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CHAPTER 8

Friedrich symmetric systems

In this chapter, we describe a theory due to Friedrich [13] for positive symmet-
ric systems, which gives the existence and uniqueness of weak solutions of boundary
value problems under appropriate positivity conditions on the PDE and the bound-
ary conditions. No assumptions about the type of the PDE are required, and the
theory applies equally well to hyperbolic, elliptic, and mixed-type systems.

8.1. A BVP for symmetric systems

Let Ω be a domain in R
n with boundary ∂Ω. Consider a BVP for an m ×m

system of PDEs for u : Ω → R
m of the form

Ai∂iu+ Cu = f in Ω,

B−u = 0 on ∂Ω,
(8.1)

where Ai, C, B− are m × m coefficient matrices, f : Ω → R
m, and we use the

summation convention. We assume throughout that Ai is symmetric.
We define a boundary matrix on ∂Ω by

(8.2) B = νiA
i

where ν is the outward unit normal to ∂Ω. We assume that the boundary is non-
characteristic and that (8.1) satisfies the following smoothness conditions.

Definition 8.1. The BVP (8.1) is smooth if:

(1) The domain Ω is bounded and has C2-boundary.
(2) The symmetric matrices Ai : Ω → R

m×m are continuously differentiable
on the closure Ω, and C : Ω → R

m×m is continuous on Ω.
(3) The boundary matrix B− : ∂Ω → R

m×m is continuous on ∂Ω.

These assumptions can be relaxed, but our goal is to describe the theory in its
basic form with a minimum of technicalities.

Let L denote the operator in (8.1) and L∗ its formal adjoint,

(8.3) L = Ai∂i + C, L∗ = −Ai∂i + CT − ∂iA
i.

For brevity, we write spaces of continuously differentiable and square integrable
vector-valued functions as

C1(Ω) = C1(Ω;Rm), L2(Ω) = L2(Ω;Rm),

with a similar notation for matrix-valued functions.

Proposition 8.2 (Green’s identity). If the smoothness assumptions in Defini-
tion 8.1 are satisfied and u, v ∈ C1(Ω), then

(8.4)

∫

Ω

vTLu dx−

∫

Ω

uTL∗v dx =

∫

∂Ω

vTBudS,
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224 8. FRIEDRICH SYMMETRIC SYSTEMS

where B is defined in (8.2).

Proof. Using the symmetry of Ai, we have

vTLu = uTL∗v + ∂i
(

vTAiu
)

.

The result follows by integration and the use of Green’s theorem. �

The smoothness assumptions are sufficient to ensure that Green’s theorem ap-
plies, although it also holds under weaker assumptions.

Proposition 8.3 (Energy identity). If the smoothness assumptions in Defini-
tion 8.1 are satisfied and u ∈ C1(Ω), then

(8.5)

∫

Ω

uT
(

C + CT − ∂iA
i
)

u dx+

∫

∂Ω

uTBudS = 2

∫

Ω

fTu dx

where B is defined in (8.2) and Lu = f .

Proof. Taking the inner product of the equation Lu = f with u, adding the
transposed equation, and combining the derivatives of u, we get

∂i
(

uTAiu
)

+ uT
(

C + CT − ∂iA
i
)

u = 2fTu.

The result follows by integration and the use of Green’s theorem. �

To get energy estimates, we want to ensure that the volume integral in (8.5) is
positive, which leads to the following definition.

Definition 8.4. The system in (8.1) is a positive symmetric system if the
matrices Ai are symmetric and there exists a constant c > 0 such that

(8.6) C + CT − ∂iA
i ≥ 2cI.

8.2. Boundary conditions

We assume that the domain has non-characteristic boundary, meaning that
the boundary matrix B = νiA

i is nonsingular on ∂Ω. The analysis extends to
characteristic boundaries with constant multiplicity, meaning that the rank of B is
constant on ∂Ω [25, 34].

To get estimates, we need the boundary terms in (8.5) to be positive for all
u such that B−u = 0. Furthermore, to get estimates for the adjoint problem, we
need the adjoint boundary terms to be negative. This is the case if the boundary
conditions are maximally positive in the following sense [13].

Definition 8.5. Let B = νiA
i be a nonsingular, symmetric boundary matrix.

A boundary condition B−u = 0 on ∂Ω is maximally positive if there is a (not
necessarily symmetric) matrix function M : ∂Ω → R

m×m such that:

(1) B = B+ +B− where B+ = B +M , and B− = B −M ;
(2) M +MT ≥ 0 (positivity);
(3) R

m = kerB+ ⊕ kerB− (maximality).

The adjoint boundary condition to B−u = 0 is BT
+v = 0, as can be seen from

the decomposition
vTBu = uTBT

+v + vTB−u.

If B−u = 0 on ∂Ω, then

(8.7) uTBu = uT (B+ −B−)u = uT
(

M +MT
)

u ≥ 0,
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while if BT
+v = 0 on ∂Ω, then

(8.8) vTBv = vT (−B+ +B−) v = −vT
(

M +MT
)

v ≤ 0.

The boundary condition B−u = 0 can also be formulated as: u ∈ N+ where
N+ = kerB− is a family of subspaces defined on ∂Ω. An equivalent way to state
Definition 8.5 is that the subspace N+ is a maximally positive subspace for B,
meaning that B is positive (≥ 0) on N+ and not positive on any strictly larger
subspace of Rm that contains N+.

The adjoint boundary condition BT
+v = 0 may be written as v ∈ N− where

N− = kerBT
+ is a maximally negative subspace that complements N+, and

R
m = N+ ⊕N−, N+ = (BN−)

⊥
, N− = (BN+)

⊥
.

We may consider Rm as a vector space with an indefinite inner product given
by 〈u, v〉 = uTBv. It follows from standard results about indefinite inner product
spaces that if Rm = N+ ⊕N− where N+ is a maximally positive subspace for 〈·, ·〉,
then N− is a maximally negative subspace. Moreover, the dimension of N+ is equal
to the number of positive eigenvalues of B, and the dimension of N− is equal to
the number of negative eigenvalues of B. In particular, the dimensions of N± are
constant on each connected component of ∂Ω if B is continuous and non-singular.

8.3. Uniqueness of smooth solutions

Under the above positivity assumptions, we can estimate a smooth solution u

of (8.1) by the right-hand side f . A similar result holds for the adjoint problem.
Let

(8.9) ‖u‖ =

(
∫

Ω

|u|2 dx

)1/2

, (u, v) =

∫

Ω

uT v dx

denote the standard L2-norm and inner product, where |u| denotes the Euclidean
norm of u ∈ R

m.

Theorem 8.6. Let L,L∗ denote the operators in (8.3), and suppose that the
smoothness conditions in Definition 8.1 and the positivity conditions in Defini-
tion 8.4, Definition 8.5 are satisfied. If u ∈ C1(Ω) and B−u = 0 on ∂Ω, then
c‖u‖ ≤ ‖Lu‖. If v ∈ C1(Ω) and BT

+v = 0 on ∂Ω, then c‖v‖ ≤ ‖L∗v‖.

Proof. If B−u = 0, then the energy identity (8.5), the positivity conditions
(8.6)–(8.7), and the Cauchy-Schwartz inequality imply that

2c‖u‖2 ≤

∫

Ω

uT
(

C + CT − ∂iA
i
)

u dx+

∫

∂Ω

uTBudS

≤ 2

∫

Ω

uTLu dx

≤ 2‖u‖ ‖Lu‖

so c‖u‖ ≤ ‖Lu‖. Similarly, if BT
+v = 0, then Green’s formula and (8.8) imply that

2c‖v‖2 ≤ 2

∫

Ω

vTL∗v dx−

∫

∂Ω

vTBv dS = 2

∫

Ω

vTL∗v dx ≤ 2‖v‖ ‖L∗v‖,

which proves the result for L∗. �
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Corollary 8.7. If the smoothness conditions in Definition 8.1 and the positiv-
ity conditions in Definition 8.4, Definition 8.5 are satisfied, then a smooth solution
u ∈ C1(Ω) of (8.1) is unique.

Proof. If u1, u2 are two solutions and u = u1−u2, then Lu = 0 and B−u = 0,
so Theorem 8.6 implies that u = 0. �

8.4. Existence of weak solutions

We define weak solutions of (8.1) as follows.

Definition 8.8. Let f ∈ L2(Ω). A function u ∈ L2(Ω) is a weak solution of
(8.1) if

∫

Ω

uTL∗v dx =

∫

Ω

fT v dx for all v ∈ D∗,

where L∗ is the operator defined in (8.3), the space of test functions v is

(8.10) D∗ =
{

v ∈ C1(Ω) : BT
+v = 0 on ∂Ω

}

,

and B+ is the boundary matrix in Definition 8.5.

It follows from Green’s theorem that a smooth function u ∈ C1(Ω) is a weak
solution of (8.1) if and only if it is a classical solution i.e., it satisfies (8.1) pointwise.
In general, a weak solution u is a distributional solution of Lu = f in Ω with
u, Lu ∈ L2(Ω). The boundary condition B−u = 0 is enforced weakly by the use
of test functions v that are not compactly supported in Ω and satisfy the adjoint
boundary condition BT

+v = 0.
In particular, functions u, v ∈ H1(Ω) satisfy the integration by parts formula

∫

Ω

vT ∂iu dx = −

∫

Ω

uT∂iv dx+

∫

∂Ω

νi(γv)
T (γu) dx′

where the trace map

(8.11) γ : H1(Ω) → H1/2(∂Ω)

is defined by the pointwise evaluation of smooth functions on ∂Ω extended by
density and boundedness to H1(Ω).The trace map is not, however, well-defined for
general u ∈ L2(Ω).

It follows that if u ∈ H1(Ω) is a weak solution of Lu = f , satisfying Defini-
tion 8.8, then

∫

Rn−1

vT γBu dx′ = 0 for all v ∈ D∗,

which implies that γB−u = 0. A similar result holds in a distributional sense if
u, Lu ∈ L2(Ω), in which case γBu ∈ H−1/2(∂Ω).

The existence of weak solutions follows immediately from the the Riesz repre-
sentation theorem and the estimate for the adjoint L∗ in Theorem 8.6.

Theorem 8.9. If the smoothness conditions in Definition 8.1 and the positiv-
ity conditions in Definition 8.4, Definition 8.5 are satisfied, then there is a weak
solution u ∈ L2(Ω) of (8.1) for every f ∈ L2(Ω).

Proof. We write H = L2(Ω), where H is equipped with its standard norm
and inner product given in (8.9). Let

L∗ : D∗ ⊂ H → H
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where the domain D∗ of L∗ is given by (8.10), and denote the range of L∗ by
W = L∗(D∗) ⊂ H . From Theorem 8.6,

(8.12) c‖v‖ ≤ ‖L∗v‖ for all v ∈ D∗,

which implies, in particular, that L∗ : D∗ → W is one-to-one.
Define a linear functional ℓ : W → R by

ℓ(w) = (f, v) where L∗v = w.

This functional is well-defined since L∗ is one-to-one. Furthermore, ℓ is bounded
on W since (8.12) implies that

|ℓ(w)| ≤ ‖f‖ ‖v‖ ≤
1

c
‖f‖ ‖w‖.

By the Riesz representation theorem, there exists u ∈ W ⊂ H such that (u,w) =
ℓ(w) for all w ∈ W , which implies that

(u, L∗v) = (f, v) for all v ∈ D∗.

This identity it just the statement that u is a weak solution of (8.1). �

8.5. Weak equals strong

A weak solution of (8.1) does not satisfy the same boundary condition as a
test function in Definition 8.8. As a result, we cannot derive an energy equation
analogous to (8.5) directly from the weak formulation and use it to prove the
uniqueness of a weak solution.

To close the gap between the existence of weak solutions and the uniqueness of
smooth solutions, we use the fact that weak solutions are strong solutions, meaning
that they can be obtained as a limit of smooth solutions.

Definition 8.10. Let f ∈ L2(Ω). A function u ∈ L2(Ω) is a strong solution of
(8.1) there exists a sequence of functions un ∈ C1(Ω) such that B−un = 0 on ∂Ω
and un → u, Lun → f in L2(Ω) as n → ∞.

In operator-theoretic terms, this definition says that u is a strong solution of
(8.1) if the pair (u, f) ∈ L2(Ω) × L2(Ω) belongs to the closure of the graph of the
operator

L : D ⊂ L2(Ω) → L2(Ω),

D =
{

u ∈ C1(Ω) : B−u = 0 on ∂Ω
}

.

If D is the domain of the closure, then

D ⊃ {u ∈ H1(Ω) : γB−u = 0},

but, in general, it is difficult to give an explicit description of D.
We will prove that a weak solution is a strong solution by mollifying the weak

solution. In fact, Friedrichs [12] introduced mollifiers for exactly this purpose. The
proof depends on the following lemma regarding the commutator of the differential
operator L with a smoothing operator.

Let

ηǫ(x) =
1

ǫn
η
(x

ǫ

)
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denote the standard mollifier (η is a compactly supported, non-negative, radially
symmetric C∞-function with unit integral), and let

(8.13) Jǫ : L
2(Rn) → C∞(Rn) ∩ L2(Rn), Jǫu = ηǫ ∗ u

denote the associated smoothing operator.

Lemma 8.11 (Friedrich). Define Jǫ : L2(Rn) → L2(Rn) by (8.13) and L :
C1

c (R
n) → L2(Rn) by (8.3), where Ai ∈ C1

c (R
n) and C ∈ Cc(R

n). Then the
commutator

[Jǫ, L] = JǫL− LJǫ, [Jǫ, L] : C
1
c (R

n) → L2(Rn)

extends to a bounded linear operator [Jǫ, L] : L2(Rn) → L2(Rn) whose norm is
uniformly bounded in ǫ. Furthermore, for every u ∈ L2(Rn)

[Jǫ, L]u → 0 in L2(Rn) as ǫ → 0+.

Proof. For u ∈ C1
c , we have

[Jǫ, L]u = ηǫ ∗
(

Ai∂iu+ Cu
)

−Ai∂i (ηǫ ∗ u)− C (ηǫ ∗ u)

= ηǫ ∗
(

Ai∂iu
)

−Ai (ηǫ ∗ ∂iu) + ηǫ ∗ (Cu)− C (ηǫ ∗ u) .

By standard properties of mollifiers, if f ∈ L2 then ηǫ ∗ f → f in L2 as ǫ → 0+, so
[Jǫ, L]u → 0 in L2 when u ∈ C1

c .
We may write the previous equation as

[Jǫ, L]u(x) =

∫

ηǫ(x− y)
{

[

Ai(y)−Ai(x)
]

∂iu(y)

+ [C(y)− C(x)] u(y)
}

dy,

and an integration by parts gives

[Jǫ, L]u(x) =

∫

∂iηǫ(x − y)
[

Ai(y)−Ai(x)
]

u(y) dy

+

∫

ηǫ(x− y)
[

C(y)− C(x) − ∂iA
i(y)

]

u(y) dy.

(8.14)

The first term on the right-hand side of (8.14) is bounded uniformly in ǫ because
the large factor ∂iηǫ(x− y) is balanced by the factor Ai(y)−Ai(x), which is small
on the support of ηǫ(x− y). To estimate this term, we use the Lipschitz continuity
of Ai — with Lipschitz constant Ki, say — to get

∣

∣

∣

∣

∫

∂iηǫ(x− y)
[

Ai(y)−Ai(x)
]

u(y) dy

∣

∣

∣

∣

≤ Ki

∫

|∂iηǫ(x− y)| |x− y| |u(y)| dy

≤ Ki
[

(

|x∂iηǫ|
)

∗ |u|
]

(x).

Young’s inequality implies that
∥

∥

(

|x∂iηǫ|
)

∗ |u|
∥

∥

L2 ≤ ‖x∂iηǫ‖L1 ‖u‖L2 ,

and the L1-norm

Ei = ‖x∂iηǫ‖L1 =
1

ǫn+1

∫

|x|
∣

∣

∣
∂iη

(x

ǫ

)∣

∣

∣
dx =

∫

|x| |∂iη(x)| dx
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is independent of ǫ. It follows that
∥

∥

∥

∥

∫

∂iηǫ(x− y)
[

Ai(y)−Ai(x)
]

u(y) dy

∥

∥

∥

∥

L2

≤ K ‖u‖L2

where K = EiK
i.

The second term on the right-hand side of (8.14) is straightforward to estimate:
∣

∣

∣

∣

∫

ηǫ(x− y)
[

C(y)− C(x) − ∂iA
i(y)

]

u(y) dy

∣

∣

∣

∣

≤ M

∫

ηǫ(x− y) |u(y)| dy

≤ M
(

ηǫ ∗ |u|
)

(x)

where M = sup
{

2|C|+ |∂iAi|
}

is a bound for the coefficient matrices (with | · |
denoting the L2-matrix norm). Young’s inequality and the fact that ‖ηǫ‖L1

= 1
imply that

∥

∥

∥

∥

∫

ηǫ(x− y)
[

C(y)− C(x) − ∂iA
i(y)

]

u(y) dy

∥

∥

∥

∥

L2

≤ M ‖ηǫ ∗ |u|‖L2

≤ M‖u‖L2.

Thus, [Jǫ, L] is bounded on the dense subset C1
c of L2, so it extends uniquely

to a linear operator on L2 whose norm is bounded by K +M independently of ǫ.
Furthermore, since [Jǫ, L]u → 0 as ǫ → 0+ for all u in a dense subset of L2, it

follows that [Jǫ, L]u → 0 for all u ∈ L2. �

Next, we prove the “weak equals strong” theorem.

Theorem 8.12. Suppose that the smoothness assumptions in Definition 8.1
are satisfied, B = νiA

i is nonsingular on ∂Ω, and f ∈ L2(Ω). Then a function
u ∈ L2(Ω) is a weak solution of (8.1) if and only if it is a strong solution.

Proof. Suppose u is a strong solution of (8.1), meaning that there is a se-
quence (un) of smooth solutions such that un → u and Lun → f in L2(Ω) as
n → ∞. These solutions satisfy (un, L

∗v) = (Lun, v) for all v ∈ D∗, and taking the
limit of this equation as n → ∞, we get that (u, L∗v) = (f, v) for all v ∈ D∗. This
means that u is a weak solution.

To prove that a weak solution is a strong solution, we use a partition of unity
to localize the problem and mollifiers to smooth the weak solution. In the interior
of the domain, we use a standard mollifier. On the boundary, we make a change of
coordinates to “flatten” the boundary and mollify only in the tangential directions
to preserve the boundary condition. The smoothness of the mollified solution in
the normal direction then follows from the PDE, since we can express the normal
derivative of a solution in terms of the tangential derivatives if the boundary is
non-characteristic.

In more detail, suppose that u ∈ L2(Ω) is a weak solution of (8.1), meaning
that (u, L∗v) = (f, v) for all v ∈ D∗, where (·, ·) denotes the standard inner product
on L2(Ω) and D∗ is defined in (8.10).

Let {Uj} be a finite open cover of Ω by interior or boundary coordinate patches
Uj. An interior patch is compactly contained in Ω and diffeomorphic to a ball
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{|x| < 1}; a boundary patch intersects Ω in a region that is diffeomorphic to a
half-ball {x1 > 0, |x| < 1}. Introduce a subordinate partition of unity {φj} with

suppφj ⊂ Uj and
∑

j φj = 1 on Ω, and let

u =
∑

j

uj , uj = φju.

We claim that u ∈ L2(Ω) is a weak solution of Lu = f , with the boundary
condition B−u = 0, if and only if each uj ∈ L2(Ω) is a weak solution of

(8.15) Luj = φjf + [∂iφj ]A
iu,

with the same boundary condition. The right-hand side of (8.15) depends on u,
but it belongs to L2(Ω) since it involves no derivatives of u.

To verify this claim, suppose that Lu = f . Then, by use of the equations
(u, φv) = (φu, v) and (u, L∗v) = (f, u), we get for all v ∈ D∗ that

(uj, L
∗v) = (u, φjL

∗v)

= (u, L∗[φjv]) +
(

u, [∂iφj ]A
iv
)

= (f, φjv) +
(

u, [∂iφj ]A
iv
)

=
(

φjf + [∂iφj ]A
iu, v

)

,

(8.16)

which shows that uj is a weak solution of (8.15). Conversely, suppose that uj a
weak solution of (8.15). Then by summing (8.16) over j and using the equation
∑

j [∂iφj ] = 0, we find that u =
∑

j uj is a weak solution of Lu = f . Thus, to
prove that a weak solution u is a strong solution it suffices to prove that each uj

is a strong solution. We may therefore assume without loss of generality that u is
supported in an interior or boundary patch.

First, suppose that u is supported in an interior patch. Since u ∈ L2(Ω)
is compactly supported in Ω, we may extend u by zero on Ωc and extend other
functions to compactly supported functions on R

n. Then uǫ = Jǫu ∈ C∞
c is well-

defined and, by standard properties of mollifiers, uǫ → u in L2 as ǫ → 0+. We will
show that Luǫ → Lu in L2, which proves that u is a strong solution.

Using the self-adjointness of Jǫ, we have for all v ∈ D∗ that

(uǫ, L
∗v) = (u, JǫL

∗v)

= (u, L∗Jǫv) + (u, [Jǫ, L
∗]v)

= (f, Jǫv) + (u, [Jǫ, L
∗]v)

= (Jǫf, v) + (u, [Jǫ, L
∗]v) .

Lemma 8.11, applied to L∗, implies that [Jǫ, L
∗] is bounded on L2. Moreover, a

density argument shows that its Hilbert-space adjoint is

[Jǫ, L
∗]∗ = −[Jǫ, L].

Thus,

(uǫ, L
∗v) =

(

Jǫf − [Jǫ, L]u, v
)

for all v ∈ D∗,

which means that uǫ is a weak solution of

Luǫ = fǫ, fǫ = Jǫf − [Jǫ, L]u.
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Since uǫ is smooth, it is a classical solution that satisfies the boundary condition
B−uǫ = 0 pointwise.. Lemma 8.11 and the properties of mollifiers imply that
fǫ → f in L2 as ǫ → 0+, which proves that u is a strong solution.

Second, suppose that u is supported in a boundary patch Ω∩Uj . In this case,
we obtain a smooth approximation by mollifying u in the tangential directions. The
PDE then implies that u is smooth in the normal direction.

By making a C2-change of the independent variable, we may assume without
loss of generality that Ω is a half-space

R
n
+ = {x ∈ R

n : x1 > 0},

and u is compactly supported in R
n

+. We write

x = (x1, x′), x′ = (x2, . . . , xn) ∈ R
n−1.

Since we assume that the boundary is non-characteristic, A1 is nonsingular on
x1 = 0, in which case it is non-singular in a neighborhood of the boundary by
continuity. Restricting the support of u appropriately, we may assume that A1 is
nonsingular everywhere, and multiplication of the PDE by the inverse matrix puts
the equation Lu = f in the form

(8.17) ∂1u+ L′u = f, L′ = Ai′∂i′ + C in x1 > 0,

where the sum is taken over 2 ≤ i′ ≤ n, and the matrices Ai′(x1, x′) need not be
symmetric. The weak form of the equation transforms correspondingly under a
smooth change of independent variable.

We may regard u ∈ L2(Rn
+) equivalently as a vector-valued function of the

normal variable u ∈ L2
(

R+;L
2
)

where u : x1 7→ u(x1, ·), and we abbreviate the

range space L2(Rn−1) of functions of the tangential variable x′ to L2. If (·, ·)′

denotes the L2-inner product with respect to x′ ∈ R
n−1, then the inner product on

this space is the same as the L2(Rn)-inner product:

(u, v)L2(R+;L2) =

∫

R+

(u, v)′ dx1 = (u, v).

We denote other spaces similarly. For example, L2
(

R+;H
1
)

consists of functions
with square-integrable tangential derivatives, with inner product

(u, v)L2(R+;H1) =

∫

R+

{

(u, v)′ +

n
∑

i′=2

(∂i′u, ∂i′v)
′

}

dx1;

and H1
(

R+;L
2
)

consists of functions with square-integrable normal derivatives,
with inner product

(u, v)H1(R+;L2) =

∫

R+

{(u, v)′ + (∂1u, ∂1v)
′} dx1.

In particular, H1(Rn
+) = L2

(

R+;H
1
)

∩H1
(

R+;L
2
)

.

Let η′ǫ be the standard mollifier with respect to x′ ∈ R
n−1, and define the

associated tangential smoothing operator J ′
ǫ : u 7→ uǫ by

uǫ(x
1, x′) =

∫

Rn−1

η′ǫ(x
′ − y′)u(x1, y′) dy′.

If u ∈ L2(Rn
+), then uǫ ∈ L2

(

R+;H
1
)

. Fubini’s theorem and standard properties

of mollifiers imply that uǫ → u in L2(Rn
+) as ǫ → 0+.
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Mollifying the weak form of (8.17) in the tangential directions and using the
fact that J ′

ǫ commutes with ∂1, we get — as in the interior case — that

(uǫ, L
∗v) =

(

uǫ,
{

−∂1 + L′∗
}

v
)

=
(

u,
{

−∂1 + L′∗
}

J ′

ǫv
)

+
(

u,
[

J ′

ǫ, L
′∗
]

v
)

=
(

J ′

ǫf − [J ′
ǫ, L

′]u, v
)

,

meaning that uǫ is a weak solution of

(8.18) ∂1uǫ + L′uǫ = fǫ, fǫ = J ′

ǫf − [J ′
ǫ, L

′]u.

Lemma 8.11 applied to the tangential commutator implies that

[J ′
ǫ, L

′]u ∈ L2(R+;L
2)

and fǫ → f in L2(R+;L
2). Moreover, (8.18) shows that uǫ ∈ H1(R+;L

2). Thus,
we have constructed uǫ ∈ H1(Rn

+) such that

(8.19) uǫ → u, Luǫ → Lu in L2(Rn
+) as ǫ → 0+.

In view of (8.19), we just need to show that weak H1-solutions are strong
solutions.1 By making a linear transformation of u, we can transform the boundary
condition B−u = 0 into

u1 = u2 = · · · = ur = 0,

where r is the dimension of kerB−. We decompose u = u+ + u− where

u+ = (u1, . . . , ur, 0, . . . , 0)
T
, u− = (0, . . . , 0, ur+1, . . . , un)

T
,

in which case the boundary condition is u+ = 0 on x1 = 0, with u− arbitrary.
If u ∈ H1(Rn

+) is a weak solution of Lu = f , then γu+ = 0, where γ is the
trace map in (8.11). This condition implies that [9]

u+ ∈ H1
0 (R

n
+), H1

0 (R
n
+) = C∞

c (Rn
+).

Consequently, there exist u+
ǫ ∈ C1

c (R
n
+) such that u+

ǫ → u+ in H1(Rn
+) as n → ∞.

Since u+
ǫ has compact support in R

n
+, it satisfies the boundary condition pointwise.

Furthermore, by density, there exist u−
ǫ ∈ C1

c (R
n

+) such that u−
ǫ → u− in H1(Rn

+).

Let uǫ = u+
ǫ + u−

ǫ . Then uǫ ∈ C1
c (R

n

+), B−uǫ = 0, and uǫ → u in H1(Rn
+). Since

L : H1(Rn
+) → L2(Rn

+) is bounded, uǫ → u, Luǫ → Lu in L2(Rn
+), which proves

that u is a strong solution. �

If the boundary is not smooth, or the boundary matrix B is singular and the
dimension of its null-space changes, then difficulties may arise with the tangential
mollification near the boundary; in that case weak solutions might not be strong
solutions e.g. see [30].

Note that Theorem 8.12 is based entirely on mollification and does not depend
on any positivity or symmetry conditions

Corollary 8.13. Let f ∈ L2(Ω). If the smoothness conditions in Defini-
tion 8.1 and the positivity conditions in Definition 8.4, Definition 8.5 are satisfied,
then a weak solution u ∈ L2(Ω) of (8.1) is unique and c‖u‖ ≤ ‖f‖.

1If we had defined strong solutions equivalently as the limit of H1-solutions instead of C1-

solutions, we wouldn’t need this step.
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Proof. Let u ∈ L2(Ω) be a weak solution of (8.1). By Theorem 8.12, there is
a sequence (un) of smooth solutions un ∈ C1(Ω) of (8.1) with Lun = fn such that
un → u and fn → f in L2. Theorem 8.6 implies that c‖un‖ ≤ ‖fn‖ and, taking the
limit of this inequality as n → ∞, we get c‖u‖ ≤ ‖f‖. In particular, f = 0 implies
that u = 0, so a weak solution is unique. �

A further issue is the regularity of weak solutions, which follows from energy
estimates for their derivatives. As shown in Rauch [33] and the references cited
there, if the boundary is non-characteristic, then the solution is as regular as the
data allows: If Ai and ∂Ω are Ck+1, C is Ck, and f ∈ Hk(Ω), then u ∈ Hk(Ω).
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