Analysis Preliminary Exam Workshop:
Metric and Banach Spaces

1. Metric spaces

A metric space is complete if every Cauchy sequence converges. A metric
space is compact (every open cover has a finite subcover) if and only if it
is sequentially compact (every bounded sequence has a convergent subse-
quence).

THEOREM 1 (Compactness). A metric space is compact if and only if
it is complete and totally bounded (i.e. for every € > 0 there is a finite cover
of the space by balls of radius €).

TaEOREM 2 (Contraction mapping). If (X, d) is a complete metric
space and f : X — X is a strict contraction, meaning that there is a
constant 0 < k < 1 such that

d(f(x)f(y)) <kd(z,y)  forallz,yeX,

then f has a unique fized point x € X such that f(z) = x.

2. Banach spaces

A Banach space (X, || - ||) is a complete normed linear space (real or com-
plex).

Ezamples: R™ or C™ with the p-norm; the space C(K) of continuous func-
tions on a compact set K with the maximum (or sup) norm; the L? and
IP spaces.

A linear map A : X — Y between Banach spaces is bounded (equivalent
to continuous for linear maps) if and only if its operator norm

A
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is finite.



THEOREM 3. The space B(X,Y) of bounded linear operators between
Banach spaces X, Y with the operator norm is a Banach space. The space
B(X) of bounded linear operators on X is a Banach algebra with ||AB| <
IA|| | B]| for all A, B € B(X)

3. Dual spaces

The dual space X’ (or X*) of a Banach space X is the Banach space of all
bounded linear functionals F': X — C (or R if X is a real Banach space)
with the operator norm
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THEOREM 4 (Hahn-Banach). Suppose thatY is a linear subspace (not
necessarily closed) of a normed vector space X and f : Y — C (or R) is
a bounded linear functional on Y. There erists an extension F' of f to a

bounded linear functional F': X — C (or R) with ||F|| = || f||-

One consequence is that for every z € X
|z|| = sup{|F(z)| : F € X" and |F| =1}.

We identify € X withx € X" by x : F — F(z) i.e. we think of z as acting
on F instead of F acting on x. A Banach space is reflexive if X" = X.

If X is a Banach space with dual space X’ and (z,) is a sequence in X,
then (z,) converges weakly to z € X, written z, — z, if

F(z,) — F(z) for every F € X'.

If X =Y’ is the dual of a Banach space Y, then (z,) in X converges
weak-* to z € X, written z,, — x, if

Zn(F) = x(F) for every F €Y.

If X is reflexive, then weak and weak-* convergence are equivalent.

THEOREM 5 (Banach-Alaoglu).  The closed unit ball in a Banach space
X =Y’ is weak-x compact.



4. Spaces of continuous functions

Let K be a compact metric space (e.g. a closed bounded subset of R™) and
C(K) the space of continuous functions f : K — C with the sup-norm

[fllzee = sup[f].
K

(The sup is attained for continuous f on a compact set K.)

THEOREM 6. If K is a compact metric space, then (C(K),| | r=) is a
Banach space.

THEOREM 7 (Arzela-Ascoli). Let (K,d) be a compact metric space. A
subset E of C(K) is compact if and only if it is closed, bounded, and uni-
formly equicontinuous i.e. for every e > 0 there exists § > 0 (independent
of f € E) such that

|f(x)— fly)] <e for every f € E whenever d(z,y) < 9.

THEOREM 8 (Weierstrass).  The polynomials are dense in C(la,b]).

A generalization of this theorem is the Stone-Weierstrass theorem.

5. (P spaces

Let ¢?(N) denote the space of all sequences (z,,)22; of real or complex
numbers such that

%) 1/p
[2]ler = <Z |1‘n”> < o0
n=1
if 1 <p<oo,or
||| ee = sup |zy| < 00
neN
if p= 0.

THEOREM 9. If1 <p < oo, the space ((P(N), || - |ler) is a Banach space.



6. LP spaces

If Q is a a Lebesgue measurable subset of R™, such as an open set, then
LP(Q) is the space of measurable functions f :  — R (or C), identified up
to pointwise almost everywhere equality, with norm

1/p
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[fllzo = sup [f]
Q

if 1 <p<oo,or

if p = 0o, where sup is the essential supremum.

THEOREM 10. If 1 < p < oo, the space (LP(Q),| - ||z») is a Banach
space.

THEOREM 11. Every sequence of LP-functions that converges in LP(Q)
has a subsequence that converges pointwise almost everywhere.

THEOREM 12 (Density). If Q C R™ is an open set and 1 < p < oo,
then the space C.(Q2) of continuous functions on Q with compact support

in Q is dense in LP(Q).

Mollification shows that C2°(2) is also dense in LP()). This theorem is
false for p = oo (since the L*°-limit of continuous functions is continuous).

THEOREM 13 (Dual of L?).  Suppose that Q is a measurable subset of
R™ and 1 < p < co. Then the dual space of LP(Q) is isomorphic to L¥ ()
where p' is the Holder conjugate of p, such that

1
—+==1
p p

and F e (LP) — f e L by

F(g):/fgd;v for all g € LP.
Q

This theorem fails for p = co: L™ is the dual space of L', but the dual
space of L™ is typically much larger than L'. Thus, L? is reflexive for
1 < p < o0, but is typically non-reflexive for p = 1, co.



7. Fourier transform

If f:R" — Cis a measurable function, the Fourier transform f=Ff,
where f : R” — C, and the inverse Fourier transform f = F~! f are defined
by

S x)e " dy x _ L [y ]
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provided these integrals exist.

We consider the Fourier transform on the Schwartz space S(R™), L (R™),
and L?(R"). Later we will consider the Fourier transform on the space
S(R™)" of tempered distributions.

Let S(R™) be the Schwartz space of smooth, rapidly decreasing functions.
That is f € S(R") if f € C*°(R™) and

2P f =0 as |z| — o0

for all multi-indices «, 8 € Nj. For example, exp(—|z|?) € S(R™).

THEOREM 14 (Fourier transform on Schwartz functions).  The Fourier
transform F : S(R™) — S(R,,) is one-to-one and onto, with inverse F~' :
S(R™) = S(R,,) as defined above. Moreover

Faof)y=illogf,  F(alf) =iPlPS.

Thus, the Fourier transform exchanges smoothness and decay at infinity.

THEOREM 15 (Riemann-Lebesgue).  The Fourier transform maps F :
LY(R"™) — Co(R™) and

A 1
Il < gl

Eaplicitly, if f € L* then f is continuous and f(€) — 0 as |£] — cc.
TueoreEM 16 (Plancherel).  The Fourier transform on L*N L% extends
uniquely to a unitary map F : L*(R™) — L?(R™). In particular,

12 = 11l e.

Interpolation theory then implies the following result.



THEOREM 17 (Hausdorfl-Young). If1<p <2 and 2 <p' < oo is its
Hélder conjugate, then F : LP(R™) — L? (R™) is a bounded linear map.

Note that F is not onto unless p = 2, and this result is false for 3 < p <
0.

TueorREM 18 (Convolution). If f,g € L*(R"), then f xg € L'(R")
and

frg=(2m)"fg
More generally, this result applies if f € LP, g € LY and 1 < p,q,r < 2

where

11 1
St -=1+4-,
P q r

in which case fxg € L" and F(f *g) € L.



