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Appendix

In this appendix, we describe without proof some results from real analysis
which help to understand weak and distributional derivatives in the simplest context
of functions of a single variable. Proofs are given in [11] or [15], for example.
These results are, in fact, easier to understand from the perspective of weak and
distributional derivatives of functions, rather than pointwise derivatives.

3.A. Functions

For definiteness, we consider functions f : [a, b] → R defined on a compact
interval [a, b]. When we say that a property holds almost everywhere (a.e.), we
mean a.e. with respect to Lebesgue measure unless we specify otherwise.

3.A.1. Lipschitz functions. Lipschitz continuity is a weaker condition than
continuous differentiability. A Lipschitz continuous function is pointwise differ-
entiable almost everwhere and weakly differentiable. The derivative is essentially
bounded, but not necessarily continuous.

Definition 3.51. A function f : [a, b] → R is uniformly Lipschitz continuous
on [a, b] (or Lipschitz, for short) if there is a constant C such that

|f(x)− f(y)| ≤ C |x− y| for all x, y ∈ [a, b].

The Lipschitz constant of f is the infimum of constants C with this property.

We denote the space of Lipschitz functions on [a, b] by Lip[a, b]. We also define
the space of locally Lipschitz functions on R by

Liploc(R) = {f : R → R : f ∈ Lip[a, b] for all a < b} .

By the mean-value theorem, any function that is continuous on [a, b] and point-
wise differentiable in (a, b) with bounded derivative is Lipschitz. In particular, every
function f ∈ C1([a, b]) is Lipschitz, and every function f ∈ C1(R) is locally Lips-
chitz. On the other hand, the function x 7→ |x| is Lipschitz but not C1 on [−1, 1].
The following result, called Rademacher’s theorem, is true for functions of several
variables, but we state it here only for the one-dimensional case.

Theorem 3.52. If f ∈ Lip[a, b], then the pointwise derivative f ′ exists almost
everywhere in (a, b) and is essentially bounded.

It follows from the discussion in the next section that the pointwise derivative
of a Lipschitz function is also its weak derivative (since a Lipschitz function is
absolutely continuous). In fact, we have the following characterization of Lipschitz
functions.

Theorem 3.53. Suppose that f ∈ L1
loc(a, b). Then f ∈ Lip[a, b] if and only

if f is weakly differentiable in (a, b) and f ′ ∈ L∞(a, b). Moreover, the Lipschitz
constant of f is equal to the sup-norm of f ′.

Here, we say that f ∈ L1
loc(a, b) is Lipschitz on [a, b] if is equal almost every-

where to a (uniformly) Lipschitz function on (a, b), in which case f extends by
uniform continuity to a Lipschitz function on [a, b].
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Example 3.54. The function f(x) = x+ in Example 3.3 is Lipschitz continuous
on [−1, 1] with Lipschitz constant 1. The pointwise derivative of f exists everywhere
except at x = 0, and is equal to the weak derivative. The sup-norm of the weak
derivative f ′ = χ[0,1] is equal to 1.

Example 3.55. Consider the function f : (0, 1) → R defined by

f(x) = x2 sin

(

1

x

)

.

Since f is C1 on compactly contained intervals in (0, 1), an integration by parts
implies that

∫ 1

0

fφ′ dx = −

∫ 1

0

f ′φdx for all φ ∈ C∞
c (0, 1).

Thus, the weak derivative of f in (0, 1) is

f ′(x) = − cos

(

1

x

)

+ 2x sin

(

1

x

)

.

Since f ′ ∈ L∞(0, 1), f is Lipschitz on [0, 1],

Similarly, if f ∈ L1
loc(R), then f ∈ Liploc(R), if and only if f is weakly differ-

entiable in R and f ′ ∈ L∞
loc(R).

3.A.2. Absolutely continuous functions. Absolute continuity is a strength-
ening of uniform continuity that provides a necessary and sufficient condition for
the fundamental theorem of calculus to hold. A function is absolutely continuous
if and only if its weak derivative is integrable.

Definition 3.56. A function f : [a, b] → R is absolutely continuous on [a, b] if
for every ǫ > 0 there exists a δ > 0 such that

N
∑

i=1

|f(bi)− f(ai)| < ǫ

for any finite collection {[ai, bi] : 1 ≤ i ≤ N} of non-overlapping subintervals [ai, bi]
of [a, b] with

N
∑

i=1

|bi − ai| < δ

Here, we say that intervals are non-overlapping if their interiors are disjoint.
We denote the space of absolutely continuous functions on [a, b] by AC[a, b]. We
also define the space of locally absolutely continuous functions on R by

ACloc(R) = {f : R → R : f ∈ AC[a, b] for all a < b} .

Restricting attention to the case N = 1 in Definition 3.56, we see that an
absolutely continuous function is uniformly continuous, but the converse is not
true (see Example 3.58).

Example 3.57. A Lipschitz function is absolutely continuous. If the func-
tion has Lipschitz constant C, we may take δ = ǫ/C in the definition of absolute
continuity.
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Example 3.58. The Cantor function f in Example 3.5 is uniformly continuous
on [0, 1], as is any continuous function on a compact interval, but it is not absolutely
continuous. We may enclose the Cantor set in a union of disjoint intervals the sum
of whose lengths is as small as we please, but the jumps in f across those intervals
add up to 1. Thus for any 0 < ǫ ≤ 1, there is no δ > 0 with the property required in
the definition of absolute continuity. In fact, absolutely continuous functions map
sets of measure zero to sets of measure zero; by contrast, the Cantor function maps
the Cantor set with measure zero onto the interval [0, 1] with measure one.

Example 3.59. If g ∈ L1(a, b) and

f(x) =

∫ x

a

g(t) dt

then f ∈ AC[a, b] and f ′ = g pointwise a.e. (at every Lebesgue point of g). This is
one direction of the fundamental theorem of calculus.

According to the following result, the absolutely continuous functions are pre-
cisely the ones for which the fundamental theorem of calculus holds. This result may
be regarded as giving an explicit characterization of weakly differentiable functions
of a single variable.

Theorem 3.60. A function f : [a, b] → R is absolutely continuous if and only if:
(a) the pointwise derivative f ′ exists almost everywhere in (a, b); (b) the derivative
f ′ ∈ L1(a, b) is integrable; and (c) for every x ∈ [a, b],

f(x) = f(a) +

∫ x

a

f ′(t) dt.

To prove this result, one shows from the definition of absolute continuity that
if f ∈ AC[a, b], then f ′ exists pointwise a.e. and is integrable, and if f ′ = 0, then
f is constant. Then the function

f(x)−

∫ x

a

f ′(t) dt

is absolutely continuous with pointwise a.e. derivative equal to zero, so the result
follows.

Example 3.61. We recover the function f(x) = x+ in Example 3.3 by inte-
grating its derivative χ[0,∞). On the other hand, the pointwise a.e. derivative of
the Cantor function in Example 3.5 is zero, so integration of its pointwise derivative
(which exists a.e. and is integrable) gives zero instead of the original function.

Integration by parts holds for absolutely continuous functions.

Theorem 3.62. If f, g : [a, b] → R are absolutely continuous, then

(3.19)

∫ b

a

fg′ dx = f(b)g(b)− f(a)g(a)−

∫ b

a

f ′g dx

where f ′, g′ denote the pointwise a.e. derivatives of f , g.

This result is not true under the assumption that f , g that are continuous and
differentiable pointwise a.e., as can be seen by taking f , g to be Cantor functions
on [0, 1].

In particular, taking g ∈ C∞
c (a, b) in (3.19), we see that an absolutely continu-

ous function f is weakly differentiable on (a, b) with integrable derivative, and the
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weak derivative is equal to the pointwise a.e. derivative. Thus, we have the following
characterization of absolutely continuous functions in terms of weak derivatives.

Theorem 3.63. Suppose that f ∈ L1
loc(a, b). Then f ∈ AC[a, b] if and only if

f is weakly differentiable in (a, b) and f ′ ∈ L1(a, b).

It follows that a function f ∈ L1
loc(R) is weakly differentiable if and only if

f ∈ ACloc(R), in which case f ′ ∈ L1
loc(R).

3.A.3. Functions of bounded variation. Functions of bounded variation
are functions with finite oscillation or variation. A function of bounded variation
need not be weakly differentiable, but its distributional derivative is a Radon mea-
sure.

Definition 3.64. The total variation Vf ([a, b]) of a function f : [a, b] → R on
the interval [a, b] is

Vf ([a, b]) = sup

{

N
∑

i=1

|f(xi)− f(xi−1)|

}

where the supremum is taken over all partitions

a = x0 < x1 < x2 < · · · < xN = b

of the interval [a, b]. A function f has bounded variation on [a, b] if Vf ([a, b]) is
finite.

We denote the space of functions of bounded variation on [a, b] by BV[a, b], and
refer to a function of bounded variation as a BV-function. We also define the space
of locally BV-functions on R by

BVloc(R) = {f : R → R : f ∈ BV[a, b] for all a < b} .

Example 3.65. Every Lipschitz continuous function f : [a, b] → R has bounded
variation, and

Vf ([a, b]) ≤ C(b − a)

where C is the Lipschitz constant of f .

A BV-function is bounded, and an absolutely continuous function is BV; but
a BV-function need not be continuous, and a continuous function need not be BV.

Example 3.66. The discontinuous step function in Example 3.4 has bounded
variation on the interval [−1, 1], and the continuous Cantor function in Example 3.5
has bounded variation on [0, 1]. The total variation of both functions is equal to
one. More generally, any monotone function f : [a, b] → R has bounded variation,
and its total variation on [a, b] is equal to |f(b)− f(a)|.

Example 3.67. The function

f(x) =

{

sin(1/x) if x > 0,
0 if x = 0,

is bounded [0, 1], but it is not of bounded variation on [0, 1].
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Example 3.68. The function

f(x) =

{

x sin(1/x) if x > 0,
0 if x = 0,

is continuous on [0, 1], but it is not of bounded variation on [0, 1] since its total
variation is proportional to the divergent harmonic series

∑

1/n.

The following result states that any BV-functions is a difference of monotone
increasing functions. We say that a function f is monotone increasing if f(x) ≤ f(y)
for x ≤ y; we do not require that the function is strictly increasing.

Theorem 3.69. A function f : [a, b] → R has bounded variation on [a, b] if and
only if f = f+ − f−, where f+, f− : [a, b] → R are bounded monotone increasing
functions.

To prove the theorem, we define an increasing variation function v : [a, b] → R

by v(a) = 0 and

v(x) = Vf ([a, x]) for x > a.

We then choose f+, f− so that

(3.20) f = f+ − f−, v = f+ + f−,

and show that f+, f− are increasing functions.
The decomposition in Theorem 3.69 is not unique, since we may add an arbi-

trary increasing function to both f+ and f−, but it is unique if we add the condition
that f+ + f− = Vf .

A monotone function is differentiable pointwise a.e., and thus so is a BV-
function. In general, a BV-function contains a singular component that is not
weakly differentiable in addition to an absolutely continuous component that is
weakly differentiable

Definition 3.70. A function f ∈ BV[a, b] is singular on [a, b] if the pointwise
derivative f ′ is equal to zero a.e. in [a, b].

The step function and the Cantor function are examples of non-constant sin-
gular functions.6

Theorem 3.71. If f ∈ BV[a, b], then f = fac + fs where fac ∈ AC[a, b] and fs
is singular. The functions fac, fs are unique up to an additive constant.

The absolutely continuous part fac of f is given by

fac(x) =

∫ x

a

f ′(x) dx

and the remainder fs = f − fac is the singular part. We may further decompose
the singular part into a jump-function (such as the step function) and a singular
continuous part (such as the Cantor function).

For f ∈ BV[a, b], let D ⊂ [a, b] denote the set of points of discontinuity of f .
Since f is the difference of monotone functions, it can only contain jump disconti-
nuities at which its left and right limits exist (excluding the left limit at a and the
right limit at b), and D is necessarily countable.

6Sometimes a singular function is required to be continuous, but our definition allows jump

discontinuities.
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If c ∈ D, let

[f ](c) = f(c+)− f(c−)

denote the jump of f at c (with f(a−) = f(a), f(b+) = f(b) if a, b ∈ D). Define

fp(x) =
∑

c∈D∩[a,x]

[f ](c) if x /∈ D.

Then fp has the same jump discontinuities as f and, with an appropriate choice
of fp(c) for c ∈ D, the function f − fp is continuous on [a, b]. Decomposing this
continuous part into and absolutely continuous and a singular continuous part, we
get the following result.

Theorem 3.72. If f ∈ BV[a, b], then f = fac + fp + fsc where fac ∈ AC[a, b],
fp is a jump function, and fsc is a singular continuous function. The functions
fac, fp, fsc are unique up to an additive constant.

Example 3.73. Let Q = {qn : n ∈ N} be an enumeration of the rational num-
bers in [0, 1] and {pn : n ∈ N} any sequence of real numbers such that

∑

pn is
absolutely convergent. Define f : [a, b] → R by f(0) = 0 and

f(x) =
∑

a≤qn≤x

pn for x > 0.

Then f ∈ BV[a, b], with

Vf [a, b] =
∑

n∈N

|pn|.

This function is a singular jump function with zero pointwise derivative at every
irrational number in [0, 1].

3.B. Measures

We denote the extended real numbers by R = [−∞,∞] and the extended
nonnegative real numbers by R+ = [0,∞]. We make the natural conventions for
algebraic operations and limits that involve extended real numbers.

3.B.1. Borel measures. The Borel σ-algebra of a topological space X is the
smallest collection of subsets of X that contains the open and closed sets, and is
closed under complements, countable unions, and countable intersections. Let B
denote the Borel σ-algebra of R, and B the Borel σ-algebra of R.

Definition 3.74. A Borel measure on R is a function µ : B → R+, such that
µ(∅) = 0 and

µ

(

⋃

n∈N

En

)

=
∑

n∈N

µ (En)

for any countable collection of disjoint sets {En ∈ B : n ∈ N}.

The measure µ is finite if µ(R) < ∞, in which case µ : B → [0,∞). The
measure is σ-finite if R is a countable union of Borel sets with finite measure.

Example 3.75. Lebesgue measure λ : B → R+ is a Borel measure that assigns
to each interval its length. Lebesgue measure on B may be extended to a complete
measure on a larger σ-algebra of Lebesgue measurable sets by the inclusion of all
subsets of sets with Lebesgue measure zero. Here we consider it as a Borel measure.
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Example 3.76. For c ∈ R, the unit point measure δc : B → [0,∞) supported
on c is defined by

δc(E) =

{

1 if c ∈ E,
0 if c /∈ E.

This measure is a finite Borel measure. More generally, if {cn : n ∈ N} is a countable
set of points in R and {pn ≥ 0 : n ∈ N}, we define a point measure

µ =
∑

n∈N

pnδcn , µ(E) =
∑

cn∈E

pn.

This measure is σ-finite, and finite if
∑

pn <∞.

Example 3.77. Counting measure ν : B → R+ is defined by ν(E) = #E where
#E denotes the number of points in E. Thus, ν(∅) = 0 and ν(E) = ∞ if E contains
infinitely many points. This measure is not σ-finite.

In order to describe the decomposition of measures, we introduce the idea of
singular measures that ‘live’ on different sets.

Definition 3.78. Two measures µ, ν : B → R+ are mutually singular, written
µ ⊥ ν, if there is a set E ∈ B such that µ(E) = 0 and ν(Ec) = 0.

We also say that µ is singular with respect to ν, or ν is singular with respect
to µ. In particular, a measure is singular with respect to Lebesgue measure if it
assigns full measure to a set of Lebesgue measure zero.

Example 3.79. The point measures in Example 3.76 are singular with respect
to Lebesgue measure.

Next we consider signed measures which can take negative as well as positive
values.

Definition 3.80. A signed Borel measure is a map µ : B → R of the form

µ = µ+ − µ−

where µ+, µ− : B → R+ are Borel measures, at least one of which is finite.

The condition that at least one of µ+, µ− is finite is needed to avoid meaningless
expressions such as µ(R) = ∞ − ∞. Thus, µ takes at most one of the values ∞,
−∞.

According to the Jordan decomposition theorem, we may choose µ+, µ− in
Definition 3.80 so that µ+ ⊥ µ−, in which case the decomposition is unique. The
total variation of µ is then measure |µ| : B → R+ defined by

|µ| = µ+ + µ−.

Definition 3.81. Let µ : B → R+ be a measure. A signed measure ν : B → R

is absolutely continuous with respect to µ, written ν ≪ µ, if µ(E) = 0 implies that
ν(E) = 0 for any E ∈ B.

The condition ν ≪ µ is equivalent to |ν| ≪ µ. In that case ν ‘lives’ on the
same sets as µ; thus absolute continuity is at the opposite extreme to singularity.
In particular, a signed measure ν is absolutely continuous with respect to Lebesgue
measure if it assigns zero measure to any set with zero Lebesgue measure,
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If g ∈ L1(R), then

(3.21) ν(E) =

∫

E

g dx

defines a finite signed Borel measure ν : B → R. This measure is absolutely
continuous with respect to Lebesgue measure, since

∫

E
g dx = 0 for any set E with

Lebesgue measure zero.
If g ≥ 0, then ν is a measure. If the set {x : g(x) = 0} has non-zero Lebesgue

measure, then Lebesgue measure is not absolutely continuous with respect to ν.
Thus ν ≪ µ does not imply that µ≪ ν.

The Radon-Nikodym theorem (which holds in greater generality) implies that
every absolutely continuous measure is given by the above example.

Theorem 3.82. If ν is a Borel measure on R that is absolutely continuous with
respect to Lebesgue measure λ then there exists a function g ∈ L1(R) such that ν is
given by (3.21).

The function g in this theorem is called the Radon-Nikodym derivative of ν
with respect to λ, and is denoted by

g =
dν

dλ
.

The following result gives an alternative characterization of absolute continuity
of measures, which has a direct connection with the absolute continuity of functions.

Theorem 3.83. A signed measure ν : B → R is absolutely continuous with
respect to a measure µ : B → R+ if and only if for every ǫ > 0 there exists a δ > 0
such that µ(E) < δ implies that |ν(E)| ≤ ǫ for all E ∈ B.

3.B.2. Radon measures. The most important Borel measures for distribu-
tion theory are the Radon measures. The essential property of a Radon measure
µ is that integration against µ defines a positive linear functional on the space of
continuous functions φ with compact support,

φ 7→

∫

φdµ.

(See Theorem 3.96 below.) This link is the fundamental connection between mea-
sures and distributions. The condition in the following definition characterizes all
such measures on R (and R

n).

Definition 3.84. A Radon measure on R is a Borel measure that is finite on
compact sets.

We note in passing that a Radon measure µ has the following regularity prop-
erty: For any E ∈ B,

µ(E) = inf {µ(G) : G ⊃ E open} , µ(E) = sup {µ(K) : K ⊂ E compact} .

Thus, any Borel set may be approximated in a measure-theoretic sense by open
sets from the outside and compact sets from the inside.

Example 3.85. Lebesgue measure λ in Example 3.75 and the point measure
δc in Example 3.76 are Radon measures on R.
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Example 3.86. The counting measure ν in Example 3.77 is not a Radon mea-
sure since, for example, ν[0, 1] = ∞. This measure is not outer regular: If {c} is a
singleton set, then ν({c}) = 1 but

inf {ν(G) : c ∈ G, G open} = ∞.

The following is the Lebesgue decomposition of a Radon measure.

Theorem 3.87. Let µ, ν be Radon measures on R. There are unique measures
νac, νs such that

ν = νac + νs, where νac ≪ µ and νs ⊥ µ.

3.B.3. Lebesgue-Stieltjes measures. Given a Radon measure µ on R, we
may define a monotone increasing, right-continuous distribution function f : R →
R, which is unique up to an arbitrary additive constant, such that

µ(a, b] = f(b)− f(a).

The function f is right-continuous since

lim
x→b+

f(b)− f(a) = lim
x→b+

µ(a, x] = µ(a, b] = f(b)− f(a).

Conversely, every such function f defines a Radon measure µf , called the
Lebesgue-Stieltjes measure associated with f . Thus, Radon measures on R may
be characterized explicitly as Lebesgue-Stieltjes measures.

Theorem 3.88. If f : R → R is a monotone increasing, right-continuous
function, there is a unique Radon measure µf such that

µf (a, b] = f(b)− f(a)

for any half-open interval (a, b] ⊂ R.

The standard proof is due to Carathéodory. One uses f to define a countably
sub-additive outer measure µ∗

f on all subsets of R, then restricts µ∗
f to a measure

on the σ-algebra of µ∗
f -measurable sets, which includes all of the Borel sets [11].

The Lebesgue-Stieltjes measure of a compact interval [a, b] is given by

µf [a, b] = lim
x→a−

µf (x, b] = f(b)− lim
x→a−

f(a).

Thus, the measure of the set consisting of a single point is equal to the jump in f
at the point,

µf{a} = f(a)− lim
x→a−

f(a),

and µf{a} = 0 if and only if f is continuous at a.

Example 3.89. If f(x) = x, then µf is Lebesgue measure (restricted to the
Borel sets) in R.

Example 3.90. If c ∈ R and

f(x) =

{

1 if x ≥ c,
0 if x < c,

then µf is the point measure δc in Example 3.76.
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Example 3.91. If f is the Cantor function defined in Example 3.5, then µf

assigns measure one to the Cantor set C and measure zero to R \ C. Thus, µf is
singular with respect to Lebesgue measure. Nevertheless, since f is continuous, the
measure of any set consisting of a single point, and therefore any countable set, is
zero.

If f : R → R is the difference f = f+ − f− of two right-continuous monotone
increasing functions f+, f− : R → R, at least one of which is bounded, we may
define a signed Radon measure µf : B → R by

µf = µf+ − µf− .

If we add the condition that µf+ ⊥ µf− , then this decomposition is unique, and
corresponds to the decomposition of f in (3.20).

3.C. Integration

A function φ : R → R is Borel measurable if φ−1(E) ∈ B for every E ∈ B. In
particular, every continuous function φ : R → R is Borel measurable.

Given a Borel measure µ, and a non-negative, Borel measurable function φ, we
define the integral of φ with respect to µ as follows. If

ψ =
∑

i∈N

ciχEi

is a simple function, where ci ∈ R+ and χEi
is the characteristic function of a set

Ei ∈ B, then
∫

ψ dµ =
∑

i∈N

ciµ(Ei).

Here, we define 0 ·∞ = 0 for the integral of a zero value on a set of infinite measure,
or an infinite value on a set of measure zero. If φ : R → R+ is a non-negative Borel-
measurable function, we define

∫

φdµ = sup

{
∫

ψ dµ : 0 ≤ ψ ≤ φ

}

where the supremum is taken over all non-negative simple functions ψ that are
bounded from above by φ.

If φ : R → R is a general Borel function, we split φ into its positive and negative
parts,

φ = φ+ − φ−, φ+ = max(φ, 0), φ− = max(−φ, 0),

and define
∫

φdµ =

∫

φ+ dµ−

∫

φ− dµ

provided that at least one of these integrals is finite.
The continual annoyance of excluding ∞−∞ as meaningless is often viewed as

a defect of the Lebesgue integral, which cannot cope directly with the cancelation
between infinite positive and negative components. For example, the improper
integral

∫ ∞

0

sinx

x
dx =

π

2
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does not hold as a Lebesgue integral since | sin(x)/x| is not integrable. Nevertheless,
other definitions of the integral — such as the Henstock-Kurzweil integral — have
not proved to be as useful.

Example 3.92. The integral of φ with respect to Lebesgue measure λ in Ex-
ample 3.75 is the usual Lebesgue integral

∫

φdλ =

∫

φdx.

Example 3.93. The integral of φ with respect to the point measure δc in
Example 3.76 is

∫

φdδc = φ(c).

Note that φ = ψ pointwise a.e. with respect to δc if and only if φ(c) = ψ(c).

Example 3.94. If f is absolutely continuous, the associated Lebesgue-Stieltjes
measure µf is absolutely continuous with respect to Lebesgue measure, and

∫

φdµf =

∫

φf ′ dx.

Next, we consider linear functionals on the space Cc(R) of linear functions with
compact support.

Definition 3.95. A linear functional I : Cc(R) → R is positive if I(φ) ≥ 0
whenever φ ≥ 0, and locally bounded if for every compact set K in R there is a
constant CK such that

|I(φ)| ≤ CK ‖φ‖∞ for all φ ∈ Cc(R) with suppφ ⊂ K.

A positive functional is locally bounded, and a locally bounded functional I
defines a distribution I ∈ D′(R) by restriction to C∞

c (R). We also write I(φ) =
〈I, φ〉. If µ is a Radon measure, then

〈Iµ, φ〉 =

∫

φdµ

defines a positive linear functional Iµ : Cc(R) → R, and if µ+, µ− are Radon
measures, then Iµ+

− Iµ−
is a locally bounded functional.

Conversely, according to the following Riesz representation theorem, all locally
bounded linear functionals on Cc(R) are of this form

Theorem 3.96. If I : Cc(R) → R+ is a positive linear functional on the space
of continuous functions φ : R → R with compact support, then there is a unique
Radon measure µ such that

I(φ) =

∫

φdµ.

If I : Cc(R) → R+ is locally bounded linear functional, then there are unique Radon
measures µ+, µ− such that

I(φ) =

∫

φdµ+ −

∫

φdµ−.
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Note that the functional µ = µ+ − µ− is not well-defined as a signed Radon
measure if both µ+ and µ− are infinite.

Every distribution T ∈ D′(R) such that

〈T, φ〉 ≤ CK ‖φ‖∞ for all φ ∈ C∞
c (R) with suppφ ⊂ K

may be extended by continuity to a locally bounded linear functional on Cc(R),
and therefore is given by T = Iµ+

− Iµ−
for Radon measures µ+, µ− . We typi-

cally identify a Radon measure µ with the corresponding distribution Iµ. If µ is
absolutely continuous with respect to Lebesgue measure, then µ = µf for some
f ∈ ACloc(R), meaning that

µf (E) =

∫

E

f ′ dx,

and Iµ is the same as the regular distribution Tf ′ . Thus, with these identifications,
and denoting the Radon measures by M, we have the following local inclusions:

AC ⊂ BV ⊂ L1 ⊂ M ⊂ D′.

The distributional derivative of an AC function is an integrable function, and
the following integration by parts formula shows that the distributional derivative
of a BV function is a Radon measure.

Theorem 3.97. Suppose that f ∈ BVloc(R) and g ∈ ACc(R) is absolutely
continuous with compact support. Then

∫

g dµf = −

∫

fg′ dx.

Thus, the distributional derivative of f ∈ BVloc(R) is the functional Iµf
asso-

ciated with the corresponding Radon measure µf . If

f = fac + fp + fsc

is the decomposition of f into a locally absolutely continuous part, a jump function,
and a singular continuous function, then

µf = µac + µp + µsc,

where µac is absolutely continuous with respect to Lebesgue measure with density
f ′
ac, µp is a point measure of the form

µp =
∑

n∈N

pnδcn

where the cn are the points of discontinuity of f and the pn are the jumps, and µsc

is a measure with continuous distribution function that is singular with respect to
Lebesgue measure. The function is weakly differentiable if and only if it is locally
absolutely continuous.

Thus, to return to our original one-dimensional examples, the function x+ in
Example 3.3 is absolutely continuous and its weak derivative is the step function.
The weak derivative is bounded since the function is Lipschitz. The step function
in Example 3.4 is not weakly differentiable; its distributional derivative is the δ-
measure. The Cantor function f in Example 3.5 is not weakly differentiable; its
distributional derivative is the singular continuous Lebesgue-Stieltjes measure µf

associated with f .
We summarize the above discussion in a table.
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Function Weak Derivative

Smooth (C1) Continuous (C0)
Lipschitz Bounded (L∞)

Absolutely Continuous Integrable (L1)
Bounded Variation Distributional derivative

is Radon measure

The correspondences shown in this table continue to hold for functions of several
variables, although the study of fine structure of weakly differentiable functions and
functions of bounded variation is more involved than in the one-dimensional case.
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