Notes on Partial Differential Equations

John K. Hunter

Department of Mathematics, University of California at Davis^1

 $^{^1\}mathrm{Revised}$ 6/18/2014. Thanks to Kris Jenssen and Jan Koch for corrections. Supported in part by NSF Grant #DMS-1312342.

ABSTRACT. These are notes from a two-quarter class on PDEs that are heavily based on the book *Partial Differential Equations* by L. C. Evans, together with other sources that are mostly listed in the Bibliography. The notes cover roughly Chapter 2 and Chapters 5–7 in Evans. There is no claim to any originality in the notes, but I hope — for some readers at least — they will provide a useful supplement.

Contents

Chapter	1. Preliminaries	1
1.1.	Euclidean space	1
1.2.	Spaces of continuous functions	1
1.3.	Hölder spaces	2
1.4.	L^p spaces	3
1.5.	Compactness	6
1.6.	Averages	8
1.7.	Convolutions	9
1.8.	Derivatives and multi-index notation	10
1.9.	Mollifiers	11
1.10.	Boundaries of open sets	13
1.11.	Change of variables	17
1.12.	Divergence theorem	17
1.13.	Gronwall's inequality	18
Chapter	2. Laplace's equation	19
2.1.	Mean value theorem	20
2.2.	v v	23
2.3.	Maximum principle	26
2.4.	Harnack's inequality	31
2.5.	Green's identities	32
2.6.	Fundamental solution	33
2.7.	The Newtonian potential	34
2.8.	Singular integral operators	43
Chapter	3. Sobolev spaces	47
3.1.	Weak derivatives	47
3.2.	Examples	48
3.3.	Distributions	51
3.4.	Properties of weak derivatives	53
3.5.	Sobolev spaces	58
3.6.	Approximation of Sobolev functions	59
3.7.	Sobolev embedding: $p < n$	59
3.8.	Sobolev embedding: $p > n$	68
3.9.	Boundary values of Sobolev functions	71
3.10.	Compactness results	73
3.11.	Sobolev functions on $\Omega \subset \mathbb{R}^n$	75
Appi	ENDIX	77
3.A.	Functions	77
3.B.	Measures	82

vi CONTENTS

3.C. Integration	86
Chapter 4. Elliptic PDEs	91
4.1. Weak formulation of the Dirichlet problem	91
4.2. Variational formulation	93
4.3. The space $H^{-1}(\Omega)$	95
4.4. The Poincaré inequality for $H_0^1(\Omega)$	98
4.5. Existence of weak solutions of the Dirichlet problem	99
4.6. General linear, second order elliptic PDEs	101
4.7. The Lax-Milgram theorem and general elliptic PDEs	103
4.8. Compactness of the resolvent	105
4.9. The Fredholm alternative	106
4.10. The spectrum of a self-adjoint elliptic operator	108
4.11. Interior regularity	110
4.12. Boundary regularity	114
4.13. Some further perspectives	116
APPENDIX	119
4.A. Heat flow	119
4.B. Operators on Hilbert spaces	121
4.C. Difference quotients	124
Chapter 5. The Heat and Schrödinger Equations	127
5.1. The initial value problem for the heat equation	127
5.2. Generalized solutions	134
5.3. The Schrödinger equation	138
5.4. Semigroups and groups	139
5.5. A semilinear heat equation	152
5.6. The nonlinear Schrödinger equation	157
APPENDIX	166
5.A. The Schwartz space	166
5.B. The Fourier transform	168
5.C. The Sobolev spaces $H^s(\mathbb{R}^n)$	172
5.D. Fractional integrals	173
Chapter 6. Parabolic Equations	177
6.1. The heat equation	177
6.2. General second-order parabolic PDEs	178
6.3. Definition of weak solutions	179
6.4. The Galerkin approximation	181
6.5. Existence of weak solutions	183
6.6. A semilinear heat equation	188
6.7. The Navier-Stokes equation	193
Appendix	196
6.A. Vector-valued functions	196
6.B. Hilbert triples	207
Chapter 7. Hyperbolic Equations	211
7.1. The wave equation	211
7.2. Definition of weak solutions	212
7.3. Existence of weak solutions	214

	CONTENTS	vii
7.4.	Continuity of weak solutions	217
7.5.	Uniqueness of weak solutions	219
Chapter	8. Friedrich symmetric systems	223
8.1.	A BVP for symmetric systems	223
8.2.	Boundary conditions	224
8.3.	Uniqueness of smooth solutions	225
8.4.	Existence of weak solutions	226
8.5.	Weak equals strong	227
Bibliogr	raphy	235