
viii



CHAPTER 2

Laplace’s equation

There can be but one option as to the beauty and utility of this
analysis by Laplace; but the manner in which it has hitherto been
presented has seemed repulsive to the ablest mathematicians,
and difficult to ordinary mathematical students.1

Laplace’s equation is

∆u = 0

where the Laplacian ∆ is defined in Cartesian coordinates by

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+
∂2

∂x2
n

.

We may also write ∆ = divD. The Laplacian ∆ is invariant under translations
(it has constant coefficients) and orthogonal transformations of Rn. A solution of
Laplace’s equation is called a harmonic function.

Laplace’s equation is a linear, scalar equation. It is the prototype of an elliptic
partial differential equation, and many of its qualitative properties are shared by
more general elliptic PDEs. The non-homogeneous version of Laplace’s equation

−∆u = f

is called Poisson’s equation. It is convenient to include a minus sign here because
∆ is a negative definite operator.

The Laplace and Poisson equations, and their generalizations, arise in many
different contexts.

(1) Potential theory e.g. in the Newtonian theory of gravity, electrostatics,
heat flow, and potential flows in fluid mechanics.

(2) Riemannian geometry e.g. the Laplace-Beltrami operator.
(3) Stochastic processes e.g. the stationary Kolmogorov equation for Brown-

ian motion.
(4) Complex analysis e.g. the real and imaginary parts of an analytic function

of a single complex variable are harmonic.

As with any PDE, we typically want to find solutions of the Laplace or Poisson
equation that satisfy additional conditions. For example, if Ω is a bounded domain
in Rn, then the classical Dirichlet problem for Poisson’s equation is to find a function
u : Ω → R such that u ∈ C2(Ω) ∩C

(

Ω
)

and

−∆u = f in Ω,

u = g on ∂Ω.
(2.1)

1Kelvin and Tait, Treatise on Natural Philosophy, 1879
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20 2. LAPLACE’S EQUATION

where f ∈ C(Ω) and g ∈ C(∂Ω) are given functions. The classical Neumann
problem is to find a function u : Ω → R such that u ∈ C2(Ω) ∩ C1

(

Ω
)

and

−∆u = f in Ω,

∂u

∂ν
= g on ∂Ω.

(2.2)

Here, ‘classical’ refers to the requirement that the functions and derivatives ap-
pearing in the problem are defined pointwise as continuous functions. Dirichlet
boundary conditions specify the function on the boundary, while Neumann con-
ditions specify the normal derivative. Other boundary conditions, such as mixed
(or Robin) and oblique-derivative conditions are also of interest. Also, one may
impose different types of boundary conditions on different parts of the boundary
(e.g. Dirichlet on one part and Neumann on another).

Here, we mostly follow Evans [9] (§2.2), Gilbarg and Trudinger [17], and Han
and Lin [23].

2.1. Mean value theorem

Harmonic functions have the following mean-value property which states that
the average value (1.3) of the function over a ball or sphere is equal to its value at
the center.

Theorem 2.1. Suppose that u ∈ C2(Ω) is harmonic in an open set Ω and
Br (x) ⋐ Ω. Then

(2.3) u(x) = −

∫

Br(x)

u dx, u(x) = −

∫

∂Br(x)

u dS.

Proof. If u ∈ C2(Ω) and Br (x) ⋐ Ω, then the divergence theorem (Theo-
rem 1.46) implies that

∫

Br(x)

∆u dx =

∫

∂Br(x)

∂u

∂ν
dS

= rn−1

∫

∂B1(0)

∂u

∂r
(x+ ry) dS(y)

= rn−1 ∂

∂r

[

∫

∂B1(0)

u(x+ ry) dS(y)

]

.

Dividing this equation by αnr
n, we find that

(2.4) −

∫

Br(x)

∆u dx =
n

r

∂

∂r

[

−

∫

∂Br(x)

u dS

]

.

It follows that if u is harmonic, then its mean value over a sphere centered at x is
independent of r. Since the mean value integral at r = 0 is equal to u(x), the mean
value property for spheres follows.

The mean value property for the ball follows from the mean value property for
spheres by radial integration. �

The mean value property characterizes harmonic functions and has a remark-
able number of consequences. For example, harmonic functions are smooth because
local averages over a ball vary smoothly as the ball moves. We will prove this result
by mollification, which is a basic technique in the analysis of PDEs.
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Theorem 2.2. Suppose that u ∈ C(Ω) has the mean-value property (2.3). Then
u ∈ C∞(Ω) and ∆u = 0 in Ω.

Proof. Let ηǫ(x) = η̃ǫ(|x|) be the standard, radially symmetric mollifier (1.6).
If Bǫ (x) ⋐ Ω, then, using Proposition 1.45 together with the facts that the average
of u over each sphere centered at x is equal to u(x) and the integral of ηǫ is one,
we get

(ηǫ ∗ u) (x) =

∫

Bǫ(0)

ηǫ(y)u(x− y) dy

=

∫ ǫ

0

[

∫

∂B1(0)

ηǫ(rz)u(x − rz) dS(z)

]

rn−1 dr

= nαn

∫ ǫ

0

[

−

∫

∂Br(x)

u dS

]

η̃ǫ(r)rn−1 dr

= nαnu(x)

∫ ǫ

0

η̃ǫ(r)rn−1 dr

= u(x)

∫

ηǫ(y) dy

= u(x).

Thus, u is smooth since ηǫ ∗ u is smooth.
If u has the mean value property, then (2.4) shows that

∫

Br(x)

∆u dx = 0

for every ball Br (x) ⋐ Ω. Since ∆u is continuous, it follows that ∆u = 0 in Ω. �

Theorems 2.1–2.2 imply that any C2-harmonic function is C∞. The assumption
that u ∈ C2(Ω) is, if fact, unnecessary: Weyl showed that if a distribution u ∈ D′(Ω)
is harmonic in Ω, then u ∈ C∞(Ω).

Note that these results say nothing about the behavior of u at the boundary
of Ω, which can be nasty. The reverse implication of this observation is that the
Laplace equation can take rough boundary data and immediately smooth it to an
analytic function in the interior.

Example 2.3. Consider the meromorphic function f : C → C defined by

f(z) =
1

z
.

The real and imaginary parts of f

u(x, y) =
x

x2 + y2
, v(x, y) = −

y

x2 + y2

are harmonic and C∞ in, for example, the open unit disc

Ω =
{

(x, y) ∈ R
2 : (x− 1)2 + y2 < 1

}

but both are unbounded as (x, y) → (0, 0) ∈ ∂Ω.
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The boundary behavior of harmonic functions can be much worse than in this
example. If Ω ⊂ Rn is any open set, then there exists a harmonic function in Ω
such that

lim inf
x→ξ

u(x) = −∞, lim sup
x→ξ

u(x) = ∞

for all ξ ∈ ∂Ω. One can construct such a function as a sum of harmonic functions,
converging uniformly on compact subsets of Ω, whose terms have singularities on a
dense subset of points on ∂Ω.

It is interesting to contrast this result with the the corresponding behavior of
holomorphic functions of several variables. An open set Ω ⊂ Cn is said to be a
domain of holomorphy if there exists a holomorphic function f : Ω → C which
cannot be extended to a holomorphic function on a strictly larger open set. Every
open set in C is a domain of holomorphy, but when n ≥ 2 there are open sets in
Cn that are not domains of holomorphy, meaning that every holomorphic function
on those sets can be extended to a holomorphic function on a larger open set.

2.1.1. Subharmonic and superharmonic functions. The mean value prop-
erty has an extension to functions that are not necessarily harmonic but whose
Laplacian does not change sign.

Definition 2.4. Suppose that Ω is an open set. A function u ∈ C2(Ω) is
subharmonic if ∆u ≥ 0 in Ω and superharmonic if ∆u ≤ 0 in Ω.

A function u is superharmonic if and only if −u is subharmonic, and a function
is harmonic if and only if it is both subharmonic and superharmonic. A suitable
modification of the proof of Theorem 2.1 gives the following mean value inequality.

Theorem 2.5. Suppose that Ω is an open set, Br (x) ⋐ Ω, and u ∈ C2(Ω). If
u is subharmonic in Ω, then

(2.5) u(x) ≤ −

∫

Br(x)

u dx, u(x) ≤ −

∫

∂Br(x)

u dS.

If u is superharmonic in Ω, then

(2.6) u(x) ≥ −

∫

Br(x)

u dx, u(x) ≥ −

∫

∂Br(x)

u dS.

It follows from these inequalities that the value of a subharmonic (or super-
harmonic) function at the center of a ball is less (or greater) than or equal to the
value of a harmonic function with the same values on the boundary. Thus, the
graphs of subharmonic functions lie below the graphs of harmonic functions and
the graphs of superharmonic functions lie above, which explains the terminology.
The direction of the inequality (−∆u ≤ 0 for subharmonic functions and −∆u ≥ 0
for superharmonic functions) is more natural when the inequality is stated in terms
of the positive operator −∆.

Example 2.6. The function u(x) = |x|4 is subharmonic in Rn since ∆u =
4(n+2)|x|2 ≥ 0. The function is equal to the constant harmonic function U(x) = 1
on the sphere |x| = 1, and u(x) ≤ U(x) when |x| ≤ 1.
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2.2. Derivative estimates and analyticity

An important feature of Laplace equation is that we can estimate the derivatives
of a solution in a ball in terms of the solution on a larger ball. This feature is closely
connected with the smoothing properties of the Laplace equation.

Theorem 2.7. Suppose that u ∈ C2(Ω) is harmonic in the open set Ω and
Br (x) ⋐ Ω. Then for any 1 ≤ i ≤ n,

|∂iu(x)| ≤
n

r
max
Br(x)

|u|.

Proof. Since u is smooth, differentiation of Laplace’s equation with respect
to xi shows that ∂iu is harmonic, so by the mean value property for balls and the
divergence theorem

∂iu = −

∫

Br(x)

∂iu dx =
1

αnrn

∫

∂Br(x)

uνi dS.

Taking the absolute value of this equation and using the estimate
∣

∣

∣

∣

∣

∫

∂Br(x)

uνi dS

∣

∣

∣

∣

∣

≤ nαnr
n−1 max

Br(x)
|u|

we get the result. �

One consequence of Theorem 2.7 is that a bounded harmonic function on Rn

is constant; this is an n-dimensional extension of Liouville’s theorem for bounded
entire functions.

Corollary 2.8. If u ∈ C2(Rn) is bounded and harmonic in Rn, then u is
constant.

Proof. If |u| ≤ M on Rn, then Theorem 2.7 implies that

|∂iu(x)| ≤
Mn

r
for any r > 0. Taking the limit as r → ∞, we conclude that Du = 0, so u is
constant. �

Next we extend the estimate in Theorem 2.7 to higher-order derivatives. We use
a somewhat tricky argument that gives sharp enough estimates to prove analyticity.

Theorem 2.9. Suppose that u ∈ C2(Ω) is harmonic in the open set Ω and
Br (x) ⋐ Ω. Then for any multi-index α ∈ Nn

0 of order k = |α|

|∂αu(x)| ≤
nkek−1k!

rk
max
Br(x)

|u|.

Proof. We prove the result by induction on |α| = k. From Theorem 2.7,
the result is true when k = 1. Suppose that the result is true when |α| = k. If
|α| = k + 1, we may write ∂α = ∂i∂

β where 1 ≤ i ≤ n and |β| = k. For 0 < θ < 1,
let

ρ = (1 − θ)r.

Then, since ∂βu is harmonic and Bρ (x) ⋐ Ω, Theorem 2.7 implies that

|∂αu(x)| ≤
n

ρ
max
Bρ(x)

∣

∣∂βu
∣

∣ .
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Suppose that y ∈ Bρ (x). Then Br−ρ (y) ⊂ Br (x), and using the induction hypoth-
esis we get

∣

∣∂βu(y)
∣

∣ ≤
nkek−1k!

(r − ρ)k
max

Br−ρ(y)
|u| ≤

nkek−1k!

rkθk
max
Br(x)

|u| .

It follows that

|∂αu(x)| ≤
nk+1ek−1k!

rk+1θk(1− θ)
max
Br(x)

|u| .

Choosing θ = k/(k + 1) and using the inequality

1

θk(1 − θ)
=

(

1 +
1

k

)k

(k + 1) ≤ e(k + 1)

we get

|∂αu(x)| ≤
nk+1ek(k + 1)!

rk+1
max
Br(x)

|u| .

The result follows by induction. �

A consequence of this estimate is that the Taylor series of u converges to u near
any point. Thus, we have the following result.

Theorem 2.10. If u ∈ C2(Ω) is harmonic in an open set Ω then u is real-
analytic in Ω.

Proof. Suppose that x ∈ Ω and choose r > 0 such that B2r (x) ⋐ Ω. Since
u ∈ C∞(Ω), we may expand it in a Taylor series with remainder of any order k ∈ N

to get

u(x+ h) =
∑

|α|≤k−1

∂αu(x)

α!
hα +Rk(x, h),

where we assume that |h| < r. From Theorem 1.27, the remainder is given by

(2.7) Rk(x, h) =
∑

|α|=k

∂αu(x+ θh)

α!
hα

for some 0 < θ < 1.
To estimate the remainder, we use Theorem 2.9 to get

|∂αu(x+ θh)| ≤
nkek−1k!

rk
max

Br(x+θh)
|u|.

Since |h| < r, we have Br (x+ θh) ⊂ B2r (x), so for any 0 < θ < 1 we have

max
Br(x+θh)

|u| ≤ M, M = max
B2r(x)

|u|.

It follows that

(2.8) |∂αu(x+ θh)| ≤
Mnkek−1k!

rk
.

Since |hα| ≤ |h|k when |α| = k, we get from (2.7) and (2.8) that

|Rk(x, h)| ≤
Mnkek−1 |h|k k!

rk





∑

|α|=k

1

α!



 .
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The multinomial expansion

nk = (1 + 1 + · · ·+ 1)k =
∑

|α|=k

(

k

α

)

=
∑

|α|=k

k!

α!

shows that
∑

|α|=k

1

α!
=

nk

k!
.

Therefore, we have

|Rk(x, h)| ≤
M

e

(

n2e|h|

r

)k

.

Thus Rk(x, h) → 0 as k → ∞ if

|h| <
r

n2e
,

meaning that the Taylor series of u at any x ∈ Ω converges to u in a ball of non-zero
radius centered at x. �

It follows that, as for analytic functions, the global values of a harmonic function
is determined its values in arbitrarily small balls (or by the germ of the function at
a single point).

Corollary 2.11. Suppose that u, v are harmonic in a connected open set
Ω ⊂ Rn and ∂αu(x̄) = ∂αv(x̄) for all multi-indices α ∈ Nn

0 at some point x̄ ∈ Ω.
Then u = v in Ω.

Proof. Let

F = {x ∈ Ω : ∂αu(x) = ∂αv(x) for all α ∈ Nn
0} .

Then F 6= ∅, since x̄ ∈ F , and F is closed in Ω, since

F =
⋂

α∈Nn
0

[∂α(u− v)]
−1

(0)

is an intersection of relatively closed sets. Theorem 2.10 implies that if x ∈ F , then
the Taylor series of u, v converge to the same value in some ball centered at x.
Thus u, v and all of their partial derivatives are equal in this ball, so F is open.
Since Ω is connected, it follows that F = Ω. �

A physical explanation of this property is that Laplace’s equation describes an
equilibrium solution obtained from a time-dependent solution in the limit of infinite
time. For example, in heat flow, the equilibrium is attained as the result of ther-
mal diffusion across the entire domain, while an electrostatic field is attained only
after all non-equilibrium electric fields propagate away as electromagnetic radia-
tion. In this infinite-time limit, a change in the field near any point influences the
field everywhere else, and consequently complete knowledge of the solution in an
arbitrarily small region carries information about the solution in the entire domain.

Although, in principle, a harmonic function function is globally determined
by its local behavior near any point, the reconstruction of the global behavior is
sensitive to small errors in the local behavior.



26 2. LAPLACE’S EQUATION

Example 2.12. Let Ω =
{

(x, y) ∈ R2 : 0 < x < 1, y ∈ R
}

and consider for n ∈
N the function

un(x, y) = ne−nx sinny,

which is harmonic. Then

∂k
yun(x, 1) = (−1)knk+1e−n sinnx

converges uniformly to zero as n → ∞ for any k ∈ N0. Thus, un and any finite
number of its derivatives are arbitrarily close to zero at x = 1 when n is sufficiently
large. Nevertheless, un(0, y) = n sin(ny) is arbitrarily large at y = 0.

2.3. Maximum principle

The maximum principle states that a non-constant harmonic function cannot
attain a maximum (or minimum) at an interior point of its domain. This result
implies that the values of a harmonic function in a bounded domain are bounded
by its maximum and minimum values on the boundary. Such maximum principle
estimates have many uses, but they are typically available only for scalar equations,
not systems of PDEs.

Theorem 2.13. Suppose that Ω is a connected open set and u ∈ C2(Ω). If u
is subharmonic and attains a global maximum value in Ω, then u is constant in Ω.

Proof. By assumption, u is bounded from above and attains its maximum in
Ω. Let

M = max
Ω

u,

and consider
F = u−1 ({M}) = {x ∈ Ω : u(x) = M}.

Then F is nonempty and relatively closed in Ω since u is continuous. (A subset

F is relatively closed in Ω if F = F̃ ∩ Ω where F̃ is closed in Rn.) If x ∈ F and
Br (x) ⋐ Ω, then the mean value inequality (2.5) for subharmonic functions implies
that

−

∫

Br(x)

[u(y)− u(x)] dy = −

∫

Br(x)

u(y) dy − u(x) ≥ 0.

Since u attains its maximum at x, we have u(y) − u(x) ≤ 0 for all y ∈ Ω, and it
follows that u(y) = u(x) in Br (x). Therefore F is open as well as closed. Since Ω
is connected, and F is nonempty, we must have F = Ω, so u is constant in Ω. �

If Ω is not connected, then u is constant in any connected component of Ω that
contains an interior point where u attains a maximum value.

Example 2.14. The function u(x) = |x|2 is subharmonic in Rn. It attains a
global minimum in Rn at the origin, but it does not attain a global maximum in
any open set Ω ⊂ Rn. It does, of course, attain a maximum on any bounded closed
set Ω, but the attainment of a maximum at a boundary point instead of an interior
point does not imply that a subharmonic function is constant.

It follows immediately that superharmonic functions satisfy a minimum prin-
ciple, and harmonic functions satisfy a maximum and minimum principle.

Theorem 2.15. Suppose that Ω is a connected open set and u ∈ C2(Ω). If
u is harmonic and attains either a global minimum or maximum in Ω, then u is
constant.
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Proof. Any superharmonic function u that attains a minimum in Ω is con-
stant, since −u is subharmonic and attains a maximum. A harmonic function is
both subharmonic and superharmonic. �

Example 2.16. The function

u(x, y) = x2 − y2

is harmonic in R2 (it’s the real part of the analytic function f(z) = z2). It has a
critical point at 0, meaning that Du(0) = 0. This critical point is a saddle-point,
however, not an extreme value. Note also that

−

∫

Br(0)

u dxdy =
1

2π

∫ 2π

0

(

cos2 θ − sin2 θ
)

dθ = 0

as required by the mean value property.

One consequence of this property is that any nonconstant harmonic function is
an open mapping, meaning that it maps opens sets to open sets. This is not true
of smooth functions such as x 7→ |x|2 that attain an interior extreme value.

2.3.1. The weak maximum principle. Theorem 2.13 is an example of a
strong maximum principle, because it states that a function which attains an inte-
rior maximum is a trivial constant function. This result leads to a weak maximum
principle for harmonic functions, which states that the function is bounded inside a
domain by its values on the boundary. A weak maximum principle does not exclude
the possibility that a non-constant function attains an interior maximum (although
it implies that an interior maximum value cannot exceed the maximum value of the
function on the boundary).

Theorem 2.17. Suppose that Ω is a bounded, connected open set in Rn and
u ∈ C2(Ω) ∩ C(Ω) is harmonic in Ω. Then

max
Ω

u = max
∂Ω

u, min
Ω

u = min
∂Ω

u.

Proof. Since u is continuous and Ω is compact, u attains its global maximum
and minimum on Ω. If u attains a maximum or minimum value at an interior point,
then u is constant by Theorem 2.15, otherwise both extreme values are attained on
the boundary. In either case, the result follows. �

Let us give a second proof of this theorem that does not depend on the mean
value property. Instead, we use an argument based on the non-positivity of the
second derivative at an interior maximum. In the proof, we need to account for the
possibility of degenerate maxima where the second derivative is zero.

Proof. For ǫ > 0, let

uǫ(x) = u(x) + ǫ|x|2.

Then ∆uǫ = 2nǫ > 0 since u is harmonic. If uǫ attained a local maximum at an
interior point, then ∆uǫ ≤ 0 by the second derivative test. Thus uǫ has no interior
maximum, and it attains its maximum on the boundary. If |x| ≤ R for all x ∈ Ω,
it follows that

sup
Ω

u ≤ sup
Ω

uǫ ≤ sup
∂Ω

uǫ ≤ sup
∂Ω

u+ ǫR2.
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Letting ǫ → 0+, we get that supΩ u ≤ sup∂Ω u. An application of the same argu-
ment to −u gives infΩ u ≥ inf∂Ω u, and the result follows. �

Subharmonic functions satisfy a maximum principle, maxΩ u = max∂Ω u, while
superharmonic functions satisfy a minimum principle minΩ u = min∂Ω u.

The conclusion of Theorem 2.17 may also be stated as

min
∂Ω

u ≤ u(x) ≤ max
∂Ω

u for all x ∈ Ω.

In physical terms, this means for example that the interior of a bounded region
which contains no heat sources or sinks cannot be hotter than the maximum tem-
perature on the boundary or colder than the minimum temperature on the bound-
ary.

The maximum principle gives a uniqueness result for the Dirichlet problem for
the Poisson equation.

Theorem 2.18. Suppose that Ω is a bounded, connected open set in Rn and
f ∈ C(Ω), g ∈ C(∂Ω) are given functions. Then there is at most one solution of
the Dirichlet problem (2.1) with u ∈ C2(Ω) ∩ C(Ω).

Proof. Suppose that u1, u2 ∈ C2(Ω) ∩ C(Ω) satisfy (2.1). Let v = u1 − u2.
Then v ∈ C2(Ω)∩C(Ω) is harmonic in Ω and v = 0 on ∂Ω. The maximum principle
implies that v = 0 in Ω, so u1 = u2, and a solution is unique. �

This theorem, of course, does not address the question of whether such a so-
lution exists. In general, the stronger the conditions we impose upon a solution,
the easier it is to show uniqueness and the harder it is to prove existence. When
we come to prove an existence theorem, we will begin by showing the existence of
weaker solutions e.g. solutions in H1(Ω) instead of C2(Ω). We will then show that
these solutions are smooth under suitable assumptions on f , g, and Ω.

2.3.2. Hopf’s proof of the maximum principle. Next, we give an alter-
native proof of the strong maximum principle Theorem 2.13 due to E. Hopf.2 This
proof does not use the mean value property and it works for other elliptic PDEs,
not just the Laplace equation.

Proof. As before, let M = maxΩ u and define

F = {x ∈ Ω : u(x) = M} .

Then F is nonempty by assumption, and it is relatively closed in Ω since u is
continuous.

Now suppose, for contradiction, that F 6= Ω. Then

G = Ω \ F

is nonempty and open, and the boundary ∂F ∩Ω = ∂G∩Ω is nonempty (otherwise
F , G are open and Ω is not connected).

Choose y ∈ ∂G ∩ Ω and let d = dist(y, ∂Ω) > 0. There exist points in G that
are arbitrarily close to y, so we may choose x ∈ G such that |x − y| < d/2. If

2There were two Hopf’s (at least): Eberhard Hopf (1902–1983) is associated with the Hopf

maximum principle (1927), the Hopf bifurcation theorem, the Wiener-Hopf method in integral
equations, and the Cole-Hopf transformation for solving Burgers equation; Heinz Hopf (1894–
1971) is associated with the Hopf-Rinow theorem in Riemannian geometry, the Hopf fibration in
topology, and Hopf algebras.
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r = dist(x, F ), it follows that 0 < r < d/2, so Br (x) ⊂ G. Moreover, there exists
at least one point x̄ ∈ ∂Br (x) ∩ ∂G such that u (x̄) = M .

We therefore have the following situation: u is subharmonic in an open set G
where u < M , the ball Br (x) is contained in G, and u (x̄) = M for some point
x̄ ∈ ∂Br (x) ∩ ∂G. The Hopf boundary point lemma, proved below, then implies
that

∂νu(x̄) > 0,

where ∂ν is the outward unit normal derivative to the sphere ∂Br (x).
However, since x̄ is an interior point of Ω and u attains its maximum value M

there, we have Du (x̄) = 0, so

∂νu (x̄) = Du (x̄) · ν = 0.

This contradiction proves the theorem. �

Before proving the Hopf lemma, we make a definition.

Definition 2.19. An open set Ω satisfies the interior sphere condition at x̄ ∈
∂Ω if there is an open ball Br (x) contained in Ω such that x̄ ∈ ∂Br (x)

The interior sphere condition is satisfied by open sets with a C2-boundary, but
— as the following example illustrates — it need not be satisfied by open sets with
a C1-boundary, and in that case the conclusion of the Hopf lemma may not hold.

Example 2.20. Let

u = ℜ

(

z

log z

)

=
x log r + yθ

log2 r + θ2

where log z = log r + iθ with −π/2 < θ < π/2. Define

Ω =
{

(x, y) ∈ R
2 : 0 < x < 1, u(x, y) < 0

}

.

Then u is harmonic in Ω, since z/ log z is analytic in Ω, and ∂Ω is C1 near the origin,
with unit outward normal (−1, 0) at the origin. The curvature of ∂Ω, however,
becomes infinite at the origin, and the interior sphere condition fails. Moreover,
the normal derivative ∂νu(0, 0) = −ux(0, 0) = 0 vanishes at the origin, and it is not
strictly positive as would be required by the Hopf lemma.

Lemma 2.21. Suppose that u ∈ C2(Ω)∩C1
(

Ω
)

is subharmonic in an open set
Ω and u(x) < M for every x ∈ Ω. If u(x̄) = M for some x̄ ∈ ∂Ω and Ω satisfies
the interior sphere condition at x̄, then ∂νu(x̄) > 0, where ∂ν is the derivative in
the outward unit normal direction to a sphere that touches ∂Ω at x̄.

Proof. We want to perturb u to uǫ = u + ǫv by a function ǫv with strictly
negative normal derivative at x̄, while preserving the conditions that uǫ(x̄) = M ,
uǫ is subharmonic, and uǫ < M near x̄. This will imply that the normal derivative
of u at x̄ is strictly positive.

We first construct a suitable perturbing function v. Given a ball BR (x), we
want v ∈ C2(Rn) to have the following properties:

(1) v = 0 on ∂BR (x);
(2) v = 1 on ∂BR/2 (x);
(3) ∂νv < 0 on ∂BR (x);
(4) ∆v ≥ 0 in BR (x) \BR/2 (x).
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We consider without loss of generality a ball BR (0) centered at 0. Thus, we want
to construct a subharmonic function in the annular region R/2 < |x| < R which
is 1 on the inner boundary and 0 on the outer boundary, with strictly negative
outward normal derivative.

The harmonic function that is equal to 1 on |x| = R/2 and 0 on |x| = R is
given by

u(x) =
1

2n−2 − 1

[

(

R

|x|

)n−2

− 1

]

(We assume that n ≥ 3 for simplicity.) Note that

∂νu = −
n− 2

2n−2 − 1

1

R
< 0 on |x| = R,

so we have room to fit a subharmonic function beneath this harmonic function while
preserving the negative normal derivative.

Explicitly, we look for a subharmonic function of the form

v(x) = c
[

e−α|x|2 − e−αR2
]

where c, α are suitable positive constants. We have v(x) = 0 on |x| = R, and
choosing

c =
1

e−αR2/4 − e−αR2
,

we have v(R/2) = 1. Also, c > 0 for α > 0. The outward normal derivative of v is
the radial derivative, so

∂νv(x) = −2cα|x|e−α|x|2 < 0 on |x| = R.

Finally, using the expression for the Laplacian in polar coordinates, we find that

∆v(x) = 2cα
[

2α|x|2 − n
]

e−α|x|2.

Thus, choosing α ≥ 2n/R2, we get ∆v < 0 for R/2 < |x| < R, and this gives a
function v with the required properties.

By the interior sphere condition, there is a ball BR (x) ⊂ Ω with x̄ ∈ ∂BR (x).
Let

M ′ = max
BR/2(x)

u < M

and define ǫ = M −M ′ > 0. Let

w = u+ ǫv −M.

Then w ≤ 0 on ∂BR (x) and ∂BR/2 (x) and ∆w ≥ 0 in BR (x)\BR/2 (x). The max-

imum principle for subharmonic functions implies that w ≤ 0 in BR (x) \BR/2 (x).
Since w(x̄) = 0, it follows that ∂νw(x̄) ≥ 0. Therefore

∂νu(x̄) = ∂νw(x̄)− ǫ∂νv(x̄) > 0,

which proves the result. �
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2.4. Harnack’s inequality

The maximum principle gives a basic pointwise estimate for solutions of Laplace’s
equation, and it has a natural physical interpretation. Harnack’s inequality is an-
other useful pointwise estimate, although its physical interpretation is less clear. It
states that if a function is nonnegative and harmonic in a domain, then the ratio of
the maximum and minimum of the function on a compactly supported subdomain
is bounded by a constant that depends only on the domains. This inequality con-
trols, for example, the amount by which a harmonic function can oscillate inside a
domain in terms of the size of the function.

Theorem 2.22. Suppose that Ω′ ⋐ Ω is a connected open set that is compactly
contained an open set Ω. There exists a constant C, depending only on Ω and Ω′,
such that if u ∈ C(Ω) is a non-negative function with the mean value property, then

(2.9) sup
Ω′

u ≤ C inf
Ω′

u.

Proof. First, we establish the inequality for a compactly contained open ball.
Suppose that x ∈ Ω and B4R (x) ⊂ Ω, and let u be any non-negative function with
the mean value property in Ω. If y ∈ BR (x), then,

u(y) = −

∫

BR(y)

u dx ≤ 2n−

∫

B2R(x)

u dx

since BR (y) ⊂ B2R (x) and u is non-negative. Similarly, if z ∈ BR (x), then

u(z) = −

∫

B3R(z)

u dx ≥

(

2

3

)n

−

∫

B2R(x)

u dx

since B3R (z) ⊃ B2R (x). It follows that

sup
BR(x)

u ≤ 3n inf
BR(x)

u.

Suppose that Ω′ ⋐ Ω and 0 < 4R < dist(Ω′, ∂Ω). Since Ω′ is compact, we
may cover Ω′ by a finite number of open balls of radius R, where the number N
of such balls depends only on Ω′ and Ω. Moreover, since Ω′ is connected, for any
x, y ∈ Ω there is a sequence of at most N overlapping balls {B1, B2, . . . , Bk} such
that Bi ∩Bi+1 6= ∅ and x ∈ B1, y ∈ Bk. Applying the above estimate to each ball
and combining the results, we obtain that

sup
Ω′

u ≤ 3nN inf
Ω′

u.

�

In particular, it follows from (2.9) that for any x, y ∈ Ω′, we have

1

C
u(y) ≤ u(x) ≤ Cu(y).

Harnack’s inequality has strong consequences. For example, it implies that if
{un} is a decreasing sequence of harmonic functions in Ω and {un(x)} is bounded
for some x ∈ Ω, then the sequence converges uniformly on compact subsets of Ω
to a function that is harmonic in Ω. By contrast, the convergence of an arbitrary
sequence of smooth functions at a single point in no way implies its convergence
anywhere else, nor does uniform convergence of smooth functions imply that their
limit is smooth.
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It is useful to compare this situation with what happens for analytic functions
in complex analysis. If {fn} is a sequence of analytic functions

fn : Ω ⊂ C → C

that converges uniformly on compact subsets of Ω to a function f , then f is also
analytic in Ω because uniform convergence implies that the Cauchy integral formula
continues to hold for f , and differentiation of this formula implies that f is analytic.

2.5. Green’s identities

Green’s identities provide the main energy estimates for the Laplace and Pois-
son equations.

Theorem 2.23. If Ω is a bounded C1 open set in Rn and u, v ∈ C2(Ω), then
∫

Ω

u∆v dx = −

∫

Ω

Du ·Dv dx+

∫

∂Ω

u
∂v

∂ν
dS,(2.10)

∫

Ω

u∆v dx =

∫

Ω

v∆u dx+

∫

∂Ω

(

u
∂v

∂ν
− v

∂u

∂ν

)

dS.(2.11)

Proof. Integrating the identity

div (uDv) = u∆v +Du ·Dv

over Ω and using the divergence theorem, we get (2.10). Integrating the identity

div (uDv − vDu) = u∆v − v∆u,

we get (2.11). �

Equations (2.10) and (2.11) are Green’s first and second identity, respectively.
The second Green’s identity implies that the Laplacian ∆ is a formally self-adjoint
differential operator.

Green’s first identity provides a proof of the uniqueness of solutions of the
Dirichlet problem based on estimates of L2-norms of derivatives instead of maxi-
mum norms. Such integral estimates are called energy estimates, because in many
(though not all) cases these integral norms may be interpreted physically as the
energy of a solution.

Theorem 2.24. Suppose that Ω is a connected, bounded C1 open set, f ∈ C(Ω),
and g ∈ C(∂Ω). If u1, u2 ∈ C2(Ω) are solution of the Dirichlet problem (2.1), then
u1 = u2; and if u1, u2 ∈ C2(Ω) are solutions of the Neumann problem (2.2), then
u1 = u2 + C where C ∈ R is a constant.

Proof. Let w = u1 − u2. Then ∆w = 0 in Ω and either w = 0 or ∂w/∂ν = 0
on ∂Ω. Setting u = w, v = w in (2.10), it follows that the boundary integral and
the integral

∫

Ω
w∆w dx vanish, so that

∫

Ω

|Dw|2 dx = 0.

Therefore Dw = 0 in Ω, so w is constant. For the Dirichlet problem, w = 0 on ∂Ω
so the constant is zero, and both parts of the result follow. �
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2.6. Fundamental solution

We define the fundamental solution or free-space Green’s function Γ : Rn → R

(not to be confused with the Gamma function!) of Laplace’s equation by

Γ(x) =
1

n(n− 2)αn

1

|x|n−2
if n ≥ 3,

Γ(x) = −
1

2π
log |x| if n = 2.

(2.12)

The corresponding potential for n = 1 is

(2.13) Γ(x) = −
1

2
|x|,

but we will consider only the multi-variable case n ≥ 2. (Our sign convention for Γ
is the same as Evans [9], but the opposite of Gilbarg and Trudinger [17].)

2.6.1. Properties of the solution. The potential Γ ∈ C∞(Rn \ {0}) is
smooth away from the origin. For x 6= 0, we compute that

(2.14) ∂iΓ(x) = −
1

nαn

1

|x|n−1

xi

|x|
,

and

∂iiΓ(x) =
1

αn

x2
i

|x|n+2
−

1

nαn

1

|x|n
.

It follows that

∆Γ = 0 if x 6= 0,

so Γ is harmonic in any open set that does not contain the origin. The function
Γ is homogeneous of degree −n + 2, its first derivative is homogeneous of degree
−n+ 1, and its second derivative is homogeneous of degree n.

From (2.14), we have for x 6= 0 that

DΓ ·
x

|x|
= −

1

nαn

1

|x|n−1

Thus we get the following surface integral over a sphere centered at the origin with
normal ν = x/|x|:

(2.15) −

∫

∂Br(0)

DΓ · ν dS = 1.

As follows from the divergence theorem and the fact that Γ is harmonic in BR (0) \
Br (0), this integral does not depend on r. The surface integral is not zero, however,
as it would be for a function that was harmonic everywhere inside Br (0), including
at the origin. The normalization of the flux integral in (2.15) to one accounts for
the choice of the multiplicative constant in the definition of Γ.

The function Γ is unbounded as x → 0 with Γ(x) → ∞. Nevertheless, Γ and
DΓ are locally integrable. For example, the local integrability of ∂iΓ in (2.14)
follows from the estimate

|∂iΓ(x)| ≤
Cn

|x|n−1
,

since |x|−a is locally integrable on Rn when a < n (see Example 1.13). The second
partial derivatives of Γ are not locally integrable, however, since they are of the
order |x|−n as x → 0.
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2.6.2. Physical interpretation. Suppose, as in electrostatics, that u is the
potential due to a charge distribution with smooth density f , where −∆u = f , and
E = −Du is the electric field. By the divergence theorem, the flux of E through
the boundary ∂Ω of an open set Ω is equal to the to charge inside the enclosed
volume,

∫

∂Ω

E · ν dS =

∫

Ω

(−∆u) dx =

∫

Ω

f dx.

Thus, since ∆Γ = 0 for x 6= 0 and from (2.15) the flux of −DΓ through any sphere
centered at the origin is equal to one, we may interpret Γ as the potential due to
a point charge located at the origin. In the sense of distributions, Γ satisfies the
PDE

−∆Γ = δ

where δ is the delta-function supported at the origin. We refer to such a solution
as a Green’s function of the Laplacian.

In three space dimensions, the electric field E = −DΓ of the point charge is
given by

E = −
1

4π

1

|x|2
x

|x|
,

corresponding to an inverse-square force directed away from the origin. For gravity,
which is always attractive, the force has the opposite sign. This explains the con-
nection between the Laplace and Poisson equations and Newton’s inverse square
law of gravitation.

As |x| → ∞, the potential Γ(x) approaches zero if n ≥ 3, but Γ(x) → −∞ as
|x| → ∞ if n = 2. Physically, this corresponds to the fact that only a finite amount
of energy is required to remove an object from a point source in three or more space
dimensions (for example, to remove a rocket from the earth’s gravitational field)
but an infinite amount of energy is required to remove an object from a line source
in two space dimensions.

We will use the point-source potential Γ to construct solutions of Poisson’s
equation for rather general right hand sides. The physical interpretation of the
method is that we can obtain the potential of a general source by representing
the source as a continuous distribution of point sources and superposing the corre-
sponding point-source potential as in (2.24) below. This method, of course, depends
crucially on the linearity of the equation.

2.7. The Newtonian potential

Consider the equation

−∆u = f in Rn

where f : Rn → R is a given function, which for simplicity we assume is smooth
and compactly supported.

Theorem 2.25. Suppose that f ∈ C∞
c (Rn), and let

u = Γ ∗ f

where Γ is the fundamental solution (2.12). Then u ∈ C∞(Rn) and

(2.16) −∆u = f.
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Proof. Since f ∈ C∞
c (Rn) and Γ ∈ L1

loc(R
n), Theorem 1.28 implies that

u ∈ C∞(Rn) and

(2.17) ∆u = Γ ∗ (∆f)

Our objective is to transfer the Laplacian across the convolution from f to Γ.
If x /∈ supp f , then we may choose a smooth open set Ω that contains supp f

such that x /∈ Ω. Then Γ(x − y) is a smooth, harmonic function of y in Ω and f ,
Df are zero on ∂Ω. Green’s theorem therefore implies that

∆u(x) =

∫

Ω

Γ(x− y)∆f(y) dy =

∫

Ω

∆Γ(x− y)f(y) dy = 0,

which shows that −∆u(x) = f(x).
If x ∈ supp f , we must be careful about the non-integrable singularity in ∆Γ.

We therefore ‘cut out’ a ball of radius r about the singularity, apply Green’s theorem
to the resulting smooth integral, and then take the limit as r → 0+.

Let Ω be an open set that contains the support of f and define

(2.18) Ωr(x) = Ω \Br (x) .

Since ∆f is bounded with compact support and Γ is locally integrable, the Lebesgue
dominated convergence theorem implies that

Γ ∗ (∆f) (x) = lim
r→0+

∫

Ωr(x)

Γ(x− y)∆f(y) dy.(2.19)

The potential Γ(x − y) is a smooth, harmonic function of y in Ωr(x). Thus
Green’s identity (2.11) gives

∫

Ωr(x)

Γ(x − y)∆f(y) dy

=

∫

∂Ω

[

Γ(x− y)Dyf(y) · ν(y)−DyΓ(x− y) · ν(y)f(y)
]

dS(y)

−

∫

∂Br(x)

[

Γ(x− y)Dyf(y) · ν(y)−DyΓ(x− y) · ν(y)f(y)
]

dS(y)

where we use the radially outward unit normal on the boundary. The boundary
terms on ∂Ω vanish because f and Df are zero there, so

∫

Ωr(x)

Γ(x− y)∆f(y) dy =−

∫

∂Br(x)

Γ(x− y)Dyf(y) · ν(y) dS(y)

+

∫

∂Br(x)

DyΓ(x− y) · ν(y)f(y) dS(y).

(2.20)

Since Df is bounded and Γ(x) = O(|x|n−2) if n ≥ 3, we have
∫

∂Br(x)

Γ(x− y)Dyf(y) · ν(y) dS(y) = O(r) as r → 0+.

The integral is O(r log r) if n = 2. In either case,

(2.21) lim
r→0+

∫

∂Br(x)

Γ(x− y)Dyf(y) · ν(y) dS(y) = 0.
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For the surface integral in (2.20) that involves DΓ, we write
∫

∂Br(x)

DyΓ(x− y) · ν(y)f(y) dS(y)

=

∫

∂Br(x)

DyΓ(x− y) · ν(y) [f(y)− f(x)] dS(y)

+ f(x)

∫

∂Br(x)

DyΓ(x − y) · ν(y) dS(y).

From (2.15),
∫

∂Br(x)

DyΓ(x− y) · ν(y) dS(y) = −1;

and, since f is smooth,
∫

∂Br(x)

DyΓ(x− y) [f(y)− f(x)] dS(y) = O

(

rn−1 ·
1

rn−1
· r

)

→ 0

as r → 0+. It follows that

(2.22) lim
r→0+

∫

∂Br(x)

DyΓ(x − y) · ν(y)f(y) dS(y) = −f(x).

Taking the limit of (2.20) as r → 0+ and using (2.21) and (2.22) in the result, we
get

lim
r→0+

∫

Ωr(x)

Γ(x− y)∆f(y) dy = −f(x).

The use of this equation in (2.19) shows that

(2.23) Γ ∗ (∆f) = −f,

and the use of (2.23) in (2.17) gives (2.16). �

Equation (2.23) is worth noting: it provides a representation of a function
f ∈ C∞

c (Rn) as a convolution of its Laplacian with the Newtonian potential.
The potential u associated with a source distribution f is given by

(2.24) u(x) =

∫

Γ(x− y)f(y) dy.

We call u the Newtonian potential of f . We may interpret u(x) as a continuous
superposition of potentials proportional to Γ(x−y) due to point sources of strength
f(y) dy located at y.

If n ≥ 3, the potential Γ ∗ f(x) of a compactly supported, integrable function
approaches zero as |x| → ∞. We have

Γ ∗ f(x) =
1

n(n− 2)αn|x|n−2

∫ (

|x|

|x− y|

)n−2

f(y) dy,

and by the Lebesgue dominated convergence theorem,

lim
|x|→∞

∫ (

|x|

|x− y|

)n−2

f(y) dy =

∫

f(y) dy.

Thus, the asymptotic behavior of the potential is the same as that of a point source
whose charge is equal to the total charge of the source density f . If n = 2, the
potential, in general, grows logarithmically as |x| → ∞.
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If n ≥ 3, Liouville’s theorem (Corollary 2.8) implies that the Newtonian poten-
tial Γ ∗ f is the unique solution of −∆u = f such that u(x) → 0 as x → ∞. (If u1,
u2 are solutions, then v = u1 − u2 is harmonic in Rn and approaches 0 as x → ∞;
thus v is bounded and therefore constant, so v = 0.) If n = 2, then a similar
argument shows that any solution of Poisson’s equation such that Du(x) → 0 as
|x| → ∞ differs from the Newtonian potential by a constant.

2.7.1. Second derivatives of the potential. In order to study the regular-
ity of the Newtonian potential u in terms of f , we derive an integral representation
for its second derivatives.

We write ∂i∂j = ∂ij , and let

δij =

{

1 if i = j
0 if i 6= j

denote the Kronecker delta. In the following ∂iΓ(x − y) denotes the ith partial
derivative of Γ evaluated at x−y, with similar notation for other derivatives. Thus,

∂

∂yi
Γ(x− y) = −∂iΓ(x − y).

Theorem 2.26. Suppose that f ∈ C∞
c (Rn), and u = Γ ∗ f where Γ is the

Newtonian potential (2.12). If Ω is any smooth open set that contains the support
of f , then

∂iju(x) =

∫

Ω

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy

− f(x)

∫

∂Ω

∂iΓ(x − y)νj(y) dS(y).

(2.25)

Proof. As before, the result is straightforward to prove if x /∈ supp f . We
choose Ω ⊃ supp f such that x /∈ Ω. Then Γ is smooth on Ω so we may differentiate
under the integral sign to get

∂iju(x) =

∫

Ω

∂ijΓ(x− y)f(y) dy.,

which is (2.25) with f(x) = 0.
If x ∈ supp f , we follow a similar procedure to the one used in the proof of

Theorem 2.25: We differentiate under the integral sign in the convolution u = Γ∗ f
on f , cut out a ball of radius r about the singularity in Γ, apply Greens’ theorem,
and let r → 0+.

In detail, define Ωr(x) as in (2.18), where Ω ⊃ supp f is a smooth open set.
Since Γ is locally integrable, the Lebesgue dominated convergence theorem implies
that

(2.26) ∂iju(x) =

∫

Ω

Γ(x− y)∂ijf(y) dy = lim
r→0+

∫

Ωr(x)

Γ(x− y)∂ijf(y) dy.

For x 6= y, we have the identity

Γ(x− y)∂ijf(y)− ∂ijΓ(x− y)f(y)

=
∂

∂yi
[Γ(x− y)∂jf(y)] +

∂

∂yj
[∂iΓ(x− y)f(y)] .
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Thus, using Green’s theorem, we get
∫

Ωr(x)

Γ(x− y)∂ijf(y) dy =

∫

Ωr(x)

∂ijΓ(x− y)f(y) dy

−

∫

∂Br(x)

[Γ(x − y)∂jf(y)νi(y) + ∂iΓ(x − y)f(y)νj(y)] dS(y).

(2.27)

In (2.27), ν denotes the radially outward unit normal vector on ∂Br (x), which
accounts for the minus sign of the surface integral; the integral over the boundary
∂Ω vanishes because f is identically zero there.

We cannot take the limit of the integral over Ωr(x) directly, since ∂ijΓ is not
locally integrable. To obtain a limiting integral that is convergent, we write
∫

Ωr(x)

∂ijΓ(x− y)f(y) dy

=

∫

Ωr(x)

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy + f(x)

∫

Ωr(x)

∂ijΓ(x− y) dy

=

∫

Ωr(x)

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy

− f(x)

[

∫

∂Ω

∂iΓ(x− y)νj(y) dS(y)−

∫

∂Br(x)

∂iΓ(x− y)νj(y) dS(y)

]

.

Using this expression in (2.27) and using the result in (2.26), we get

∂iju(x) = lim
r→0+

∫

Ωr(x)

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy

− f(x)

∫

∂Ω

∂iΓ(x− y)νj(y) dS(y)

−

∫

∂Br(x)

∂iΓ(x− y)
[

f(y)− f(x)
]

νj(y) dS(y)

−

∫

∂Br(x)

Γ(x− y)∂jf(y)νi(y) dS(y).

(2.28)

Since f is smooth, the function y 7→ ∂ijΓ(x − y) [f(y)− f(x)] is integrable on Ω,
and by the Lebesgue dominated convergence theorem

lim
r→0+

∫

Ωr(x)

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy =

∫

Ω

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy.

We also have

lim
r→0+

∫

∂Br(x)

∂iΓ(x− y)
[

f(y)− f(x)
]

νj(y) dS(y) = 0,

lim
r→0+

∫

∂Br(x)

Γ(x− y)∂jf(y)νi(y) dS(y) = 0.

Using these limits in (2.28), we get (2.25). �

Note that if Ω′ ⊃ Ω ⊃ supp f , then writing

Ω′ = Ω ∪ (Ω′ \ Ω)
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and using the divergence theorem, we get
∫

Ω′

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy − f(x)

∫

∂Ω′

∂iΓ(x− y)νj(y) dS(y)

=

∫

Ω

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy

− f(x)

[

∫

∂Ω′

∂iΓ(x− y)νj(x− y) dS(y) +

∫

Ω′\Ω

∂ijΓ(x− y) dy

]

=

∫

Ω

∂ijΓ(x− y)
[

f(y)− f(x)
]

dy − f(x)

∫

∂Ω

∂iΓ(x− y)νj(y) dS(y).

Thus, the expression on the right-hand side of (2.25) does not depend on Ω provided
that it contains the support of f . In particular, we can choose Ω to be a sufficiently
large ball centered at x.

Corollary 2.27. Suppose that f ∈ C∞
c (Rn), and u = Γ ∗ f where Γ is the

Newtonian potential (2.12). Then

(2.29) ∂iju(x) =

∫

BR(x)

∂ijΓ(x− y) [f(y)− f(x)] dy −
1

n
f(x)δij

where BR (x) is any open ball centered at x that contains the support of f .

Proof. In (2.25), we choose Ω = BR (x) ⊃ supp f . From (2.14), we have
∫

∂BR(x)

∂iΓ(x− y)νj(y) dS(y) =

∫

∂BR(x)

−(xi − yi)

nαn|x− y|n
yj − xj

|y − x|
dS(y)

=

∫

∂BR(0)

yiyj
nαn|y|n+1

dS(y)

If i 6= j, then yiyj is odd under a reflection yi 7→ −yi, so this integral is zero. If
i = j, then the value of the integral does not depend on i, since we may transform
the i-integral into an i′-integral by a rotation. Therefore

1

nαn

∫

∂BR(0)

y2i
|y|n+1

dS(y) =
1

n

n
∑

i=1

(

1

nαn

∫

∂BR(0)

y2i
|y|n+1

dS(y)

)

=
1

n

1

nαn

∫

∂BR(0)

1

|y|n−1
dS(y)

=
1

n
.

It follows that
∫

∂BR(x)

∂iΓ(x− y)νj(y) dS(y) =
1

n
δij .

Using this result in (2.25), we get (2.29). �

2.7.2. Hölder estimates. We want to derive estimates of the derivatives of
the Newtonian potential u = Γ ∗ f in terms of the source density f . We continue
to assume that f ∈ C∞

c (Rn); the estimates extend by a density argument to any
Hölder-continuous function f with compact support (or sufficiently rapid decay at
infinity).
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In one space dimension, a solution of the ODE

−u′′ = f

is given in terms of the potential (2.13) by

u(x) = −
1

2

∫

|x− y| f(y) dy.

If f ∈ Cc(R), then obviously u ∈ C2(R) and max |u′′| = max |f |.
In more than one space dimension, however, it is not possible estimate the

maximum norm of the second derivative D2u of the potential u = Γ ∗ f in terms
of the maximum norm of f , and there exist functions f ∈ Cc(R

n) for which u /∈
C2(Rn).

Nevertheless, if we measure derivatives in an appropriate way, we gain two
derivatives in solving the Laplace equation (and other second-order elliptic PDEs).
The fact that in inverting the Laplacian we gain as many derivatives as the order
of the PDE is the essential point of elliptic regularity theory; this does not happen
for many other types of PDEs, such as hyperbolic PDEs.

In particular, if we measure derivatives in terms of their Hölder continuity, we
can estimate the C2,α-norm of u in terms of the C0,α-norm of f . These Hölder
estimates were used by Schauder3 to develop a general existence theory for elliptic
PDEs with Hölder continuous coefficients, typically referred to as the Schauder
theory [17].

Here, we will derive Hölder estimates for the Newtonian potential.

Theorem 2.28. Suppose that f ∈ C∞
c (Rn) and 0 < α < 1. If u = Γ ∗ f where

Γ is the Newtonian potential (2.12), then

[∂iju]0,α ≤ C [f ]0,α

where [·]0,α denotes the Hölder semi-norm (1.1) and C is a constant that depends
only on α and n.

Proof. Let Ω be a smooth open set that contains the support of f . We write
(2.25) as

(2.30) ∂iju = Tf − fg

where the linear operator

T : C∞
c (Rn) → C∞(Rn)

is defined by

Tf(x) =

∫

Ω

K(x− y) [f(y)− f(x)] dy, K = ∂ijΓ,

and the function g : Rn → R is given by

(2.31) g(x) =

∫

∂Ω

∂iΓ(x− y)νj(y) dS(y).

If x, x′ ∈ Rn, then

∂iju(x)− ∂iju(x
′) = Tf(x)− Tf(x′)− [f(x)g(x) − f(x′)g(x′)]

3Juliusz Schauder (1899–1943) was a Polish mathematician. In addition to the Schauder
theory for elliptic PDEs, he is known for the Leray-Schauder fixed point theorem, and Schauder
bases of a Banach space. He was killed by the Nazi’s while they occupied Lvov during the second
world war.
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The main part of the proof is to estimate the difference of the terms that involve
Tf .

In order to do this, let

x̄ =
1

2
(x+ x′) , δ = |x− x′| ,

and choose Ω so that it contains B2δ (x̄). We have

Tf(x)− Tf(x′)

=

∫

Ω

{K(x− y) [f(y)− f(x)]−K(x′ − y) [f(y)− f(x′)]} dy.
(2.32)

We will separate the the integral over Ω in (2.32) into two parts: (a) |y − x̄| < δ;
(b) |y − x̄| ≥ δ. In region (a), which contains the points y = x, y = x′ where K is
singular, we will use the Hölder continuity of f and the smallness of the integration
region to estimate the integral. In region (b), we will use the Hölder continuity of
f and the smoothness of K to estimate the integral.

(a) Suppose that |y − x̄| < δ, meaning that y ∈ Bδ (x̄). Then

|x− y| ≤ |x− x̄|+ |x̄− y| ≤
3

2
δ,

so y ∈ B3δ/2 (x), and similarly for x′. Using the Hölder continuity of f and the fact
that K is homogeneous of degree −n, we have

|K(x− y) [f(y)− f(x)]−K(x′ − y) [f(y)− f(x′)]|

≤ C [f ]0,α
{

|x− y|α−n + |x′ − y|α−n
}

.

Thus, using C to denote a generic constant depending on α and n, we get
∫

Bδ(x̄)

|K(x− y) [f(y)− f(x)]−K(x′ − y) [f(y)− f(x′)]| dy

≤ C [f ]0,α

∫

Bδ(x̄)

[

|x− y|α−n + |x′ − y|α−n
]

dy

≤ C [f ]0,α

∫

B3δ/2(0)

|y|α−ndy

≤ C [f ]0,α δα.

(b) Suppose that |y − x̄| ≥ δ. We write

K(x− y) [f(y)− f(x)]−K(x′ − y) [f(y)− f(x′)]

= [K(x− y)−K(x′ − y)] [f(y)− f(x)]−K(x′ − y) [f(x)− f(x′)]
(2.33)

and estimate the two terms on the right hand side separately. For the first term,
we use the the Hölder continuity of f and the smoothness of K; for the second
term we use the Hölder continuity of f and the divergence theorem to estimate the
integral of K.

(b1) Since DK is homogeneous of degree −(n + 1), the mean value theorem
implies that

|K(x− y)−K(x′ − y)| ≤ C
|x− x′|

|ξ − y|n+1
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for ξ = θx+(1−θ)x′ with 0 < θ < 1. Using this estimate and the Hölder continuity
of f , we get

|[K(x− y)−K(x′ − y)] [f(y)− f(x)]| ≤ C [f ]0,α δ
|y − x|α

|ξ − y|n+1
.

We have

|y − x| ≤ |y − x̄|+ |x̄− x| = |y − x̄|+
1

2
δ ≤

3

2
|y − x̄|,

|ξ − y| ≥ |y − x̄| − |x̄− ξ| ≥ |y − x̄| −
1

2
δ ≥

1

2
|y − x̄|.

It follows that

|[K(x− y)−K(x′ − y)] [f(y)− f(x)]| ≤ C [f ]0,α δ|y − x̄|α−n−1.

Thus,
∫

Ω\Bδ(x̄)

|[K(x− y)−K(x′ − y)] [f(y)− f(x)]| dy

≤

∫

Rn\Bδ(x̄)

|[K(x− y)−K(x′ − y)] [f(y)− f(x)]| dy

≤ C [f ]0,α δ

∫

|y|≥δ

|y|α−n−1 dy

≤ C [f ]0,α δα.

Note that the integral does not converge at infinity if α = 1; this is where we require
α < 1.

(b2) To estimate the second term in (2.33), we suppose that Ω = BR (x̄) where
BR (x̄) contains the support of f and R ≥ 2δ. (All of the estimates above apply for
this choice of Ω.) Writing K = ∂ijΓ and using the divergence theorem we get

∫

BR(x̄)\Bδ(x̄)

K(x− y) dy

=

∫

∂BR(x̄)

∂iΓ(x− y)νj(y) dS(y)−

∫

∂Bδ(x̄)

∂iΓ(x− y)νj(y) dS(y).

If y ∈ ∂BR (x̄), then

|x− y| ≥ |y − x̄| − |x̄− x| ≥ R−
1

2
δ ≥

3

4
R;

and If y ∈ ∂Bδ (x̄), then

|x− y| ≥ |y − x̄| − |x̄− x| ≥ δ −
1

2
δ ≥

1

2
δ.

Thus, using the fact that DΓ is homogeneous of degree −n+ 1, we compute that

(2.34)

∫

∂BR(x̄)

|∂iΓ(x− y)νj(y)| dS(y) ≤ CRn−1 1

Rn−1
≤ C

and
∫

∂Bδ(x̄)

|∂iΓ(x− y)νj(y) dS(y)|Cδn−1 1

δn−1
≤ C
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Thus, using the Hölder continuity of f , we get
∣

∣

∣

∣

∣

[f(x)− f(x′)]

∫

Ω\Bδ(x̄)

K(x′ − y) dy

∣

∣

∣

∣

∣

≤ C [f ]0,α δα.

Putting these estimates together, we conclude that

|Tf(x)− Tf(x′)| ≤ C [f ]0,α |x− x′|
α

where C is a constant that depends only on α and n.
(c) Finally, to estimate the Hölder norm of the remaining term fg in (2.30), we

continue to assume that Ω = BR (x̄). From (2.31),

g(x̄+ h) =

∫

∂BR(0)

∂iΓ(h− y)νj(y) dS(y).

Changing y 7→ −y in the integral, we find that g(x̄ + h) = g(x̄ − h). Hence
g(x) = g(x′). Moreover, from (2.34), we have |g(x)| ≤ C. It therefore follows that

|f(x)g(x) − f(x′)g(x′)| ≤ C |f(x) − f(x′)| ≤ C [f ]0,α |x− x′|
α
,

which completes the proof. �

These Hölder estimates, and their generalizations, are fundamental to theory
of elliptic PDEs. Their derivation by direct estimation of the Newtonian potential
is only one of many methods to obtain them (although it was the original method).
For example, they can also be obtained by the use of Campanato spaces, which
provide Hölder estimates in terms of suitable integral norms [23], or by the use
of Littlewood-Payley theory, which provides Hölder estimates in terms of dyadic
decompositions of the Fourier transform [5].

2.8. Singular integral operators

Using (2.29), we may define a linear operator

Tij : C
∞
c (Rn) → C∞(Rn)

that gives the second derivatives of a function in terms of its Laplacian,

∂iju = Tij∆u.

Explicitly,

(2.35) Tijf(x) =

∫

BR(x)

Kij(x− y) [f(y)− f(x)] dy +
1

n
f(x)δij

where BR (x) ⊃ supp f and Kij = −∂ijΓ is given by

(2.36) Kij(x) =
1

αn|x|n

(

1

n
δij −

xixj

|x|2

)

.

This function is homogeneous of degree −n, the borderline power for integrability,
so it is not locally integrable. Thus, Young’s inequality does not imply that con-
volution with Kij is a bounded operator on L∞

loc, which explains why we cannot
bound the maximum norm of D2u in terms of the maximum norm of f .

The kernel Kij in (2.36) has zero integral over any sphere, meaning that
∫

BR(0)

Kij(y) dS(y) = 0.
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Thus, we may alternatively write Tij as

Tijf(x)−
1

n
f(x)δij = lim

ǫ→0+

∫

BR(x)\Bǫ(x)

Kij(x− y) [f(y)− f(x)] dy

= lim
ǫ→0+

∫

BR(x)\Bǫ(x)

Kij(x− y)f(y) dy

= lim
ǫ→0+

∫

Rn\Bǫ(x)

Kij(x− y)f(y) dy.

This is an example of a singular integral operator.
The operator Tij can also be expressed in terms of the Fourier transform

f̂(ξ) =
1

(2π)n

∫

f(x)e−i·ξ dx

as

(̂Tijf)(ξ) =
ξiξj
|ξ|2

f̂(ξ).

Since the multiplier mij : R
n → R defined by

mij(ξ) =
ξiξj
|ξ|2

belongs to L∞(Rn), it follows from Plancherel’s theorem that Tij extends to a
bounded linear operator on L2(Rn).

In more generality, consider a function K : Rn → R that is continuously differ-
entiable in Rn \ 0 and satisfies the following conditions:

K(λx) =
1

λn
K(x) for λ > 0;

∫

∂BR(0)

K dS = 0 for R > 0.
(2.37)

That is, K is homogeneous of degree −n, and its integral over any sphere centered
at zero is zero. We may then write

K(x) =
Ω (x̂)

|x|n
, x̂ =

x

|x|

where Ω : Sn−1 → R is a C1-function such that
∫

Sn−1

Ω dS = 0.

We define a singular integral operator T : C∞
c (Rn) → C∞(Rn) of convolution

type with smooth, homogeneous kernel K by

(2.38) Tf(x) = lim
ǫ→0+

∫

Rn\Bǫ(x)

K(x− y)f(y) dy.
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This operator is well-defined, since if BR (x) ⊃ supp f , we may write

Tf(x) = lim
ǫ→0+

∫

BR(x)\Bǫ(x)

K(x− y)f(y) dy.

= lim
ǫ→0+

{

∫

BR(x)\Bǫ(x)

K(x− y) [f(y)− f(x)] dy

+ f(x)

∫

BR(x)\Bǫ(x)

K(x− y) dy
}

=

∫

BR(x)

K(x− y) [f(y)− f(x)] dy.

Here, we use the dominated convergence theorem and the fact that
∫

BR(0)\Bǫ(0)

K(y) dy = 0

sinceK has zero mean over spheres centered at the origin. Thus, the cancelation due
to the fact that K has zero mean over spheres compensates for the non-integrability
of K at the origin to give a finite limit.

Calderón and Zygmund (1952) proved that such operators, and generalizations
of them, extend to bounded linear operators on Lp(Rn) for any 1 < p < ∞ (see
e.g. [7]). As a result, we also ‘gain’ two derivatives in inverting the Laplacian when
derivatives are measured in Lp for 1 < p < ∞.
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