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CHAPTER 6

Parabolic Equations

The theory of parabolic PDEs closely follows that of elliptic PDEs and, like
elliptic PDEs, parabolic PDEs have strong smoothing properties. For example,
there are parabolic versions of the maximum principle and Harnack’s inequality,
and a Schauder theory for Hölder continuous solutions [28]. Moreover, we may
establish the existence and regularity of weak solutions of parabolic PDEs by the
use of L2-energy estimates.

6.1. The heat equation

Just as Laplace’s equation is a prototypical example of an elliptic PDE, the
heat equation

(6.1) ut = ∆u+ f

is a prototypical example of a parabolic PDE. This PDE has to be supplemented
by suitable initial and boundary conditions to give a well-posed problem with a
unique solution. As an example of such a problem, consider the following IBVP
with Dirichlet BCs on a bounded open set Ω ⊂ R

n for u : Ω× [0,∞) → R:

ut = ∆u+ f(x, t) for x ∈ Ω and t > 0,

u(x, t) = 0 for x ∈ ∂Ω and t > 0,

u(x, 0) = g(x) for x ∈ Ω.

(6.2)

Here f : Ω × (0,∞) → R and g : Ω → R are a given forcing term and initial
condition. This problem describes the evolution in time of the temperature u(x, t)
of a body occupying the region Ω containing a heat source f per unit volume, whose
boundary is held at fixed zero temperature and whose initial temperature is g.

One important estimate (in L∞) for solutions of (6.2) follows from the maxi-
mum principle. If f ≤ 0, corresponding to ‘heat sinks,’ then for any T > 0,

max
Ω×[0,T ]

u ≤ max

[

0,max
Ω

g

]

.

To derive this inequality, note that if u is a smooth function which attains a max-
imum at x ∈ Ω and 0 < t ≤ T , then ut = 0 if 0 < t < T or ut ≥ 0 if t = T
and ∆u ≤ 0. Thus ut − ∆u ≥ 0 which is impossible if f < 0, so u attains its
maximum on ∂Ω× [0, T ], where u = 0, or at t = 0. The result for f ≤ 0 follows by
a perturbation argument. The physical interpretation of this maximum principle in
terms of thermal diffusion is that a local “hotspot” cannot develop spontaneously
in the interior when no heat sources are present. Similarly, if f ≥ 0, we have the
minimum principle

min
Ω×[0,T ]

u ≥ min

[

0,min
Ω

g

]

.
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178 6. PARABOLIC EQUATIONS

Another basic estimate for the heat equation (in L2) follows from an integration
of the equation. We multiply (6.1) by u, integrate over Ω, apply the divergence
theorem, and use the BC that u = 0 on ∂Ω to obtain:

1

2

d

dt

∫

Ω

u2 dx+

∫

Ω

|Du|2 dx =

∫

Ω

fu dx.

Integrating this equation with respect to time and using the initial condition, we
get

(6.3)
1

2

∫

Ω

u2(x, t) dx +

∫ t

0

∫

Ω

|Du|2 dxds =

∫ t

0

∫

Ω

fu dxds+
1

2

∫

Ω

g2 dx.

For 0 ≤ t ≤ T , we have from the Cauchy inequality with ǫ that

∫ t

0

∫

Ω

fu dxds ≤
(
∫ t

0

∫

Ω

f2 dxds

)1/2(∫ t

0

∫

Ω

u2 dxds

)1/2

≤ 1

4ǫ

∫ T

0

∫

Ω

f2 dxds+ ǫ

∫ T

0

∫

Ω

u2 dxds

≤ 1

4ǫ

∫ T

0

∫

Ω

f2 dxds+ ǫT max
0≤t≤T

∫

Ω

u2 dx.

Thus, taking the supremum of (6.3) over t ∈ [0, T ] and using this inequality with
ǫT = 1/4 in the result, we get

1

4
max
[0,T ]

∫

Ω

u2(x, t) dx +

∫ T

0

∫

Ω

|Du|2 dxdt ≤ T

∫ T

0

∫

Ω

f2 dxdt+
1

2

∫

Ω

g2 dx.

It follows that we have an a priori energy estimate of the form

(6.4) ‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1

0
) ≤ C

(

‖f‖L2(0,T ;L2) + ‖g‖L2

)

where C = C(T ) is a constant depending only on T . We will use this energy esti-
mate to construct weak solutions.1 The parabolic smoothing of the heat equation
is evident from the fact that if f = 0, say, we can estimate not only the solution u
but its derivative Du in terms of the initial data g.

6.2. General second-order parabolic PDEs

The qualitative properties of (6.1) are almost unchanged if we replace the Lapla-
cian−∆ by any uniformly elliptic operator L on Ω×(0, T ). We write L in divergence
form as

(6.5) L = −
n
∑

i,j=1

∂i
(

aij∂ju
)

+

n
∑

j=1

bj∂ju+ cu

where aij(x, t), bi(x, t), c(x, t) are coefficient functions with aij = aji. We assume
that there exists θ > 0 such that

(6.6)

n
∑

i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2 for all (x, t) ∈ Ω× (0, T ) and ξ ∈ R
n.

1In fact, we will use a slightly better estimate in which ‖f‖L2(0,T ;L2) is replaced by the

weaker norm ‖f‖L2(0,T ;H−1).
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The corresponding parabolic PDE is then

(6.7) ut +

n
∑

j=1

bj∂ju+ cu =

n
∑

i,j=1

∂i
(

aij∂ju
)

+ f.

Equation (6.7) describes evolution of a temperature field u under the combined
effects of diffusion aij , advection bi, linear growth or decay c, and external heat
sources f .

The corresponding IBVP with homogeneous Dirichlet BCs is

ut + Lu = f,

u(x, t) = 0 for x ∈ ∂Ω and t > 0,

u(x, 0) = g(x) for x ∈ Ω.

(6.8)

Essentially the same estimates hold for this problem as for the heat equation. To
begin with, we use the L2-energy estimates to prove the existence of suitably defined
weak solutions of (6.8).

6.3. Definition of weak solutions

To formulate a definition of a weak solution of (6.8), we first suppose that the
domain Ω, the coefficients of L, and the solution u are smooth. Multiplying (6.7),
by a test function v ∈ C∞

c (Ω), integrating the result over Ω, and applying the
divergence theorem, we get

(6.9) (ut(t), v)L2 + a (u(t), v; t) = (f(t), v)L2 for 0 ≤ t ≤ T

where (·, ·)L2 denotes the L2-inner product

(u, v)L2 =

∫

Ω

u(x)v(x) dx,

and a is the bilinear form associated with L

a(u, v; t) =

n
∑

i,j=1

∫

Ω

aij(x, t)∂iu(x)∂ju(x) dx

+

n
∑

j=1

∫

Ω

bj(x, t)∂ju(x)v(x) dx +

∫

Ω

c(x, t)u(x)v(x) dx.

(6.10)

In (6.9), we have switched to the “vector-valued” viewpoint, and write u(t) = u(·, t).
To define weak solutions, we generalize (6.9) in a natural way. In order to

ensure that the definition makes sense, we make the following assumptions.

Assumption 6.1. The set Ω ⊂ R
n is bounded and open, T > 0, and:

(1) the coefficients of a in (6.10) satisfy aij , bj, c ∈ L∞(Ω× (0, T ));
(2) aij = aji for 1 ≤ i, j ≤ n and the uniform ellipticity condition (6.6) holds

for some constant θ > 0;
(3) f ∈ L2

(

0, T ;H−1(Ω)
)

and g ∈ L2(Ω).

Here, we allow f to take values in H−1(Ω) = H1
0 (Ω)

′. We denote the duality
pairing between H−1(Ω) and H1

0 (Ω) by

〈·, ·〉 : H−1(Ω)×H1
0 (Ω) → R
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Since the coefficients of a are uniformly bounded in time, it follows from Theo-
rem 4.21 that

a : H1
0 (Ω)×H1

0 (Ω)× (0, T ) → R.

Moreover, there exist constants C > 0 and γ ∈ R such that for every u, v ∈ H1
0 (Ω)

C‖u‖2H1

0

≤ a(u, u; t) + γ‖u‖2L2,(6.11)

|a(u, v; t)| ≤ C ‖u‖H1

0

‖v‖H1

0

.(6.12)

We then define weak solutions of (6.8) as follows.

Definition 6.2. A function u : [0, T ] → H1
0 (Ω) is a weak solution of (6.8) if:

(1) u ∈ L2
(

0, T ;H1
0(Ω)

)

and ut ∈ L2
(

0, T ;H−1(Ω)
)

;

(2) For every v ∈ H1
0 (Ω),

(6.13) 〈ut(t), v〉+ a (u(t), v; t) = 〈f(t), v〉
for t pointwise a.e. in [0, T ] where a is defined in (6.10);

(3) u(0) = g.

The PDE is imposed in a weak sense by (6.13) and the boundary condition
u = 0 on ∂Ω by the requirement that u(t) ∈ H1

0 (Ω). Two points about this
definition deserve comment.

First, the time derivative ut in (6.13) is understood as a distributional time
derivative; that is ut = w if

(6.14)

∫ T

0

φ(t)u(t) dt = −
∫ T

0

φ′(t)w(t) dt

for every φ : (0, T ) → R with φ ∈ C∞
c (0, T ). This is a direct generalization of

the notion of the weak derivative of a real-valued function. The integrals in (6.14)
are vector-valued Lebesgue integrals (Bochner integrals), which are defined in an
analogous way to the Lebesgue integral of an integrable real-valued function as the
L1-limit of integrals of simple functions. See Section 6.A for further discussion of
such integrals and the weak derivative of vector-valued functions. Equation (6.13)
may then be understood in a distributional sense as an equation for the weak
derivative ut on (0, T ).

Second, it is not immediately obvious that the initial condition u(0) = g in
Definition 6.2 makes sense. We do not explicitly require any continuity on u, and
since u ∈ L2

(

0, T ;H1
0(Ω)

)

is defined only up to pointwise everywhere equivalence
in t ∈ [0, T ] it is not clear that specifying a pointwise value at t = 0 imposes
any restriction on u. As shown in Theorem 6.41, however, the conditions that
u ∈ L2

(

0, T ;H1
0(Ω)

)

and ut ∈ L2
(

0, T ;H−1(Ω)
)

imply that u ∈ C
(

[0, T ];L2(Ω)
)

.
Therefore, identifying u with its continuous representative, we see that the initial
condition makes sense.

We then have the following existence result, whose proof will be given in the
following sections.

Theorem 6.3. Suppose that the conditions in Assumption 6.1 are satisfied.
Then for every f ∈ L2

(

0, T ;H−1(Ω)
)

and g ∈ H1
0 (Ω) there is a unique weak

solution

u ∈ C
(

[0, T ];L2(Ω)
)

∩ L2
(

0, T ;H1
0 (Ω)

)
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of (6.8), in the sense of Definition 6.2, with ut ∈ L2
(

0, T ;H−1(Ω)
)

. Moreover,
there is a constant C, depending only on Ω, T , and the coefficients of L, such that

‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1

0
) + ‖ut‖L2(0,T ;H−1) ≤ C

(

‖f‖L2(0,T ;H−1) + ‖g‖L2

)

.

6.4. The Galerkin approximation

The basic idea of the existence proof is to approximate u : [0, T ] → H1
0 (Ω) by

functions uN : [0, T ] → EN that take values in a finite-dimensional subspace EN ⊂
H1

0 (Ω) of dimension N . To obtain the uN , we project the PDE onto EN , meaning
that we require that uN satisfies the PDE up to a residual which is orthogonal
to EN . This gives a system of ODEs for uN , which has a solution by standard
ODE theory. Each uN satisfies an energy estimate of the same form as the a priori
estimate for solutions of the PDE. These estimates are uniform in N , which allows
us to pass to the limit N → ∞ and obtain a solution of the PDE.

In more detail, the existence of uniform bounds implies that the sequence {uN}
is weakly compact in a suitable space and hence, by the Banach-Alaoglu theorem,
there is a weakly convergent subsequence {uNk

} such that uNk
⇀ u as k → ∞.

Since the PDE and the approximating ODEs are linear, and linear functionals are
continuous with respect to weak convergence, the weak limit of the solutions of the
ODEs is a solution of the PDE. As with any similar compactness argument, we get
existence but not uniqueness, since it is conceivable that different subsequences of
approximate solutions could converge to different weak solutions. We can, however,
prove uniqueness of a weak solution directly from the energy estimates. Once we
know that the solution is unique, it follows by a compactness argument that we
have weak convergence uN ⇀ u of the full approximate sequence. One can then
prove that the sequence, in fact, converges strongly in L2(0, T ;H1

0 ).
Methods such as this one, in which we approximate the solution of a PDE by

the projection of the solution and the equation into finite dimensional subspaces, are
called Galerkin methods. Such methods have close connections with the variational
formulation of PDEs. For example, in the time-independent case of an elliptic PDE
given by a variational principle, we may approximate the minimization problem for
the PDE over an infinite-dimensional function space E by a minimization problem
over a finite-dimensional subspace EN . The corresponding equations for a critical
point are a finite-dimensional approximation of the weak formulation of the original
PDE. We may then show, under suitable assumptions, that as N → ∞ solutions
uN of the finite-dimensional minimization problem approach a solution u of the
original problem.

There is considerable flexibility the finite-dimensional spaces EN one uses in a
Galerkin method. For our analysis, we take

(6.15) EN = 〈w1, w2, . . . , wN 〉

to be the linear space spanned by the first N vectors in an orthonormal basis
{wk : k ∈ N} of L2(Ω), which we may also assume to be an orthogonal basis of
H1

0 (Ω). For definiteness, take the wk(x) to be the eigenfunctions of the Dirichlet
Laplacian on Ω:

(6.16) −∆wk = λkwk wk ∈ H1
0 (Ω) for k ∈ N.
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From the previous existence theory for solutions of elliptic PDEs, the Dirichlet
Laplacian on a bounded open set is a self-adjoint operator with compact resolvent,
so that suitably normalized set of eigenfunctions have the required properties.

Explicitly, we have

∫

Ω

wjwk dx =

{

1 if j = k,
0 if j 6= k,

∫

Ω

Dwj ·Dwk dx =

{

λj if j = k,
0 if j 6= k.

We may expand any u ∈ L2(Ω) in an L2-convergent series as

u(x) =
∑

k∈N

ckwk(x)

where ck = (u,wk)L2 and u ∈ L2(Ω) if and only if

∑

k∈N

∣

∣ck
∣

∣

2
< ∞.

Similarly, u ∈ H1
0 (Ω), and the series converges in H1

0 (Ω), if and only if

∑

k∈N

λk

∣

∣ck
∣

∣

2
< ∞.

We denote by PN : L2(Ω) → EN ⊂ L2(Ω) the orthogonal projection onto EN

defined by

(6.17) PN

(

∑

k∈N

ckwk

)

=

N
∑

k=1

ckwk.

We also denote by PN the orthogonal projections PN : H1
0 (Ω) → EN ⊂ H1

0 (Ω) or
PN : H−1(Ω) → EN ⊂ H−1(Ω), which we obtain by restricting or extending PN

from L2(Ω) to H1
0 (Ω) or H−1(Ω), respectively. Thus, PN is defined on H1

0 (Ω) by
(6.17) and on H−1(Ω) by

〈PNu, v〉 = 〈u, PNv〉 for all v ∈ H1
0 (Ω).

While this choice of EN is convenient for our existence proof, other choices are
useful in different contexts. For example, the finite-element method is a numer-
ical implementation of the Galerkin method which uses a space EN of piecewise
polynomial functions that are supported on simplices, or some other kind of el-
ement. Unlike the eigenfunctions of the Laplacian, finite-element basis functions,
which are supported on a small number of adjacent elements, are straightforward to
construct explicitly. Furthermore, one can approximate functions on domains with
complicated geometry in terms of the finite-element basis functions by subdividing
the domain into simplices, and one can refine the decomposition in regions where
higher resolution is required. The finite-element basis functions are not exactly
orthogonal, but they are almost orthogonal since they overlap only if they are sup-
ported on nearby elements. As a result, the associated Galerkin equations involve
sparse matrices, which is crucial for their efficient numerical solution. One can ob-
tain rigorous convergence proofs for finite-element methods that are similar to the
proof discussed here (at least, if the underlying equations are not too complicated).
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6.5. Existence of weak solutions

We proceed in three steps:

(1) Construction of approximate solutions;
(2) Derivation of energy estimates for approximate solutions;
(3) Convergence of approximate solutions to a solution.

After proving the existence of weak solutions, we will show that they are unique
and make some brief comments on their regularity and continuous dependence
on the data. We assume throughout this section, without further comment, that
Assumption 6.1 holds.

6.5.1. Construction of approximate solutions. First, we define what we
mean by an approximate solution. Let EN be the N -dimensional subspace ofH1

0 (Ω)
given in (6.15)–(6.16) and PN the orthogonal projection onto EN given by (6.17).

Definition 6.4. A function uN : [0, T ] → EN is an approximate solution of
(6.8) if:

(1) uN ∈ L2(0, T ;EN) and uNt ∈ L2(0, T ;EN);
(2) for every v ∈ EN

(6.18) (uNt(t), v)L2 + a (uN (t), v; t) = 〈f(t), v〉
pointwise a.e. in t ∈ (0, T );

(3) uN (0) = PNg.

Since uN ∈ H1(0, T ;EN), it follows from the Sobolev embedding theorem for
functions of a single variable t that uN ∈ C([0, T ];EN), so the initial condition (3)
makes sense. Condition (2) requires that uN satisfies the weak formulation (6.13)
of the PDE in which the test functions v are restricted to EN . This is equivalent
to the condition that

uNt + PNLuN = PNf

for t ∈ (0, T ) pointwise a.e., meaning that uN takes values in EN and satisfies the
projection of the PDE onto EN .2

To prove the existence of an approximate solution, we rewrite their definition
explicitly as an IVP for an ODE. We expand

(6.19) uN(t) =

N
∑

k=1

ckN (t)wk

where the ckN : [0, T ] → R are absolutely continuous scalar coefficient functions. By
linearity, it is sufficient to impose (6.18) for v = w1, . . . , wN . Thus, (6.19) is an
approximate solution if and only if

ckN ∈ L2(0, T ), ckNt ∈ L2(0, T ) for 1 ≤ k ≤ N,

and {c1N , . . . , cNN} satisfies the system of ODEs

(6.20) cjNt +
N
∑

k=1

ajkckN = f j , cjN (0) = gj for 1 ≤ j ≤ N

2More generally, one can define approximate solutions which take values in an N-dimensional
space EN and satisfy the projection of the PDE on another N-dimensional space FN . This
flexibility can be useful for problems that are highly non-self adjoint, but it is not needed here.
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where

ajk(t) = a(wj , wk; t), f j(t) = 〈f(t), wj〉, gj = (g, wj)L2 .

Equation (6.20) may be written in vector form for ~c : [0, T ] → R
N as

(6.21) ~cNt +A(t)~cN = ~f(t), ~cN (0) = ~g

where

~cN = {c1N , . . . , cNN}T , ~f = {f1, . . . , fN}T , ~g = {g1, . . . , gN}T ,
andA : [0, T ] → R

N×N is a matrix-valued function of t with coefficients (ajk)j,k=1,N .

Proposition 6.5. For every N ∈ N, there exists a unique approximate solution
uN : [0, T ] → EN of (6.8).

Proof. This result follows by standard ODE theory. We give the proof since
the coefficient functions in (6.21) are bounded but not necessarily continuous func-
tions of t. This is, however, sufficient since the ODE is linear.

From Assumption 6.1 and (6.12), we have

(6.22) A ∈ L∞
(

0, T ;RN×N
)

, ~f ∈ L2
(

0, T ;RN
)

.

Writing (6.21) as an equivalent integral equation, we get

~cN = Φ(~cN ) , Φ (~cN ) (t) = ~g −
∫ t

0

A(s)~cN (s) ds+

∫ t

0

~f(s) ds.

If follows from (6.22) that Φ : C
(

[0, T∗];R
N
)

→ C
(

[0, T∗];R
N
)

for any 0 < T∗ ≤ T .

Moreover, if ~p, ~q ∈ C
(

[0, T∗];R
N
)

then

‖Φ (~p)− Φ (~q)‖L∞([0,T∗];RN ) ≤ MT∗ ‖~p− ~q‖L∞([0,T∗];RN )

where

M = sup
0≤t≤T

‖A(t)‖ .

Hence, if MT∗ < 1, the map Φ is a contraction on C
(

[0, T∗];R
N
)

. The contrac-
tion mapping theorem then implies that there is a unique solution on [0, T∗] which
extends, after a finite number of applications of this result, to a solution ~cN ∈
C
(

[0, T ];RN
)

. The corresponding approximate solution satisfies uN ∈ C ([0, T ];EN).
Moreover,

~cNt = Φ(~cN )t = −A~cN + ~f ∈ L2
(

0, T ;RN
)

,

which implies that uNt ∈ L2 (0, T ;EN). �

6.5.2. Energy estimates for approximate solutions. The derivation of
energy estimates for the approximate solutions follows the derivation of the a priori
estimate (6.4) for the heat equation. Instead of multiplying the heat equation by
u, we take the test function v = uN in the Galerkin equations.

Proposition 6.6. There exists a constant C, depending only on T , Ω, and the
coefficient functions aij, bj, c, such that for every N ∈ N the approximate solution
uN constructed in Proposition 6.5 satisfies

‖uN‖L∞(0,T ;L2)+‖uN‖L2(0,T ;H1

0
)+‖uNt‖L2(0,T ;H−1) ≤ C

(

‖f‖L2(0,T ;H−1) + ‖g‖L2

)

.
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Proof. Taking v = uN (t) ∈ EN in (6.18), we find that

(uNt(t), uN (t))L2 + a (uN (t), uN (t); t) = 〈f(t), uN (t)〉
pointwise a.e. in (0, T ). Using this equation and the coercivity estimate (6.11), we
find that there are constants β > 0 and −∞ < γ < ∞ such that

1

2

d

dt
‖uN‖2L2 + β ‖uN‖2H1

0

≤ 〈f, uN 〉+ γ ‖uN‖2L2

pointwise a.e. in (0, T ), which implies that

1

2

d

dt

(

e−2γt ‖uN‖2L2

)

+ βe−2γt ‖uN‖2H1

0

≤ e−2γt〈f, uN〉.

Integrating this inequality with respect to t, using the initial condition uN(0) =
PNg, and the projection inequality ‖PNg‖L2 ≤ ‖g‖L2 , we get for 0 ≤ t ≤ T that

(6.23)
1

2
e−2γt ‖uN (t)‖2L2 +β

∫ t

0

e−2γs ‖uN‖2H1

0

ds ≤ 1

2
‖g‖2L2 +

∫ t

0

e−2γs〈f, uN 〉 ds.

It follows from the definition of the H−1 norm, the Cauchy-Schwartz inequality,
and Cauchy’s inequality with ǫ that

∫ t

0

e−2γs〈f, uN 〉 ds ≤
∫ t

0

e−2γs ‖f‖H−1 ‖uN‖H1

0

ds

≤
(
∫ t

0

e−2γs ‖f‖2H−1 ds

)1/2 (∫ t

0

e−2γs ‖uN‖2H1

0

ds

)1/2

≤ C ‖f‖L2(0,T ;H−1)

(
∫ t

0

e−2γs ‖uN‖2H1

0

ds

)1/2

≤ C ‖f‖2L2(0,T ;H−1) +
β

2

∫ t

0

e−2γs ‖uN‖2H1

0

ds,

and using this result in (6.23) we get

1

2
e−2γt ‖uN (t)‖2L2 +

β

2

∫ t

0

e−2γs ‖uN‖2H1

0

ds ≤ 1

2
‖g‖2L2 + C ‖f‖2L2(0,T ;H−1) .

Taking the supremum of this equation with respect to t over [0, T ], we find that
there is a constant C such that

(6.24) ‖uN‖2L∞(0,T ;L2) + ‖uN‖2L2(0,T ;H1

0
) ≤ C

(

‖g‖2L2 + ‖f‖2L2(0,T ;H−1)

)

.

To estimate uNt, we note that since uNt(t) ∈ EN

‖uNt(t)‖H−1 = sup
v∈EN\{0}

(uNt(t), v)L2

‖v‖H1

0

.

From (6.18) and (6.12) we have

(uNt(t), v)L2 ≤ |a (uN(t), v; t)|+ |〈f(t), v〉|

≤ C
(

‖uN(t)‖H1

0

+ ‖f(t)‖H−1

)

‖v‖H1

0

for every v ∈ H1
0 , and therefore

‖uNt(t)‖2H−1 ≤ C
(

‖uN(t)‖2H1

0

+ ‖f(t)‖2H−1

)

.



186 6. PARABOLIC EQUATIONS

Integrating this equation with respect to t and using (6.24) in the result, we obtain

(6.25) ‖uNt‖2L2(0,T ;H−1) ≤ C
(

‖g‖2L2 + ‖f‖2L2(0,T ;H−1)

)

.

Equations (6.24) and (6.25) complete the proof. �

6.5.3. Convergence of approximate solutions. Next we prove that a sub-
sequence of approximate solutions converges to a weak solution. We use a weak
compactness argument, so we begin by describing explicitly the type of weak con-
vergence involved.

We identify the dual space of L2
(

0, T ;H1
0 (Ω)

)

with L2
(

0, T ;H−1(Ω)
)

. The

action of f ∈ L2
(

0, T ;H−1(Ω)
)

on u ∈ L2
(

0, T ;H1
0 (Ω)

)

is given by

〈〈f, u〉〉 =
∫ T

0

〈f, u〉 dt

where 〈〈·, ·〉〉 denotes the duality pairing between L2
(

0, T ;H−1
)

and L2
(

0, T ;H1
0

)

,

and 〈·, ·〉 denotes the duality pairing between H−1 and H1
0 .

Weak convergence uN ⇀ u in L2
(

0, T ;H1
0(Ω)

)

means that
∫ T

0

〈f(t), uN (t)〉 dt →
∫ T

0

〈f(t), u(t)〉 dt for every f ∈ L2
(

0, T ;H−1(Ω)
)

.

Similarly, fN ⇀ f in L2
(

0, T ;H−1(Ω)
)

means that
∫ T

0

〈fN (t), u(t)〉 dt →
∫ T

0

〈f(t), u(t)〉 dt for every u ∈ L2
(

0, T ;H1
0 (Ω)

)

.

If uN ⇀ u weakly in L2
(

0, T ;H1
0 (Ω)

)

and fN → f strongly in L2
(

0, T ;H−1(Ω)
)

,

or conversely, then 〈fN , uN〉 → 〈f, u〉.3

Proposition 6.7. A subsequence of approximate solutions converges weakly in
L2
(

0, T ;H−1(Ω)
)

to a weak solution

u ∈ C
(

[0, T ];L2(Ω)
)

∩ L2
(

0, T ;H1
0 (Ω)

)

of (6.8) with ut ∈ L2
(

0, T ;H−1(Ω)
)

. Moreover, there is a constant C such that

‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1

0
) + ‖ut‖L2(0,T ;H−1) ≤ C

(

‖f‖L2(0,T ;H−1) + ‖g‖L2

)

.

Proof. Proposition 6.6 implies that the approximate solutions {uN} are bounded
in L2

(

0, T ;H1
0(Ω)

)

and their time derivatives {uNt} are bounded in L2
(

0, T ;H−1(Ω)
)

.
It follows from the Banach-Alaoglu theorem (Theorem 1.19) that we can extract a
subsequence, which we still denote by {uN}, such that

uN ⇀ u in L2
(

0, T ;H1
0

)

, uNt ⇀ ut in L2
(

0, T ;H−1
)

.

Let φ ∈ C∞
c (0, T ) be a real-valued test function and w ∈ EM for some M ∈ N.

Taking v = φ(t)w in (6.18) and integrating the result with respect to t, we find
that for N ≥ M

∫ T

0

{(uNt(t), φ(t)w)L2 + a (uN (t), φ(t)w; t)} dt =

∫ T

0

〈f(t), φ(t)w〉 dt.

3It is, of course, not true that fN ⇀ f and uN ⇀ u implies 〈fN , uN 〉 → 〈f, u〉. For example,
sinNπx ⇀ 0 in L2(0, 1) but (sinNπx, sinNπx)L2 → 1/2.
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We take the limit of this equation as N → ∞. Since the function t 7→ φ(t)w belongs
to L2(0, T ;H1

0), we have

∫ T

0

(uNt, φw)L2 dt = 〈〈uNt, φw〉〉 → 〈〈ut, φw〉〉 =
∫ T

0

〈ut, φw〉 dt.

Moreover, the boundedness of a in (6.12) implies similarly that

∫ T

0

a (uN(t), φ(t)w; t) dt →
∫ T

0

a (u(t), φ(t)w; t) dt.

It therefore follows that u satisfies

(6.26)

∫ T

0

φ [〈ut, w〉+ a (u,w; t)] dt =

∫ T

0

φ〈f, w〉 dt.

Since this holds for every φ ∈ C∞
c (0, T ), we have

(6.27) 〈ut, w〉 + a (u,w; t) = 〈f, w〉

pointwise a.e. in (0, T ) for every w ∈ EM . Moreover, since
⋃

M∈N

EM

is dense in H1
0 , this equation holds for every w ∈ H1

0 , and therefore u satisfies
(6.13).

Finally, to show that the limit satisfies the initial condition u(0) = g, we use the
integration by parts formula Theorem 6.42 with φ ∈ C∞([0, T ]) such that φ(0) = 1
and φ(T ) = 0 to get

∫ T

0

〈ut, φw〉 dt = 〈u(0), w〉 −
∫ T

0

φt〈u,w〉.

Thus, using (6.27), we have

〈u(0), w〉 =
∫ T

0

φt〈u,w〉+
∫ T

0

φ [〈f, w〉 − a (u,w; t)] dt.

Similarly, for the Galerkin appoximation with w ∈ EM and N ≥ M , we get

〈g, w〉 =
∫ T

0

φt〈uN , w〉 +
∫ T

0

φ [〈f, w〉 − a (uN , w; t)] dt.

Taking the limit of this equation as N → ∞, when the right-hand side converges
to the right-hand side of the previosus equation, we find that 〈u(0), w〉 = 〈g, w〉 for
every w ∈ EM , which implies that u(0) = g. �

6.5.4. Uniqueness of weak solutions. If u1, u2 are two solutions with the
same data f , g, then by linearity u = u1 − u2 is a solution with zero data f = 0,
g = 0. To show uniqueness, it is therefore sufficient to show that the only weak
solution with zero data is u = 0.

Since u(t) ∈ H1
0 (Ω), we may take v = u(t) as a test function in (6.13), with

f = 0, to get

〈ut, u〉+ a (u, u; t) = 0,
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where this equation holds pointwise a.e. in [0, T ] in the sense of weak derivatives.
Using (6.46) and the coercivity estimate (6.11), we find that there are constants
β > 0 and −∞ < γ < ∞ such that

1

2

d

dt
‖u‖2L2 + β ‖u‖2H1

0

≤ γ ‖u‖2L2 .

It follows that
1

2

d

dt
‖u‖2L2 ≤ γ ‖u‖2L2 , u(0) = 0,

and since ‖u(0)‖L2 = 0, Gronwall’s inequality implies that ‖u(t)‖L2 = 0 for all
t ≥ 0, so u = 0.

In a similar way, we get continuous dependence of weak solutions on the data.
If ui is the weak solution with data fi, gi for i = 1, 2, then there is a constant C
independent of the data such that

‖u1 − u2‖L∞(0,T ;L2) + ‖u1 − u2‖L2(0,T ;H1

0
)

≤ C
(

‖f1 − f2‖L2(0,T ;H−1) + ‖g1 − g2‖L2

)

.

6.5.5. Regularity of weak solutions. For operators with smooth coeffi-
cients on smooth domains with smooth data f , g, one can obtain regularity results
for weak solutions by deriving energy estimates for higher-order derivatives of the
approximate Galerkin solutions uN and taking the limit as N → ∞. A repeated
application of this procedure, and the Sobolev theorem, implies, from the Sobolev
embedding theorem, that the weak solutions constructed above are smooth, classi-
cal solutions if the data satisfy appropriate compatibility relations. For a discussion
of this regularity theory, see §7.1.3 of [9].

6.6. A semilinear heat equation

The Galerkin method is not restricted to linear or scalar equations. In this
section, we briefly discuss its application to a semilinear heat equation. For more
information and examples of the application of Galerkin methods to nonlinear evo-
lutionary PDEs, see Temam [43].

Let Ω ⊂ R
n be a bounded open set, T > 0, and consider the semilinear,

parabolic IBVP for u(x, t)

ut = ∆u− f(u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = g(x) on Ω× {0}.
(6.28)

We suppose, for simplicity, that

(6.29) f(u) =

2p−1
∑

k=0

cku
k

is a polynomial of odd degree 2p − 1 ≥ 1. We also assume that the coefficient
c2p−1 > 0 of the highest degree term is positive. We then have the following global
existence result.

Theorem 6.8. Let T > 0. For every g ∈ L2(Ω), there is a unique weak solution

u ∈ C
(

[0, T ];L2(Ω)
)

∩ L2
(

0, T ;H1
0(Ω)

)

∩ L2p
(

0, T ;L2p(Ω)
)

.

of (6.28)–(6.29).
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The proof follows the standard Galerkin method for a parabolic PDE. We will
not give it in detail, but we comment on the main new difficulty that arises as a
result of the nonlinearity.

To obtain the basic a priori energy estimate, we multiplying the PDE by u,
(

1

2
u2

)

t

+ |Du|2 + uf(u) = div(uDu),

and integrate the result over Ω, using the divergence theorem and the boundary
condition, which gives

1

2

d

dt
‖u‖2L2 + ‖Du‖2L2 +

∫

Ω

uf(u) dx = 0.

Since uf(u) is an even polynomial of degree 2p with positive leading order coeffi-
cient, and the measure |Ω| is finite, there are constants A > 0, C ≥ 0 such that

A ‖u‖L2p

2p
≤
∫

Ω

uf(u) dx+ C.

We therefore have that

(6.30)
1

2
sup
[0,T ]

‖u‖2L2 +

∫ T

0

‖Du‖2L2 dt+A

∫ T

0

‖u‖2p2p dt ≤ CT +
1

2
‖g‖2L2 .

Note that if ‖u‖L2p is finite then ‖f(u)‖Lq is finite for q = (2p)′, since then
q(2p− 1) = 2p and

∫

Ω

|f(u)|q dx ≤ A

∫

Ω

|u|q(2p−1) dx+ C ≤ A ‖u‖L2p + C.

Thus, in giving a weak formulation of the PDE, we want to use test functions

v ∈ H1
0 (Ω) ∩ L2p(Ω)

so that both (Du,Dv)L2 and (f(u), v)L2 are well-defined.
The Galerkin approximations {uN} take values in a finite dimensional subspace

EN ⊂ H1
0 (Ω) ∩ L2p(Ω) and satisfy

uNt = ∆uN + PNf(uN),

where PN is the orthogonal projection onto EN in L2(Ω). These approximations
satisfy the same estimates as the a priori estimates in (6.30). The Galerkin ODEs
have a unique local solution since the nonlinear terms are Lipschitz continuous
functions of uN . Moreover, in view of the a priori estimates, the local solutions
remain bounded, and therefore they exist globally for 0 ≤ t < ∞.

Since the estimates (6.30) hold uniformly in N , we extract a subsequence that
converges weakly (or weak-star) uN ⇀ u in the appropriate topologies to a limiting
function

u ∈ L∞
(

0, T ;L2
)

∩ L2
(

0, T ;H1
0

)

∩ L2p
(

0, T ;L2p
)

.

Moreover, from the equation

ut ∈ L2
(

0, T ;H−1
)

+ Lq (0, T ;Lq)

where q = (2p)′ is the Hölder conjugate of 2p.
In order to prove that u is a solution of the original PDE, however, we have to

show that

(6.31) f (uN ) ⇀ f(u)
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in an appropriate sense. This is not immediately clear because of the lack of weak
continuity of nonlinear functions; in general, even if f (uN) ⇀ f̄ converges, we may
not have f̄ = f(u). To show (6.31), we use the compactness Theorem 6.9 stated
below. This theorem and the weak convergence properties found above imply that
there is a subsequence of approximate solutions such that

uN → u strongly in L2(0, T ;L2).

This is equivalent to strong-L2 convergence on Ω × (0, T ). By the Riesz-Fischer
theorem, we can therefore extract a subsequence so that uN(x, t) → u(x, t) point-
wise a.e. on Ω× (0, T ). Using the dominated convergence theorem and the uniform
bounds on the approximate solutions, we find that for every v ∈ H1

0 (Ω) ∩ L2p(Ω)

(f (uN (t)) , v)L2 → (f (u(t)) , v)L2

pointwise a.e. on [0, T ].
Finally, we state the compactness theorem used here.

Theorem 6.9. Suppose that X →֒ Y →֒ Z are Banach spaces, where X, Z
are reflexive and X is compactly embedded in Y . Let 1 < p < ∞. If the functions
uN : (0, T ) → X are such that {uN} is uniformly bounded in L2(0, T ;X) and {uNt}
is uniformly bounded in Lp(0, T ;Z), then there is a subsequence that converges
strongly in L2(0, T ;Y ).

The proof of this theorem is based on Ehrling’s lemma.

Lemma 6.10. Suppose that X →֒ Y →֒ Z are Banach spaces, where X is
compactly embedded in Y . For any ǫ > 0 there exists a constant Cǫ such that

‖u‖Y ≤ ǫ ‖u‖X + Cǫ ‖u‖Z .

Proof. If not, there exists ǫ > 0 and a sequence {un} in X with ‖un‖X = 1
such that

(6.32) ‖un‖Y > ǫ ‖un‖X + n ‖un‖Z
for every n ∈ N. Since {un} is bounded in X and X is compactly embedded in Y ,
there is a subsequence, which we still denote by {un} that converges strongly in Y ,
to u, say. Then {‖un‖Y } is bounded and therefore u = 0 from (6.32). However,
(6.32) also implies that ‖un‖Y > ǫ for every n ∈ N, which is a contradiction. �

If we do not impose a sign condition on the nonlinearity, then solutions may
‘blow up’ in finite time, as for the ODE ut = u3, and then we do not get global
existence.

Example 6.11. Consider the following one-dimensional IBVP [20] for u(x, t)
in 0 < x < 1, t > 0:

ut = uxx + u3,

u(0, t) = u(1, t) = 0,

u(x, 0) = g(x).

(6.33)

Suppose that u(x, t) is smooth solution, and let

c(t) =

∫ 1

0

u(x, t) sin(πx) dx
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denote the first Fourier sine coefficient of u. Multiplying the PDE by sin(πx),
integrating with respect to x over (0, 1), and using Green’s formula to write
∫ 1

0

uxx(x, t) sin(πx) dx = [ux sin(πx) − πu cos(π)x]
1
0 − π2

∫ 1

0

u(x, t) sin(πx) dx

= −π2c,

we get that

dc

dt
= −π2c+

∫ 1

0

u3 sin(πx) dx.

Now suppose that g(x) ≥ 0. Then the maximum principle implies that u(x, t) ≥ 0
for all 0 < x < 1, t > 0. It then follows from Hölder inequality that

∫ 1

0

u sin(πx) dx =

∫ 1

0

[

u3 sin(πx)
]1/3

[sin(πx)]
2/3

dx

≤
(
∫ 1

0

u3 sin(πx) dx

)1/3 (∫ 1

0

sin(πx) dx

)2/3

≤
(

2

π

)2/3(∫ 1

0

u3 sin(πx) dx

)1/3

.

Hence
∫ 1

0

u3 sin(πx) dx ≥ π2

4
c3,

and therefore
dc

dt
≥ π2

(

−c+
1

4
c3
)

.

Thus, if c(0) > 2, Gronwall’s inequality implies that

c(t) ≥ y(t)

where y(t) is the solution of the ODE

dy

dt
= π2

(

−y +
1

4
y3
)

.

This solution is given explicitly by

y(t) =
2√

1− e2π2(t−t∗)

This solution approaches infinity as t → t−∗ where, with y(0) = c(0),

t∗ =
1

π2
log

c(0)
√

c(0)2 − 4
.

Therefore no smooth solution of (6.33) can exist beyond t = t∗.

The argument used in the previous example does not prove that c(t) blows up at
t = t∗. It is conceivable that the solution loses smoothness at an earlier time — for
example, because another Fourier coefficient blows up first — thereby invalidating
the argument that c(t) blows up. We only get a sharp result if the quantity proven
to blow up is a ‘controlling norm,’ meaning that local smooth solutions exist so
long as the controlling norm remains finite.
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Example 6.12. Beale-Kato-Majda (1984) proved that solutions of the incom-
pressible Euler equations from fluid mechanics in three-space dimensions remain
smooth unless

∫ t

0

‖ω(s)‖L∞(R3) ds → ∞ as t → t−∗

where ω(·, t) = curlu(·, t) denotes the vorticity (the curl of the fluid velocity u(x, t)).
Thus, the L1

(

0, T ;L∞(R3;R3)
)

)-norm of ω is a controlling norm for the three-
dimensional incompressible Euler equations. It is open question whether or not
this norm can blow up in finite time.
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