n|+ |n|s|k|s|m|+ |m|s|n|s|k|} (5.2)

for all k,m, n ∈ R with k +m+ n = 0. We have f1(x) = 1, f3(x) = 7, and
fs(1) = 2s − 1. Numerical plots show that fs is monotone decreasing on
(0, 1] for 1 < s ≤ 3 and monotone increasing for s ≥ 3, in which case

Cs =
{

2s+ 1 if 1 < s ≤ 3,
2s − 1 if s ≥ 3.

(5.3)
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