Analysis Preliminary Exam Workshop: Metric and Banach Spaces

1. Metric spaces

A metric space is complete if every Cauchy sequence converges. A metric space is compact (every open cover has a finite subcover) if and only if it is sequentially compact (every bounded sequence has a convergent subsequence).

THEOREM 1 (Compactness). A metric space is compact if and only if it is complete and totally bounded (i.e. for every $\epsilon > 0$ there is a finite cover of the space by balls of radius ϵ).

THEOREM 2 (Contraction mapping). If (X, d) is a complete metric space and $f : X \to X$ is a strict contraction, meaning that there is a constant $0 \le k < 1$ such that

d(f(x)f(y)) < kd(x,y) for all $x, y \in X$,

then f has a unique fixed point $x \in X$ such that f(x) = x.

2. Banach spaces

A Banach space $(X, \|\cdot\|)$ is a complete normed linear space (real or complex).

Examples: \mathbb{R}^n or \mathbb{C}^n with the *p*-norm; the space C(K) of continuous functions on a compact set K with the maximum (or sup) norm; the L^p and ℓ^p spaces.

A linear map $A: X \to Y$ between Banach spaces is bounded (equivalent to continuous for linear maps) if and only if its operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

is finite.

THEOREM 3. The space $\mathcal{B}(X, Y)$ of bounded linear operators between Banach spaces X, Y with the operator norm is a Banach space. The space $\mathcal{B}(X)$ of bounded linear operators on X is a Banach algebra with $||AB|| \leq$ ||A|| ||B|| for all $A, B \in \mathcal{B}(X)$

3. Dual spaces

The dual space X' (or X^*) of a Banach space X is the Banach space of all bounded linear functionals $F: X \to \mathbb{C}$ (or \mathbb{R} if X is a real Banach space) with the operator norm

$$||F|| = \sup_{x \neq 0} \frac{|F(x)|}{||x||}.$$

THEOREM 4 (Hahn-Banach). Suppose that Y is a linear subspace (not necessarily closed) of a normed vector space X and $f: Y \to \mathbb{C}$ (or \mathbb{R}) is a bounded linear functional on Y. There exists an extension F of f to a bounded linear functional $F: X \to \mathbb{C}$ (or \mathbb{R}) with ||F|| = ||f||.

One consequence is that for every $x \in X$

then (x_n) converges weakly to $x \in X$, written $x_n \rightharpoonup x$, if

$$||x|| = \sup \{|F(x)| : F \in X' \text{ and } ||F|| = 1\}.$$

We identify $x \in X$ with $x \in X''$ by $x : F \mapsto F(x)$ i.e. we think of x as acting on F instead of F acting on x. A Banach space is reflexive if X'' = X. If X is a Banach space with dual space X' and (x_n) is a sequence in X,

$$F(x_n) \to F(x)$$
 for every $F \in X'$.

If X = Y' is the dual of a Banach space Y, then (x_n) in X converges weak-* to $x \in X$, written $x_n \stackrel{*}{\rightharpoonup} x$, if

$$x_n(F) \to x(F)$$
 for every $F \in Y$.

If X is reflexive, then weak and weak-* convergence are equivalent.

THEOREM 5 (Banach-Alaoglu). The closed unit ball in a Banach space X = Y' is weak-* compact.

4. Spaces of continuous functions

Let K be a compact metric space (e.g. a closed bounded subset of \mathbb{R}^n) and C(K) the space of continuous functions $f: K \to \mathbb{C}$ with the sup-norm

$$\|f\|_{L^{\infty}} = \sup_{K} |f|.$$

(The sup is attained for continuous f on a compact set K.)

THEOREM 6. If K is a compact metric space, then $(C(K), \|\cdot\|_{L^{\infty}})$ is a Banach space.

THEOREM 7 (Arzelà-Ascoli). Let (K, d) be a compact metric space. A subset E of C(K) is compact if and only if it is closed, bounded, and uniformly equicontinuous i.e. for every $\epsilon > 0$ there exists $\delta > 0$ (independent of $f \in E$) such that

$$|f(x) - f(y)| < \epsilon$$
 for every $f \in E$ whenever $d(x, y) < \delta$.

THEOREM 8 (Weierstrass). The polynomials are dense in C([a, b]).

A generalization of this theorem is the Stone-Weierstrass theorem.

5. ℓ^p spaces

Let $\ell^p(\mathbb{N})$ denote the space of all sequences $(x_n)_{n=1}^{\infty}$ of real or complex numbers such that

$$||x||_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < \infty$$

if $1 \leq p < \infty$, or

$$||x||_{\ell^{\infty}} = \sup_{n \in \mathbb{N}} |x_n| < \infty$$

if $p = \infty$.

THEOREM 9. If $1 \le p \le \infty$, the space $(\ell^p(\mathbb{N}), \|\cdot\|_{\ell^p})$ is a Banach space.

6. L^p spaces

If Ω is a a Lebesgue measurable subset of \mathbb{R}^n , such as an open set, then $L^p(\Omega)$ is the space of measurable functions $f: \Omega \to \mathbb{R}$ (or \mathbb{C}), identified up to pointwise almost everywhere equality, with norm

$$\|f\|_{L^p} = \left(\int_{\Omega} |f|^p \, dx\right)^{1/p}$$

if $1 \le p < \infty$, or

$$\|f\|_{L^{\infty}} = \sup_{\Omega} |f|$$

if $p = \infty$, where sup is the essential supremum.

THEOREM 10. If $1 \leq p \leq \infty$, the space $(L^p(\Omega), \|\cdot\|_{L^p})$ is a Banach space.

THEOREM 11. Every sequence of L^p -functions that converges in $L^p(\Omega)$ has a subsequence that converges pointwise almost everywhere.

THEOREM 12 (Density). If $\Omega \subset \mathbb{R}^n$ is an open set and $1 \leq p < \infty$, then the space $C_c(\Omega)$ of continuous functions on Ω with compact support in Ω is dense in $L^p(\Omega)$.

Mollification shows that $C_c^{\infty}(\Omega)$ is also dense in $L^p(\Omega)$. This theorem is false for $p = \infty$ (since the L^{∞} -limit of continuous functions is continuous).

THEOREM 13 (Dual of L^p). Suppose that Ω is a measurable subset of \mathbb{R}^n and $1 \leq p < \infty$. Then the dual space of $L^p(\Omega)$ is isomorphic to $L^{p'}(\Omega)$ where p' is the Hölder conjugate of p, such that

$$\frac{1}{p} + \frac{1}{p'} = 1,$$

and $F \in (L^p)' \mapsto f \in L^{p'}$ by

$$F(g) = \int_{\Omega} fg \, dx \qquad \text{for all } g \in L^p.$$

This theorem fails for $p = \infty$: L^{∞} is the dual space of L^1 , but the dual space of L^{∞} is typically much larger than L^1 . Thus, L^p is reflexive for $1 , but is typically non-reflexive for <math>p = 1, \infty$.

7. Fourier transform

If $f : \mathbb{R}^n \to \mathbb{C}$ is a measurable function, the Fourier transform $\hat{f} = \mathcal{F}f$, where $\hat{f} : \mathbb{R}^n \to \mathbb{C}$, and the inverse Fourier transform $f = \mathcal{F}^{-1}f$ are defined by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int f(x) e^{-ix\xi} \, dx, \qquad f(x) = \frac{1}{(2\pi)^{n/2}} \int \hat{f}(\xi) e^{ix\xi} \, d\xi$$

provided these integrals exist.

We consider the Fourier transform on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$, $L^1(\mathbb{R}^n)$, and $L^2(\mathbb{R}^n)$. Later we will consider the Fourier transform on the space $\mathcal{S}(\mathbb{R}^n)'$ of tempered distributions.

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz space of smooth, rapidly decreasing functions. That is $f \in \mathcal{S}(\mathbb{R}^n)$ if $f \in C^{\infty}(\mathbb{R}^n)$ and

$$x^{\alpha}\partial^{\beta}f \to 0$$
 as $|x| \to \infty$

for all multi-indices $\alpha, \beta \in \mathbb{N}_0^n$. For example, $\exp(-|x|^2) \in \mathcal{S}(\mathbb{R}^n)$.

THEOREM 14 (Fourier transform on Schwartz functions). The Fourier transform $\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}_n)$ is one-to-one and onto, with inverse $\mathcal{F}^{-1} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}_n)$ as defined above. Moreover

$$\mathcal{F}\left(x^{\alpha}f\right) = i^{|\alpha|}\partial_{\xi}^{\alpha}\hat{f}, \qquad \mathcal{F}\left(\partial_{x}^{\beta}f\right) = i^{|\beta|}\xi^{\beta}\hat{f}.$$

Thus, the Fourier transform exchanges smoothness and decay at infinity.

THEOREM 15 (Riemann-Lebesgue). The Fourier transform maps \mathcal{F} : $L^1(\mathbb{R}^n) \to C_0(\mathbb{R}^n)$ and

$$\|\hat{f}\|_{L^{\infty}} \le \frac{1}{(2\pi)^{n/2}} \|f\|_{L^{1}}.$$

Explicitly, if $f \in L^1$ then \hat{f} is continuous and $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

THEOREM 16 (Plancherel). The Fourier transform on $L^1 \cap L^2$ extends uniquely to a unitary map $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$. In particular,

$$||f||_L^2 = ||f||_{L^2}.$$

Interpolation theory then implies the following result.

THEOREM 17 (Hausdorff-Young). If $1 \le p \le 2$ and $2 \le p' \le \infty$ is its Hölder conjugate, then $\mathcal{F}: L^p(\mathbb{R}^n) \to L^{p'}(\mathbb{R}^n)$ is a bounded linear map.

Note that \mathcal{F} is not onto unless p = 2, and this result is false for 3 .

Theorem 18 (Convolution). If $f,g \in L^1(\mathbb{R}^n)$, then $f * g \in L^1(\mathbb{R}^n)$ and

$$\widehat{f \ast g} = (2\pi)^{n/2} \widehat{f} \widehat{g}$$

More generally, this result applies if $f \in L^p, \ g \in L^q$ and $1 \leq p,q,r \leq 2$ where

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r},$$

in which case $f * g \in L^r$ and $\mathcal{F}(f * g) \in L^{r'}$.