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Abstract

We use an asymptotic expansion introduced by Benilov and Pelinovskii to study
the propagation of a weakly nonlinear hyperbolic wave pulse through a stationary
random medium in one space dimension. We also study the scattering of such a
wave by a background scattering wave. The leading-order solution is non-random
with respect to a realization-dependent reference frame, as in the linear theory of
O’Doherty and Anstey. The wave profile satisfies an inviscid Burgers equation with
a nonlocal, lower-order dissipative and dispersive term that describes the effects of
double scattering of waves on the pulse. We apply the asymptotic expansion to gas
dynamics, nonlinear elasticity, and magnetohydrodynamics.
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1 Introduction

Nonlinear wave propagation in random media is a difficult and poorly under-
stood subject. As in the case of deterministic waves (1), nondispersive, hyper-
bolic waves in random media have very different properties from dispersive
waves, such as those modeled by a nonlinear Schrédinger equation with a ran-
dom potential. In particular, waves modeled by nonlinear hyperbolic systems
of conservation laws typically form shocks, and one would like to understand
more about the propagation of shock waves through random media, such as
turbulent flows. For surveys on linear wave scattering, see (2; 3); for a general
discussion of nonlinear, nondispersive wave propagation in random media, see

(4).
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The goal of this paper is to study a regime in which one can derive determin-
istic asymptotic equations for the propagation of a weakly nonlinear hyper-
bolic wave in a random media. These equations describe the propagation of a
pulse through a stationary random medium, or wave, with a finite correlation
lengthscale. In this respect, they differ from the equations derived by Majda
and Rosales (5) for the resonant interaction of periodic, or almost periodic,
weakly nonlinear hyperbolic waves.

The resulting theory may be regarded as a nonlinear generalization of the well-
known O’Doherty-Anstey theory (6; 7; 8; 9; 10; 11) for linear waves. A key
point is that there is a self-averaging phenomenon in the O’Doherty-Anstey
theory, meaning that the leading-order solution for the wave is non-random in
a suitable random reference frame. Therefore, provided one works in a properly
chosen frame, closure problems do not arise and it is easy to account for the
effects of weak nonlinearity.

The asymptotic expansion we use here was introduced by Benilov and Peli-
novskii (12) for a nonlinear wave equation, and generalized by Gurevich,
Jeffrey, and Pelinovskii (13) for first-order hyperbolic systems. We modify
their expansion to account for spatially-dependent, instead of temporally-
dependent, fluctuations in the random medium, and generalize it to the case of
the scattering of one wave by another wave. We also apply the expansion to the
propagation of waves in elasticity, gas dynamics, and magnetohydrodynamics.

A limitation of the resulting nonlinear O’Doherty-Anstey theory is that it only
appears to apply in one space dimension, or at most in quasi-one-dimensional
situations where waves propagate along rays and diffraction effects are negliga-
ble (see (11) for a linear theory). For example, the experimental observations
of Hesselink and Sturtevant (14) on the propagation of weak shock waves
through random media, where multiple ray-focusing occurs, lie outside the
scope of this theory. One can derive equations of transonic small disturbance
type with random coefficients to model these experiments (15; 16), but it is
unclear how to derive a deterministic effective equation or make any further
simplifications.

In this paper, we study the scattering of a pulse by a stationary random
medium, and the scattering of a pulse by a stationary random background
wave. In both cases, we suppose that the wave motion is governed by a hy-
perbolic system of conservation laws in one space dimension. Two physical
examples that motivate the general theory are the scattering of an elastic
wave by a random layered medium, and the scattering of a sound wave by a
random entropy wave.

With respect to suitably nondimensionalized variables, we assume that the
fluctuations in the medium or the background wave are small-amplitude and



rapid, with amplitude of the order £ and wavelength of the order 2, where
¢ is a small parameter. We further assume that the fluctuations have zero
spatial mean and are realizations of a second-order stationary random process
with a sufficiently rapidly decaying correlation function. For simplicity, we
suppose that the fluctuations are uniformly bounded in space (so we can Taylor
expand the nonlinear terms), but it is reasonable to expect that, under suitable
assumptions, the results remain valid even in the presence of large deviations,
because the deviations would occur with very small probability over the space
and time scales on which the asymptotic expansion is valid.

The pulse, which we call the primary wave, is assumed to have an amplitude
and a width that are each of the order £2. With this scaling, the width of the
pulse is of the same order as the length-scale of the fluctuations, and — in
the case of a genuinely nonlinear primary wave — the effects of nonlinearity
and scattering on the pulse are of the same order of magnitude, and both
significantly affect the pulse on an order one time-scale.

The asymptotic solution for the pulse profile includes a random shift in the
location of the pulse that typically converges in distribution to a Brownian
motion as € — 0. The leading-order solution is non-random — as in the linear
theory of O’Doherty and Anstey, to which the linearization of the equations
we derive here reduces — in a realization-dependent reference frame moving
with this Brownian motion. The self-averaging of the leading-order solution
means that closure problems do not arise in the nonlinear theory.

The asymptotic equation for the pulse profile is an inviscid Burgers equation
with a nonlocal, lower-order dissipative and dispersive term that describes the
effects of double scattering on the pulse. In the simplest case, the equation for
the pulse profile u(z,t) has the normalized form

g + <%u2>z - /_Ooo k(y)ug(z — y,t) dy, (1)

where k is the covariance function of the random fluctuations. See (17) for a
general discussion of such nonlocal equations.

The dissipative term on right-hand side of (1) may prevent the formation
of shocks in the wave profiles. Indeed, for covariance functions £ such that
k'(07) > 0 (typical of rough media), there is a threshold value in the wave
slope below which shocks do not form. We plan to investigate this phenomenon
further in a separate paper (18).

The present paper is organized as follows.

In Section 2, we derive asymptotic equations for the profile of a linear pulse
that is scattered by a random medium. We show that our results agree with



those of the O’Doherty-Anstey theory derived in (11). In Section 3, we derive
equations for the scattering of a nonlinear wave by a random medium. We
treat quadratic nonlinearity in 3.1 and cubic nonlinearity in 3.2.

In Section 4, we generalize the solution derived in Section 3 for the scattering of
a wave by a random medium to describe the scattering of one wave by another
wave. We derive the equations starting from a strictly hyperbolic system of
conservation laws in Subsection 4.1, and from a first-order hyperbolic system
written in nonconservative form in Subsection 4.2.

In Section 5, we apply the results of Section 4 to one-dimensional gas dy-
namics to obtain an equation for the scattering of a nonlinear sound wave by
stationary random entropy fluctuations. In Section 6, we apply the results of
Section 3 to the scattering of longitudinal and transverse elastic waves by a
random medium (see 6.1 and 6.2, respectively), and in 6.3 we apply the re-
sults of Section 4 to the scattering of longitudinal waves by random transverse
waves. Finally, in Section 7, we apply our results to one-dimensional magneto-
hydrodynamics, where we consider magnetoacoustic-entropy wave interactions
in 7.1 and magnetoacoustic-Alfvén wave interactions in 7.2.

2 Scattering of a linear wave by a nonuniform medium

We consider a strictly hyperbolic, first-order system of linear PDEs of the form
u; + [Au + <€B(ac/<€2)u]ac =0. (2)

Here, A € R™*™ is a constant m X m matrix, u = u(x,t) € R™ is defined for
—o0 < z < oo and 0 < ¢, ¢ is a small parameter, and the matrix B(y) € R™*™
is a realization of a zero-mean, second-order stationary random process in
y that describes the small-amplitude, rapid fluctuations of the medium. We
assume that the random process is continuous in quadratic mean and has a
sufficiently rapidly decaying correlation function. For simplicity, we suppose
that the realizations are uniformly bounded.

We assume that A has distinct, nonzero eigenvalues \; with corresponding left-
and right-eigenvectors 1; and r;, respectively, normalized so that lz-Tr;c = 0;;, for
,k=1,2,...,m.

We seek an asymptotic solution, u®, of (2) of the form

uE = u2(§j> t) + 8u3(€j7 Y, t) + 82114(6]', Y, t) + 0(83)7 € — Oa (3)
where At (/e
Z/Z:—Q, szx L ; ¥e ) (4)



Here, we choose the subscripts in the perturbation terms in a way that is
convenient for comparison with the nonlinear theory. It would be straightfor-
ward to include a dependence on the “slow” space variable z, as is required
to study signaling problems, but since it is easy to modify the final equations
to account for this, we omit the xz-dependence to simplify the presentation.

The phase shift ¢ in (4) is a random process, which we will choose later. In
this expansion, u, describes a wave, which we call the primary wave, that
propagates through the nonuniform medium, and ujz describes the secondary
waves that are generated by the scattering of the primary wave by the fluctu-
ations in the medium. We assume that uy(&;,t) decays to zero as £ — +oo.
Thus, this solution describes a wave pulse of width of the order 2 that prop-
agates through a medium with fluctuations of amplitude of the order ¢ and
length-scale of the order 2.

We use (3)—(4) in (2) and set the coefficients of € equal to zero for n = 0, 1,2
to obtain the hierarchy of equations

(A — /\jI)u%j = O, (5)
(A — )\j[)llg,gj + Au3y + (B — ¢yA)u2§j + Byu2 = 0, (6)

(A — /\j[)ll4§j + All4y
+ (B — ¢yA)uyg; + (Bus)y — ¢y Bugg; +uy, = 0. (7)

A solution of (5) is

uy = a;(&;, t)ry, (8)
where a;(;, t) is a scalar-valued function that decays to zero sufficiently rapidly
as §; — Fo0.

We use (8) in (6) to get the equation
(A = AjT)ugg; + Augy + aje; (B — ¢y A)rj + a; Byrj = 0. 9)

To solve (9) for us, we expand u3 in a basis of right-eigenvectors of A,

usz = ibk(gjay:t)rka (10)
k=1

where each by is assumed to be uniformly bounded in y. We then multiply

through (9) on the left by IJT, and solve the resulting equation for b; by the

method of characteristics to get

1 1
b (&5, ) = b (€,1) — 3 B 1) + 3835 (§)as 1)
1 Y

(11)
Y </§J [Bi5(5) = 26.(9)] ds) aje; (&> 1), i



where
Bik(y) = 1 B(y)rs. (12)
The scattering coefficient 3;; describes the strength of an i-wave generated by
the scattering of a k-wave by the fluctuations in the medium. The initial data,
(0) b’ (&,t), is assumed to be integrable.

For a stationary random process, 3;; with a finite correlation length, the inte-
gral term in (11) is typically of the order y'/2 as y — oo, leading to a secular
term in uz. We eliminate this term by choosing ¢ to satisfy

1
6y(y) = B3 (y)- (13)
Y
It follows that the random correction to the location of the pulse is
x 1 fa/e?
£Q (6—2> = /\_jg/o Bji(y) dy, (14)

where we assume that ¢(0) = 0 for definiteness.

If 3;; is a strictly stationary process that satisfies a suitable mixing condition,
then e¢(x/e?) converges in distribution to nZ(x) as € — 0, where Z(z) is a
standard Brownian motion, and

=2 [ W) dy.
with W;; given below in (21) (see, for example, Theorem 4.32 in (19)).

Next, we multiply through (9) on the left by 17, i # j, and solve the resulting
equation for b; along characteristics to get

Aj— A 1
by ,)—bo)(T 1 t) = 3B W6

~ A M- A
Bzg( + 5]) ( ])\_ y+ ngat) (15)
v A A :
.y =\
_)\_JZ/)\j—/\zy_i_ﬁg.ﬂij(s)ajgj( J/\' (y_S)_*—g]at) ds
i ; x; & i

Turning to (7), we derive a solvability condition for the solution uy to be a
bounded function of y. We substitute (8) and (10) into (7), and average the
resulting equation with respect to y. We assume that us and u, are uniformly
bounded in y, and that averages over y are well defined. We then multiply

through the averaged equation on the left by l;f and rearrange terms to get
the equation
aje = (848 )aie; — D (Bikbre; )- (16)
k]



Here, the angular brackets denote the mean with respect to y, defined by

(e = Jim [ F(Ev0)dy. (17)

For the second term on the right-hand side of (16), we substitute into it (15)
to obtain, after replacing ¢ by k,

</Bjkbkfj > = ;—kl <5jk(y)5kj () >aj£j (&)

i/ REw-g) i — )\
- )\_;</A] ﬁjk(y)ﬁkj(y - G)ngjgj( J h\ kU + fj,i) do
k MO k
(18)

The average of the integral on the right-hand side of (18) is dominated by
the limiting value of the integral for large y. Under appropriate hypotheses on
the integrand, we may therefore replace the range of integration by (0, c0) if
Ak/A; >0, or (0, —o0) if Ax/A; < 0, and then bring the average with respect
to y inside the integral. (See Lemma 1 in Appendix A for a proof.) This yields

<5jkbk§j > = ;—kl <5jk(y)5kj(y) >aj§j (&, 1)

;i rsen(Ae/Xj)-o0 i — A
o /\_%/0 <Bjk(y)ﬂkj(y - U)>aj§j§j( J » o+ /fj,t) do
(19)

where

1 if Ak/)\] > 0,

sen(he/ ;) = {—1 i Ap/A; <0
<0,

Finally, using (13) and (19) in (16), we obtain the following equation for the
wave profile, a;, of the primary wave pulse:

Ui 1
a;i(&,1) Z )\_ ayég (&)
N sgn(Ag/Aj)-00 A —
2/\2/ Wik(o )ajfgﬁy( JAk

k#j

)\ka + &5, t) do, (20)

where

Wik(o) = (Bix(u)Bei(y — 0)) (21)
is a covariance of the scattering coefficients ;) that are given by (12), and the
angular brackets denote the mean with respect to y defined in (17). We assume
that the spatial average in (21) exists. For example, if B in (2) is a strictly
stationary random process with finite second-order moments, then the spatial
average exists almost surely by the Birkhoff-Khintchine ergodic theorem (20).



According to (20), the wave profile a,(&;, ) satisfies a linear, nonlocal evolution
equation. The nonlocal term is a sum of convolutions of the second derivative
of the profile with covariance functions of the random fluctuations in the
medium.

To compare our result with the O’Doherty-Anstey theory, we consider the
simplest case, such as the wave equation, in which there are two wave families.
The normalized form of (20) for the wave profile a(z,t) is

where x denotes convolution, and

K(z) = W(z) ifz <0,
o if z > 0.

The Fourier transform of (22) is
i = —EK(€)a,

where f(€) = (2m)~ [*_ %% f(z) dz. Hence,

o0

1 oo 25 ;
a(z,t) = —/ a(0)e ¢ K®ite ge
21 J -0

which is the same as the O’Doherty-Anstey solution discussed in Sglna and
Papanicolaou (11). The location, or travel time, of the pulse is shifted by a
zero-mean random correction. The pulse shape is deterministic with respect
to this random reference frame, and is modified from its initial shape by con-
volution with a kernel that describes the spreading of the pulse caused by the
effects of doubly-scattered waves. It follows from Bochner’s theorem that K (€)
has nonnegative real part, which shows that this scattering has a dissipative
effect on the pulse.

One difference between our derivation of O’Doherty-Anstey theory and the
derivation in (11) is that we work in the space-time domain, whereas (11)
works in the frequency domain. For linear problems, the two approaches are
essentially equivalent, but for nonlinear problems, it is much easier to work
exclusively in the space-time domain.

3 Scattering of a nonlinear wave by a nonuniform medium

In this section, we generalize the solution obtained in the previous section to
describe the scattering of a nonlinear wave by a one-dimensional stationary



random medium. A physical example is the scattering of a longitudinal or
transverse elastic wave by random fluctuations in an elastic medium.

We consider a strictly hyperbolic system of conservation laws of the form
u + [f(u) + sB(x/€2)u] =0, (23)

where u(z,t) € R™, f: R™ — R™, the matrix B is stationary random process
as in (2), and ¢ is a small parameter. We suppose that f has the Taylor
expansion

f(u) = Au+ C(u,u) + D(u,u,u) + E(u,u,u,u) + O(|ul®), |u| —= 0, (24)
where A = Vf£(0), C = ;V*(0), D = :V?*f(0), and E = 5;V*f(0). We
assume that A has distinct, nonzero eigenvalues \; with corresponding left-

and right-eigenvectors 1; and r;, respectively, normalized so that 17r;, = &, for
,k=1,2,...,m.

3.1 Quadratic nonlinearity

We seek an asymptotic solution, u®, of (23) of the form
u = e*us(§,t) + 2us (g, y, 1) + e wa(,y,t) + O(%), € —0, (25)
where y and &; are given as in (4):

x x— A\t —e3¢(x/e?
A Y )

= (26)
As before, the phase shift ¢ is a random process, which we will choose later,
uy describes the primary wave, and uz describes the secondary waves that
are generated by the scattering of the primary wave by the fluctuations in
the medium. We assume that us(§;,¢) decays to zero as & — =oo. Thus,
this solution describes a wave pulse of width of the order €2 that propagates
through a medium with fluctuations of amplitude of the order ¢ and length
scale of the order €2, as in the linear theory of Section 2. The amplitude of the
pulse is of the order £2. With the scaling chosen here, the effects of quadratic
nonlinearity and scattering of the wave by the medium are of the same order of
magnitude, and both significantly influence the wave over propagation times
of the order one.

We use (24)—(26) in (23) and set the coefficients of €™ equal to zero for n =
2,3,4 to obtain the hierarchy of equations

(A — )\j[)llgéj = O, (27)



(A — )\jI)Uggj + AU3y + (B — qbyA)u%j + Byu2 = 0, (28)
(A = AjDugg; + Auyy + C(uy, up)g
+ (B — ¢yA)u3§j + (Bll3)y — (ﬁyBUng =+ U9y = 0. (29)

These equations correspond to (5)—(7) in the linear perturbation equations,
with the addition of a nonlinear term, C(uy, uy)e;, in (29).

Following the derivation in the linear theory, we obtain an equation for the
profile, a;, of the primary wave pulse:

LN - 1
a1 (&) Z 3, Vir(0)ase; (&,1) + (—gjaj(gj,t)Q) |

- sgn(Ag/Aj)- A — )\
== Z )\2/ k( )aj,§]§]< J/\k k0+€j,t) dO', (30)

where (j; and W)y, are given by (12) and (21), respectively, and
gj = 21;‘(10(1']', I‘j) (31)
is a coefficient of quadratic nonlinearity.

We may identify G; with Lax’s coefficient of genuine nonlinearity (21; 22). To
see this, we let \; = A(0), 1; = 1(0), and r; = r(0), and differentiate the
equation

[VE(u) — A(u)I]r(u) =0

with respect to u in the direction r(u). Multiplying on the left by 17, evaluating
the resulting equation at u = 0, and using (31), we get
G; =VA(u)-r(u)| . (32)
u=0

Thus, G; is the derivative of the j-wave velocity at u = 0 in the direction of
the corresponding right eigenvector.

In summary, we see that the wave profile, a;, of the primary wave pulse sat-
isfies an inviscid Burgers equation with a lower-order, nonlocal term on the
right-hand side (30). The nonlocal term is dissipative and dispersive, and de-
scribes the effects of the double scattering of the primary wave by the random
medium. The kernel Wj (o) is a covariance function of the fluctuations in the
medium. The coefficient, G;, of the quadratically nonlinear term describes the
strength of the quadratically nonlinear self-interaction of the j-wave, which in
general may lead to the formation of shocks. The coefficient — Y W, (0) /Ay is
a perturbation of the mean wave speed caused by the random fluctuations in
the medium.

10



If the system of conservation laws is strictly hyperbolic and multiple primary
pulses with different linearized velocities are present, then, to leading order in
e, the solutions superpose, because the pulses separate. Thus, one obtains a
decoupled system of equations of the form (30).

In carrying out this expansion, we tacitly assume that the solutions remain
smooth. Nevertheless, it is reasonable to expect that the asymptotic equation
remains valid in the weak sense if shocks form (see (18) for numerical com-
parisons between solutions of the asymptotic equations and the full equations
when shocks are present).

3.2 Cubic nonlinearity

In this section, we suppose that the primary wave is not genuinely nonlinear at
u = 0, meaning that G; = 0 in (32). A physical example is that of transverse
elastic waves in an isotropic medium, which fail to be genuinely nonlinear at
the undeformed state of the medium. The dominant nonlinear effect is then
typically cubic instead of quadratic, and it is only significant if the primary
wave amplitude is larger than in the case of genuinely nonlinear waves.

We therefore look for an asymptotic solution u® of (23) of the form
u = ey (§,1) + €2ua(§5, 9, 1) + ’u3(§,9, 1) + O(eY), € =0, (33)

where §;, y, and ¢ are given by (23). In this expansion, u, is the primary wave,
and uy is the scattered wave. We use (24), (26), and (33) in (23), and set
the coefficients of €™ equal to zero for n = 1,2, 3 to obtain the hierarchy of

equations
(A — Aj[)ulgj = O, (34)
(A — /\j[)llggj + Au2y =+ C(ul, ul)gj =+ (B — ¢yA)U1§]. + Byul = O, (35)

(A — )\j[)llgfj + Augy + 20(111, ug)fj + 20(111, llg)y
+ D(uy,up, wy)e; + (B — ¢pyA)uye; + (Buy),
— 6,C(u, w)g, - 6, Burg, + 1w, = 0. (36)

A solution of (34) is

u = aj(fj’ t)rj’ (37)
where a;(&;,t) is a scalar-valued function, which we assume decays sufficiently
rapidly as §; — too.

To solve (35) for uy, we look for a solution of the form

U = V(§j7 Y, t) + w(§j7 t)zjv (38)

11



where v = v(§;,y,t), and z; € R™. This assumption, together with (37), leads
us to the following solvability conditions for (35):

we; (A — A1)z + (a7);C(rj,r;) = 0, (39)
(A — /\I)VQ -+ AVy + ajgj (B — ¢yA)I‘j + CLjByI‘j =0. (40)
We choose w(&;,t) = a;(&;,t)* in (39) so that z; satisfies
Note that we may solve (41) for z; only if
I?C(rj’ rj) =0, (42)
that is to say, precisely when G; in (31) vanishes.

Solving the remaining equations in a similar way to the linear theory, and
choosing ¢ as in (13), we find that the wave profile, a;, of a primary wave
pulse that is not genuinely nonlinear at u = 0 satisfies the cubically nonlinear
equation

™o 1
a;t(&;: 1) 2_:/\— (0)aje; (&5,1) + (gﬂjaj(gj,t)f‘) |

~ rsgn(Ag/Aj)-00 Ai — A
=> —;/ ij(o)ajgjgj( ! X ko + «Sj,t> do, (43)
Py Y

where
H; =31} [2C(x;,2;) + D(x;,1;,75) (44)
and f;; and Wy, are given by (12) and (21), respectively.

These equations are similar in form to the previous ones, except that the pulse
profile satisfies a cubically nonlinear (or modified) inviscid Burgers equation
with a nonlocal lower order dissipative term that describes the effects of wave
scattering.

4 Wave-wave scattering

In this section, we generalize the solution derived in Section 3 for the scattering
of a nonlinear wave by a nonuniform medium to describe the scattering of one
wave (which we call the primary wave) by another wave (which we call the
scattering wave). Physical examples include the scattering of a sound wave by
an entropy wave in gas dynamics, the scattering of a longitudinal wave by a

12



transverse wave in elasticity, and the scattering of a magnetoacoustic wave by
an entropy or Alfvén wave in magnetohydrodynamics.

We find that the scattering of the primary wave by the scattering wave is
significant only when the scattering wave fails to be genuinely nonlinear. The
reason for this is that if the scattering wave is genuinely nonlinear, then it
rapidly forms shocks and decays on an O(e) timescale before there is a sig-
nificant accumulation of scattered waves. Thereafter, the scattering wave is
negligable, and the primary wave propagates like a single wave. We therefore
assume that the scattering wave is not genuinely nonlinear — which includes
the case of linear degeneracy — as in all of the physical examples mentioned
above.

4.1  The asymptotic solution

We consider a strictly hyperbolic system of conservation laws
u; + f(u), =0, (45)

where u = u(z,t) € R™. We assume that the flux f: R™ — R™ has the Taylor
expansion in (24), where A has distinct eigenvalues \; with corresponding left-
and right-eigenvectors 1; and r;, respectively, normalized so that 1!ty = d;, for
L,k=1,2,...,m.

We seek an asymptotic solution, u®, of (45) of the form

0 = (6 1) (G 6 1) + GG 1) + MGG )0
+0(e%), &—0,
where j # p,
_T- )‘jt — €3¢(§p7 t) _
fj - &2 ) gp - -
and ¢ is to be determined. In this expansion, u; describes the background
scattering wave, with linearized phase velocity A,, uy describes the primary
wave, with phase velocity );, and us describes the scattered waves generated
by the reflection of the j-wave off the p-wave.

T — Apt
2 Y

(47)

We use (24) and (46)—(47) in (45) and set the coefficients of €™ equal to zero
for n = 1,2, 3,4 to obtain the hierarchy of equations

(A — /\pI)ulgp = O, (48)

(A — /\j[)llgéj + (A - )\pI)llggp + C’(ul, 111)51, = O, (49)

13



(A — /\j[)llggj —+ (A - /\pI)U3§p + 20(111, 1.12)§j + 20(111, llg)gp
+ D(ul, u, ul)gp — ¢§p(A — ApI)UQé'j +uy; = O, (50)

(A—AjI)U4§j =+ (A — )\pI)U4§p + 20(111, 113)&].
+ C(u% u2)§j + 20(111, u3)€p + C(u% u2)§p

51
+ 3D (uy, uy, u); + 3D (ug, up, up)e, + E(ug, up,ug, uy)e, (51)
— ¢§p (A — )\pI)u;;gj — 2¢>§pC(u1, llz)gj +uy: = 0.
A solution of (48) is
u; = Sp(gp’t)rp’ (52)

where s, is a scalar-valued function. We assume that, for each ¢, the function
$p(&p, t) is a realization of a zero-mean, second-order stationary random pro-
cess in &, that is continuous in quadratic mean and has a sufficiently rapidly
decaying correlation function. For simplicity, we also assume that s,(,,t) is
uniformly bounded.

Using (52) in (49), we find that a solution of (49) is
uz = a;(&5,t)r; + 55(&, 1) 2y, (53)
where a; is a scalar-valued function, and z, € R™ satisfies
(A= X1)z, + C(rp,r,) =0. (54)
We assume that a;(&;,t) decays sufficiently rapidly as & — +o0.
We may solve (54) for z, only if
1'C(xy,1,) = 0. (55)

This condition is satisfied if the scattering p-wave is not genuinely nonlinear
atu=20.

To solve (50) for uz, we write ug in the form
us = V(gjvgp:t) +W(§p:t)7 (56)
where v = v(&;,&,, 1), w = w(&,,t) € R™. Then, using (52)—(53) and (56) in

(50), and separating the terms that depend on &, from those that depend on
(&;,&,), we find that (50) is satisfied if

(A=A D)we, + [20(1'1)’ zp) + D(ry, 1y, rp)] (52)&; + sprp =0, (57)
(A= NiD)ve + (A= NI)ve, +2C(rj,1p)[aje; sp + ajSpe,|
— (Aj = Ap)dg,a5¢,r; = 0. (58)
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Multiplying through (57) on the left by lg, we find that the wave profile, s,,
of the scattering wave satisfies the following modified Burgers equation:

spt(Eps t) + (%Hpsp(gp: t)3)£ =0, (59)

where

Hp = 31; [QC(rp, zp) + D(rp, 1, rp)]- (60)
We may then solve (57) for w; we omit the expression since we do not need
it.

To solve for v in (58), we expand v in a basis of right-eigenvectors of A:

vV = Zbk(gjvgp:t)rk- (61)
k=1

We then multiply through (58) on the left by 17, and solve the resulting
equation for b; by the method of characteristics to get

bi(&, Eprt) = BV (€, 1) — 7 sp(Epr t)ay (&), t)

A= A

1
/\ 3, ———T,5n (&5, 1)a; (&5, 1)
1 P
o )‘j _ )‘p </§] I:F;PSP(S,’ t) - (/\J - AP)(/ZSS(S,) t)] dSI> a’jﬁj (é-j, t)a
(62)
where
T}, =217 C(r, 1p). (63)
This interaction coefficient, Fﬁcp, describes the strength of an i-wave produced

by the quadratically nonlinear interaction of a k-wave with the p-wave. We
assume that the initial data, bgo) (&;,1), is integrable.

In a similar way to before, the integral term in (62) leads to secular terms
unless we choose ¢ to satisfy

1
d)fp(é-fht) - A — )\ F] Sp(gpﬂ )
J T
Hence, if ¢(0) = 0, we have
13
66 t) = 53 T ) s t) (64)

Next, we multiply through (58) on the left by I;;F, and then solve the resulting
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equation for b, along characteristics to get

1
by(&j:épr t) = béo)(é"p,t) + N =\, Fp 20 (&5 1) 5p(Eps 1)
Y

1
- A — )\prp a; (&, t)5p(Ep, t) (65)

Ty i AL TR

]

We multiply through (58) on the left by 17, i # j, p, and then solve for b; along
characteristics to get

b'(gjvfpvt)
N=AL A=A
=0 (=5 + 1160 ) — 3 (6 D )
T )\-—)\i A=A N-AL A
/\—/\F“’p<)\ TN f”’) (A—A£+A—A£J’>

NN /fp Aj— A

P s',ta-.( — g, — ) + ',t)ds'
()\ — )2 P A§p+k_ & Sp( )J@ )\i_)\p(fp ) +&

(66)

Turning to (51), we substitute into it (52)—(53), (56), and (61), and then
average the resulting equation with respect to £,. We assume that us and uy4
are uniformly bounded in &,, and that averages over &, are well defined. We
then multiply through the averaged equation on the left by IJT and rearrange
terms to obtain the equation

(014 24(53)), + Wi s, + (56503

= F;p<¢§p8p>aj§j - Fip<spbk§j>’ (67)

kg
where
7y =12y, (68)
H] = l? [QC(ri, z,) + 3D(r;, 1), rp)], (69)
gj == 2I?C(I'j, rj)7 (70)

and the brackets denote the mean with respect to &,, defined by

(Y& = lm + [ 7(6.6.1) e, (71)

We split the second term on the right-hand side of (67) into two cases: k = p
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and k # p. For k = p, we substitute (65) into the second term to obtain

(s ) = 55 Dol 1o (6.1 (72)

and for k& # p, we substitute (66) into the second term to obtain, after replacing
1 by k,

<5pbk§j> = _ﬁrfp<sp(€pa t)2>aj£j (&> 1)

)" )\ )\_Ap(fp §J
A ([ e m

A — Mg
ajgjgj ()\i — )\pa+§j,t> d0'>

Finally, using (64), (72)-(73), and Lemma 1 in (67), we obtain the following
equation for the wave profile, a;, of the primary wave pulse:

(a3(& 1) + Z (s (6, 1))),
+CoW(0, s (6,1) + (3Gs01(65,1)?)

& (74)
sgn(pgp; ) 00
Z Ajpk/ Wy (o, t)ajﬁjij (f Hjkp0, t) do,
k#j.p
where
Cjp = H L pop ! INAY
Jjp — jp+)\j )\ Jjp~ pp ,;Ak—)\ kp?
P
Ajpr, = mrypmcp’
Ak —Aj
Hian = 3,20,
p j

Wy(o,t) = <Sp(§p>t)5p(§p -0, t)>7

Ty 73, H? . and G; are given by (63) and (68)—(70), respectively, and s,

Jp’

satlsﬁes (59).

In summary, we have derived an asymptotic solution that describes the scat-
tering of a pulse in one (primary) wave-field of the hyperbolic system of conser-
vation laws in (45) by stationary random fluctuations in another (scattering)
wave-field, under the assumption that the scattering wave is not genuinely
nonlinear. The solution is given by (46)—(47), where u, is given by (52), and
u, is given by (53).
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The profile s, of the scattering wave satisfies a cubically nonlinear, modified
Burgers equation (59). If the scattering wave is linearly degenerate, then the
the coefficient of the cubically nonlinear vanishes, and the scattering wave
profile does not change at leading order on the O(1) time-scale of validity of
the asymptotic solution. The random phase shift ¢ in the primary wave is
given in terms of the scattering wave profile by (64).

The profile a; of the primary wave satisfies an inviscid Burgers equation with
a nonlocal right-hand side (74) that describes the effects of double scattering
on the primary wave. The kernel W), of the nonlocal term is a covariance func-
tion of the profile of the scattering wave. The coefficients Aj,; describe the
strength of the j-wave produced by double scattering: a quadratically nonlin-
ear interaction of the j-wave with the p-wave to produce a k-wave, followed
by a quadratically nonlinear interaction of the k-wave with the p-wave to pro-
duce the j-wave. The coefficient, G; describes the strength of the quadratically
nonlinear self-interaction of the j-wave, and C;,W,(0,1) is a correction to the
mean j-wave speed caused by the presence of the other waves.

4.2 Nonconservative form

In carrying out the asymptotic expansion for specific systems, it is often con-
venient to write (45) in the nonconservative form

u; + A(u)u, =0, (75)

where A : R™ — R™*™. For use in the following applications, we summarize
the expressions for the coefficients of the resulting asymptotic equations in
terms of A.

We assume that the matrix A(u) has the Taylor expansion

1 1
A(u) = Ag + VAp(u) + §V2A0(u, u) + EV?’AO(u, u, u)

(76)
+0(u*), |ul =0,
where Ay = A(0), and that A, has distinct eigenvalues \; with corresponding
left- and right-eigenvectors 1; and r;, respectively, such that lZ-Trk = ¢, for
i,k =1,2,...,m. We look for an asymptotic solution, u®, of (75) of the form
(46)—(47), and follow the derivation in Section 4.1. The result is that the wave
profile, s,, of the background scattering wave satisfies (59), and the wave
profile, a;, of the primary wave pulse satisfies (74), where the coefficients are
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now given by

1
Hy =15 |V Ao(xy)2, + V Ao(7)1, + 5 V2 Ao rp)rp],

7 =17z,
. 1 . 1 ’
Cip = Hng + A — Ap (Fglprgj (F%j)Q) o k; Ak — Ap F] F]P’
J,p
Gj =1}V Ao(x))r;,
A=A
Y= B e )

. 1
H;J' = l? [VAO(ZP)rj + §V2A0(rpa rp)rj]’
ij = ITVAO(rp)rk,
Fk]p ,U'k]prjp + /'[’kmrl;]’

Ak — A
/l‘lcjp )\ )\
Wo(0,t) = (55 1)5p(& — 0, 1)),

and z, satisfies
(Ag — A\pI)z, + VAO(rp) =0,

the angular brackets denote the mean with respect to &, defined by (71), and
the random shift ¢ is given by (64).

5 Gas dynamics

In this section, we apply the results of Section 4 to obtain an equation for
the scattering of a nonlinear sound wave pulse by stationary random entropy
fluctuations. Equations for the resonant interaction of periodic sound and
entropy waves are studied in (23).

The one-dimensional compressible Euler equations are (1)

P+ (pv)z =0,
(pv)e + (pUQ +p)e =0, (78)
1 1
(pe + EpUQ) + (pev + 5,01)3 + pv) =0,
t T

where p is the density, v is the velocity, p is the pressure, and e is the internal
energy per unit mass. For simplicity, we consider an ideal gas with constant
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specific heats, ¢, and ¢,. In that case,

L p o _ P
e=——=, p=«kp'exp(S/c,), c=-—, (79)

y=1p ° p
where v = ¢,/c, > 1 is the ratio of specific heats, S is the entropy, and c is the
sound speed. We consider perturbations of a uniform background state with

density po, velocity vy = 0, entropy Sp, and sound speed co = /¥Po/ po-

We may write (78) in the nonconservative form (75)—(76), where

P = Po 0 po 0
u= v ) Ap = (Po)o/po O (ps)o/po
S — S, 0 0 0

The eigenvalues and corresponding left- and right-eigenvectors of Ay are

A= —co, A=0, A3=rcp,

Po (ps) 0 Po
r = —Co | » ry = 0 ) r3 = Co
0 —c2 0

The 1- and 3-waves are left- and right-moving sound waves, respectively, and
the 2-wave is an entropy wave.

We take the entropy wave to be the background scattering wave, which is
consistent with the expansion in Section 4 because the entropy wave is linearly
degenerate. Then (59) for the wave profile fluctuations of the entropy wave is

S0 = 0, (80)

so that sy = s9(&2). The asymptotic equation (74), (77) for the wave profile of
the right-moving sound wave is

1 0
as; — 2M<s§>a353 + <§ga§>f = 5/\/1/ W (0)asee, (€3 — 20,t) do,  (81)
3 —00

where
W (o) = (s2(62)s2(6 — ),
and the angular brackets denote an average with respect to &. The coefficients
(81) are given by
a3 (v + 1o

M=—-=
4y2¢2’ 2
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The equation for the left-moving sound wave can be obtained by replacing the
wave speed ¢g by —cg.

Since G # 0, we may normalize (81) by introducing the variables

2G 2 4
g BEnt), %= 0= (s

M5
This transforms (81) into

ug + (%#) = /OOO W(%) gz (T — 0,1) do. (82)

Z

u(z,t) =

In summary, we have derived an asymptotic solution of (78) of the following
form:

p Po Po/cy Po
v~ 0] +esa€)| 0 | +e2as(t) | ¢ | +O@ED),
S So —c} 0

where the multiple-scale variables, & and &3, are evaluated at

2

s2(y) dy.

_x—cot —€%¢ (x/sQ)’ p (x) = /:c/e
0

==, &= — )=
’ g2 g2 2v¢,

The entropy wave profile s, is a stationary random function of &, while the
sound wave profile ag decays to zero as £3 — +o00. From (80), we see that so
is given by its initial value. The random correction ¢ to the location of the
sound wave pulse is determined from s, and the profile, a3, of the sound wave
satisfies an inviscid Burgers equation with a nonlocal right-hand side (81),
whose kernel W is a covariance of the entropy wave profile.

6 Elasticity

In this section, we apply the general theory derived above to elastic waves in
an isotropic medium. We will consider three different cases: the scattering of
longitudinal waves by a random medium, leading to a quadratically nonlinear
equation; the scattering of transverse waves by a random medium, leading to
a cubically nonlinear equation; and the scattering of a longitudinal wave by
a transverse wave. Equations for the resonant interaction of periodic elastic
waves are derived and analyzed in (24).

We consider an elastic wave propagating in one space-dimension, say in the x;-
direction, through an isotropic hyperelastic medium; for simplicity, we consider
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plane polarized waves. The deformation is given by

X1 =21 + ul(ml,t),
X9 = X9 + U2(.’L‘1,t),

where (x;, x2) are spatial coordinates: (z1, z2) is a point in the reference medium
and (uq,us) is the displacement defined for —oo < 21 < 0o and 0 < ¢. To sim-
plify the notation, we let = z; in the following.

In the absence of body forces, the equations of motion are (25)

PUI = (g(ulaca U’gz))m’

83
PUay = (u%h(ulw,u%x))w, ( )

where p: R — R is the density, and g, h: R X R — R are constitutive func-

tions. For a hyperelastic body,

Jo do

9(p,q) = a—p(p, q), hp,q) = Qa—q(p, q), (84)

where 0: R X R — R is the strain-energy density.

We assume that g and h have the Taylor expansions

1 1 1 1
g(wl, w%) = aw + 501’(1)% + 50211)% =+ édlw:{’ + édgwlwg + h.O.t., (85)
1 1 1
h(wy, w3) = o+ g VW1 + éélwf - éégwg + h.o.t., (86)

as wr — 0, where “h.o.t.” denotes higher-order terms. Here a,cy,co, d, do,
a, 7,01, 0o are material constants that are related to the Lamé moduli A and
i, the density p, and the longitudinal and transverse wave speeds, ¢; and ¢,
respectively, by

a=2u+\=pc, a=p=pc; (87)
the other constants are higher-order elastic moduli, where (84) implies that
v = 2¢y and 6; = ds.

6.1 Longitudinal waves in a nonuniform medium

To write (83) as a first-order hyperbolic system of conservation laws of the
form (23), we let my and wy denote the momentum and the displacement
gradient, respectively:

my = puy, mo = pusgy,
W1 = Uig, Wy = Ugg-

(88)
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We assume that the Lamé moduli and density in (87) have the expansions

M) = Xo +eM(z/e®) + O@®),  plx) = po+ep(z/e?) + O(e?),
p(x) = po +epi(x/e?) + O(e?), e — 0.

Then, using (85)—(86) and (88), and neglecting higher-order terms, the equa-
tions of motion (83) may be put in the form (23) with

mi —aw; — zcwi — %cgwg_
m — Wy — CoyW W
uz |2 £(u) 2 — CoW1Ws ’
wy —m1//00
| Wa | L —ma/ po
0 0 —(2u1(z/e%) + M\ (z/e?)) 0
B(.T/EZ) _ 0 0 0 —H1 (x/gz)
po pi(z/e?) 0 0 0
0 e 0 0|
(89)

From this, it follows that

0 0 —poc? 0

0 0 0 —poc?
A=VE(0) = Pl (90)
~1/po 0 0 0

0 —1/po 0 0

The eigenvalues and corresponding right-eigenvectors of A are

K1 = —C, Kg=—C, K3=C, Ki=Ct, (91)
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_ , _ _ . _
0 1
r= ; ry = )
1/(poci) 0
0 1/(poct) |
] ] - _ (92)
0 1
1 0
3 = ) ry =
0 —1/(poci)
| —1/(poct) | 0

The eigenvalues satisfy

— < —c < ¢ < ¢y,

and, respectively, the 1- and 4-waves are left- and right-moving longitudinal
waves, and the 2- and 3-waves are left- and right-moving transverse waves.

The asymptotic solution of (83) for a right-moving longitudinal wave is

- L
m 0
1~ a6, t) +O0(%),
wy —1/(/)001)
L w2 - L O -

where the multiple-scale variable, &4, is evaluated at

=5 cit — e3p(x/e?)
4 = )

e2

6 (%) = 5o [ i) + M) — ()],

g? 200C1Ct

where ¢ is the random correction to the location of the pulse, and a4 satisfies

1 1 1 f0
Q44 — —MCL4§4 + <§Qai> = — W(a)a4§4§4 (64 — 20’) do. (93)
Cy &4 C J—o0
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Here, the coefficients are

=55
2p5¢]

M= (Bu(y)?) + (Buw)*), W(o) = (bua(y)fuly — o)),

Bi(y) = 5— [2m(y) + M (v) — ()],

 2pocy

Bu(y) =

T 2p0 21 (y) + M (y) + ()]

The equation for the left-moving wave can be obtained by replacing the wave
speeds ¢; by —¢; and ¢ by —¢.

Since G # 0, the change of variables
’U,(.T, E) = 2gcla4(§4, t), 8{ = 26[813 — 2./\/1654, T = 54
puts (93) in the normalized form (82).

Thus, we see that the wave profile, a4, of the right-moving longitudinal wave
satisfies an inviscid Burgers equation with a nonlocal right-hand side (93).
The nonlocal term on the right-hand side originates from the scattering of
a right-moving longitudinal wave into a left-moving longitudinal wave, and
the scattering of the left-moving longitudinal wave back into the right-moving
longitudinal wave. In an isotropic medium, the scattering of longitudinal waves
does not produce any transverse waves, and vice versa, which explains why
only one scattering term is present on the right-hand side of (93).

6.2 Transverse waves in a nonuniform medium

Transverse waves are not genuinely nonlinear at an undeformed state due to
the reflectional symmetry of the waves (26; 27; 28). Hence, to include nonlinear
effects in the scattering of transverse waves, we use the expansion (43).

We consider the same set of equations as in the previous subsection. The
asymptotic solution of (83) for a right-moving transverse wave is given by

mq 0
mo 1 3
~ €a3(§3,t) + 0(5 ),
w1 0
| wa | | —1/(poc) |
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where the multiple-scale variable, &3, is evaluated at

£ = T — ot — 3¢(x/e?)
3 — )

e2

¢ (x) S /Ow/EQ (11 (y) = 2 p1 (v)] dy,

g2 2p0C1C4

where ¢ is the random correction to the location of the pulse. The profile, as,
of the transverse wave satisfies

1 1 1 /0
asy — —Na3§3 + (g%&%) = —/ V(O’)CL3§3§3 (53 — 20') do. (94)
Ct &3 Ct J—o0

Here, the coefficients are

—303 52

= , 95
WaAG-3) T 1a (55)

H

N = <,322(y)2> + <523(y)2>, V(o) = <523(y)523(y — 0)>=

-1 o -1
= 200y [:U'l (y) —cip (y)], Bas(y) = 200¢s

Ba2(y)

[1(y) + o1 (v)].

The equation for the left-moving wave can be obtained by replacing the wave
speed ¢; by —c¢;.

Since ‘H # 0, the normalized form of (94) is

A T L
Uy + (gu )z_/—oov<2)ujj($ o) do,

where

u(z,1) = 21 *cia3(&s,t), O = 20,0, — 2N, T =&

Thus, for transverse elastic waves in an isotropic medium, we obtain a cubically
nonlinear modified Burgers equation with a nonlocal right-hand side (94),
instead of the quadratically nonlinear equation we obtained for longitudinal
waves.

6.3 Scattering of longitudinal waves by transverse waves

In Subsections 6.1 and 6.2, we considered elastic waves propagating in a
nonuniform isotropic hyperelastic medium. In this subsection, we consider
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waves propagating in a uniform medium with constant density, p = pg, and
constant Lamé moduli, A = \g and p = g, in (87). Transverse waves are not
genuinely nonlinear at u = 0, so according to the general theory developed in
Section 4 we may consider the scattering of a longitudinal wave by a transverse
wave.

The corresponding asymptotic solution of (83) for right-moving transverse and
longitudinal waves is

mq 0 1
mo 1 9 0 3
~ g53(&s,t) +e%aq(&y, 1) + O(e%),
un 0 —1/(poc1)
| wa | _—1/(poct)_ I 0 |

where the multiple-scale variables, &5 and &4, are evaluated at

T — ¢t T —ct

63: ) 54: .

g2 g2

In this case, the presence of a transverse wave does not affect the propagation
speed of the longitudinal wave, so there is no random phase shift. The wave
profiles s3 and a4 satisfy

1
S3 + (—H8§) = 0, (96)
3 &3

(a4 + 4Mp(2)clc§’<s§>)t + C<$§>a4§4 + (%Qai)

€a
0 c+c
= Meo(¢ — ct)Z/ W (0, t)aag,e, (54 _ 2 . ta, t) do. (97)
s ;
Here, # is given by by (95), and
Co —Cq
= = — Wi(o,t) = t —o,t
16picici (¢ — ¢)’ 2082’ (0,1) <S3(§3, )s3(& — o, )>,
—C1Co do C% Cg

= + — _
dpiaci(ct —cl)  12p3cic?  4dpiaci(c,—c)  8pgeict

The equations for the scattering of the right-moving longitudinal wave by
the left-moving transverse wave can be obtained by replacing ¢; by —c;. The
asymptotic equations for the scattering of the left-moving longitudinal wave
by the transverse waves can be obtained by replacing the wave speed c¢; by
—¢; in the above equations.

27



If s3 is a smooth solution of (96), then <s§> is constant. In that case, we may
write (97) in the normalized form

1 0 o
m+<5#)=:/ VVCnO%ﬂf—mﬂdm

T — 00

where

Thus, we see that in the scattering of a longitudinal wave by a transverse
wave, the wave profile, s3, of the transverse wave satisfies a modified Burgers
equation with a cubically nonlinear term (96). On the other hand, the wave
profile, a4, of the longitudinal wave satisfies an inviscid Burgers equation with
a nonlocal right-hand side (97), whose kernel is a covariance function of the
transverse wave profile, s3.

7 Magnetohydrodynamics

In this section, as a final application of the general theory, we study the scatter-
ing of magnetoacoustic waves by random entropy and Alfvén waves. Equations

for the resonant interaction of periodic waves in magnetohydrodynamics are
derived in (29; 30).

In the absence of body forces, the one-dimensional, compressible magneto-
hydrodynamics (MHD) equations may be written as (31)

By = By, =0,
Byt + (Byvy — Byvg), =0,
Bs; + (Bsvy — Byvs), =0,
pr + (pv1)z =0,
1
(pvi)e+ (o2 +p+ 5/B) =0,

@ (98)
(pv2)i + (pv1ve — B1Bs), =0,

(pvs)¢ + (pv1vs — B1B3); =0,
1, 1
Z ZB 2)
SOV +pe+ 5[BP)
1
+ (5w + pe+p+ BE oy - BB-v] =0,
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where B = [B; B, Bs]” is the magnetic field, v = [v; v, v3]” is the velocity
field, p is the density, p is the pressure, and e is the internal energy per unit
mass. We note that (98) implies that B, is constant, say By = B .

We assume the ideal gas equation of state in (79), and consider perturbations of
a uniform background state with magnetic field By = [Byy B2y O]T, velocity
field vo = [0 0 0]7, density py, entropy Sp, and sound speed cg.

We may write (98) in the nonconservative form (75)—(76), where

11:[32—32,0 By v vy vy p—po S_SO]Ta

0 0 Byy—Biy 0 0 0 |
0 0 0 0 —By 0 0

Bso/po 0 0 0 0 (pp/P)o (ps/p)o
Ao=|=Big/pe 0 0O 0 0 0 0
0 —Bio/jo 0 0 0 0 0
0 0 p 0 0 0 0

0 o 0 0 0 0 0

The eigenvalues of A, are
)\1 = —Cy, )\2 = —Cq, )\3 = —Cs, )\4 = 07 )\5 = Cs, )\6 = Cq, )\7 = Cy,

where

1 1
e = 5( i c§—4c§cg>, ¢t = §<cf+ \/c§—4c§cg>,

B? B2

2 2 2, A2 2 YPo 2 1,0 2,0

c,=c¢c+c,+c, cg=—, C,=—> = =,
Po

A2
a Y C
Po Po

a

Here, ¢y denotes the sound speed at u = 0, ¢, denotes the Alfvén speed, and
cs and ¢y, respectively, denote the slow and fast magnetoacoustic speeds. The
wave speeds satisfy

cs < €y, Cq < Cf.
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The corresponding right-eigenvectors of Ay are

7=

I'ss =

Here, the 1- and the 7-waves are left- and right-moving fast magnetoacoustic
waves, the 2- and 6-waves are left- and right-moving Alfvén waves, the 3-
and 5-waves are left- and right-moving slow magnetoacoustic waves, and the

Byoct/(ct —ci)
0
+cy
iBl,oBzocf/(Po(Cff —c))
0

Po

iBl,oB2,ocs/(PO(C§ - CZ))
0

Po
0

4-wave is an entropy wave.

The entropy wave and the Alfvén waves are linearly degenerate. Thus, we take

Toe =

ry =

o O o o O

£o

| —pocs/ (Ps)o |

these waves, in turn, to be the background scattering wave.
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7.1 Magnetoacoustic-entropy wave interaction

The asymptotic solution of (98) for the scattering of a right-moving fast
magnetoacoustic wave by an entropy wave is

(B, [Bao 0]
B 0 0
U1 0 0
v | = | 0 | +esa(és) 0
U3 0 0
p Po Po
| © ] i So ] _—poc%cu/po_
[ B/
cr
+ a7 (&, 1) —BioBaocs/(po(c; —c2)) | + O(e*). (99)
0
Po
L O _

The asymptotic equation (59) for the entropy wave profile, sy, is
sqt =0, (100)

so that s4 = s4(&). The asymptotic equation (74) for the wave profile a; of
the right-moving fast magnetoacoustic wave is

1
Qg — Mf(3—5f)<8121>(1,7§7 + (§gfa$)§
7
0
= My(5-35) [ Wi(0)areres (&1 — 20,1) do
s f[° cr+ ¢
+ Af /_oo W4(J)a7€7§7 (67 )

+AF° /O Wi(o)azge, (57 +

(101)

o, t) do

Cr — Cs

o, t) do.

S
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Here, the multiple-scale variables, £, and &7, are evaluated at

— P 2 — z/e?
54:£, f7::13 crt 6gb(x/s)’ ¢(x): 53/0 sa(y) dy,

g2 g2 g2 2

where ¢ is the random correction to the location of the pulse, and the coeffi-
cients are

1
Mfys = Zés,fcf,s:

+1 3
Grs = (775&1* + §5f,s) Ct,s:

s Crs + Cs 1\ 2
b5 = Mps [(M> Of,s — 5s,f]a

Cs.f
2 2
Cf,s - CO

2 2 7
Cts — Csf

Wa(o) = (sa(&x)sa(o — &),
and A} is obtained from A% ; by replacing the wave speed c; by —c;.

The equations for a left-moving fast magnetoacoustic wave can be obtained
by replacing the wave speed ¢y by —cy, and the equations for a slow magneto-
acoustic wave can be obtained by exchanging the subscripts f and s.

We see from (100) that the wave profile, s, of the linearly degenerate entropy
wave is given by its initial value. The profile a; of the magnetoacoustic wave
satisfies (101). The nonlocal terms on the right-hand side of (101) originate
from the scattering of the right-moving fast magnetoacoustic wave by the
entropy wave into the left-moving fast magnetoacoustic wave, the left-moving
slow magnetoacoustic wave, and the right-moving slow magnetoacoustic wave,
respectively, followed by the scattering of these waves by the entropy wave back
into the right-moving fast magnetoacoustic wave.

7.2 Magnetoacoustic-Alfvén wave interaction

The asymptotic solution for the scattering of a right-moving fast magneto-
acoustic wave by a right-moving Alfvén wave is given by (99) with s4(&4) re-
placed by s6(&) and the associated eigenvector ry replaced by rg. The asymp-
totic equation (59) for the wave profile fluctuations of the right-moving Alfvén
wave is

s6t =0, (102)
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so that sg = s6(&). The asymptotic equation (74) for the wave profile of the
right-moving fast magnetoacoustic wave is

1
ars + QNfCaCf<S§>CL7§7 + (nga$>§
f 7
= Nylea =) eatep) [ Wolo)arees (1 -

Here, N} = M;/(4c}),

Cf+Ca
2¢,

o, t) do. (103)

We(o) = <56(§6)56(0 - &5)>

and the multiple-scale variables, & and &7, are evaluated at

x x—ct
§6=—, &= !

g2’ g2

The random phase shift ¢ is zero in this case. The equation for the left-moving
fast magnetoacoustic wave can be obtained by replacing the wave speed c; by
—cy. The nonlocal term on the right-hand side of (103) originates from the
scattering of the right-moving fast magnetoacoustic wave by the Alfvén wave
into a left-moving fast magnetoacoustic wave, and the scattering of this wave
by the Alfvén wave back into the rigth-moving fast magnetoacoustic wave.

The asymptotic equations for the slow magnetoacoustic-Alfvén wave interac-
tion can be obtained by exchanging the subscripts f and s. The asymptotic
equations for the scattering of the magnetoacoustic waves by the left-moving
Alfvén wave can be obtained by replacing the wave speed ¢, by —c, in the
above equations.

Since Gy # 0, the normalized form of (103) is

_ 1, 0 o\_ ,_
ug + (5“ )_Z/ Wa(;)%z(ﬂﬁ—a,ﬂd@

where
L Gre 2N¢eqcrc ~
U(ZC,E) - L0'7(57, )a at Kat + %<Sg>aﬁ7a T = 575
= %, A = Ng(ca — ) (2¢q + ¢).

As in the case of magnetoacoustic-entropy wave interaction, we see from (102)
that the wave profile, sg, of the linearly degenerate scattering Alfvén wave
is given by its initial value. On the other hand, the wave profile, a;, of the
scattered right-moving fast magnetoacoustic wave again satisfies an inviscid
Burgers equation with a nonlocal right-hand side (103), whose kernel is a
covariance function of the Alfvén wave profile.
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A Averaging lemma

Lemma 1 Suppose that F: R?> — R is a Lebesque measurable function such
that:

1 /L

(a) E/ F(y,0) dy converges pointwise a.e. in o as L — oo,
0

(b) there is a function h € L*(R) such that

1 /L
— <
L/O |F(y,0)|dy < h(o)
for all L > 0.

Let

Then

erists and is given by

Proof By Fubini’s theorem,
L L rMy—yo)
[ ewdy= ([ F.0)do) dy
0 a/A+yo AL~-yo) rL
= —/ / F(y,o0) dyda+/ / F(y,o0)dydo.
—Ayo 40 0 U//\-H/o

Dividing by L, taking the limit as L — oo, and applying the Lebesgue domi-
nated convergence theorem, we find that

(0= [ (o} [, Pincr)

= /OOO<F>(G) do,

where xp, is the characteristic function of the interval [0, \(L — yo)]. O
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In the notation used in the main part of the paper, we may write this result

as

</OA(yyo) F(y,o) d0> = /OOO<F>(0) do,

where the angular brackets denote an average with respect to y. More gener-
ally, for A # 0 and yo € R, we have

( " py,0) do) = | T Y o) do,

where
1 if A >0,
sgn(}) = {—1 if \ < 0.
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