
Analysis Preliminary Exam Workshop:

Metric and Banach Spaces

1. Metric spaces

A metric space is complete if every Cauchy sequence converges. A metric
space is compact (every open cover has a finite subcover) if and only if it
is sequentially compact (every bounded sequence has a convergent subse-
quence).

Theorem 1 (Compactness). A metric space is compact if and only if
it is complete and totally bounded (i.e. for every ε > 0 there is a finite cover
of the space by balls of radius ε).

Theorem 2 (Contraction mapping). If (X, d) is a complete metric
space and f : X → X is a strict contraction, meaning that there is a
constant 0 ≤ k < 1 such that

d (f(x)f(y)) < kd(x, y) for all x, y ∈ X,

then f has a unique fixed point x ∈ X such that f(x) = x.

2. Banach spaces

A Banach space (X, ‖ · ‖) is a complete normed linear space (real or com-
plex).

Examples: Rn or Cn with the p-norm; the space C(K) of continuous func-
tions on a compact set K with the maximum (or sup) norm; the Lp and
`p spaces.

A linear map A : X → Y between Banach spaces is bounded (equivalent
to continuous for linear maps) if and only if its operator norm

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

is finite.



Theorem 3. The space B(X,Y ) of bounded linear operators between
Banach spaces X, Y with the operator norm is a Banach space. The space
B(X) of bounded linear operators on X is a Banach algebra with ‖AB‖ ≤
‖A‖ ‖B‖ for all A,B ∈ B(X)

3. Dual spaces

The dual space X ′ (or X∗) of a Banach space X is the Banach space of all
bounded linear functionals F : X → C (or R if X is a real Banach space)
with the operator norm

‖F‖ = sup
x 6=0

|F (x)|
‖x‖

.

Theorem 4 (Hahn-Banach). Suppose that Y is a linear subspace (not
necessarily closed) of a normed vector space X and f : Y → C (or R) is
a bounded linear functional on Y . There exists an extension F of f to a
bounded linear functional F : X → C (or R) with ‖F‖ = ‖f‖.

One consequence is that for every x ∈ X

‖x‖ = sup {|F (x)| : F ∈ X ′ and ‖F | = 1} .

We identify x ∈ X with x ∈ X ′′ by x : F 7→ F (x) i.e. we think of x as acting
on F instead of F acting on x. A Banach space is reflexive if X ′′ = X.

If X is a Banach space with dual space X ′ and (xn) is a sequence in X,
then (xn) converges weakly to x ∈ X, written xn ⇀ x, if

F (xn)→ F (x) for every F ∈ X ′.

If X = Y ′ is the dual of a Banach space Y , then (xn) in X converges

weak-∗ to x ∈ X, written xn
∗
⇀ x, if

xn(F )→ x(F ) for every F ∈ Y .

If X is reflexive, then weak and weak-∗ convergence are equivalent.

Theorem 5 (Banach-Alaoglu). The closed unit ball in a Banach space
X = Y ′ is weak-∗ compact.



4. Spaces of continuous functions

Let K be a compact metric space (e.g. a closed bounded subset of Rn) and
C(K) the space of continuous functions f : K → C with the sup-norm

‖f‖L∞ = sup
K
|f |.

(The sup is attained for continuous f on a compact set K.)

Theorem 6. If K is a compact metric space, then (C(K), ‖ · ‖L∞) is a
Banach space.

Theorem 7 (Arzelà-Ascoli). Let (K, d) be a compact metric space. A
subset E of C(K) is compact if and only if it is closed, bounded, and uni-
formly equicontinuous i.e. for every ε > 0 there exists δ > 0 ( independent
of f ∈ E) such that

|f(x)− f(y)| < ε for every f ∈ E whenever d(x, y) < δ.

Theorem 8 (Weierstrass). The polynomials are dense in C([a, b]).

A generalization of this theorem is the Stone-Weierstrass theorem.

5. `p spaces

Let `p(N) denote the space of all sequences (xn)∞n=1 of real or complex
numbers such that

‖x‖`p =

( ∞∑
n=1

|xn|p
)1/p

<∞

if 1 ≤ p <∞, or

‖x‖`∞ = sup
n∈N
|xn| <∞

if p =∞.

Theorem 9. If 1 ≤ p ≤ ∞, the space (`p(N), ‖ · ‖`p) is a Banach space.



6. Lp spaces

If Ω is a a Lebesgue measurable subset of Rn, such as an open set, then
Lp(Ω) is the space of measurable functions f : Ω→ R (or C), identified up
to pointwise almost everywhere equality, with norm

‖f‖Lp =

(∫
Ω

|f |p dx
)1/p

if 1 ≤ p <∞, or

‖f‖L∞ = sup
Ω
|f |

if p =∞, where sup is the essential supremum.

Theorem 10. If 1 ≤ p ≤ ∞, the space (Lp(Ω), ‖ · ‖Lp) is a Banach
space.

Theorem 11. Every sequence of Lp-functions that converges in Lp(Ω)
has a subsequence that converges pointwise almost everywhere.

Theorem 12 (Density). If Ω ⊂ Rn is an open set and 1 ≤ p < ∞,
then the space Cc(Ω) of continuous functions on Ω with compact support
in Ω is dense in Lp(Ω).

Mollification shows that C∞c (Ω) is also dense in Lp(Ω). This theorem is
false for p =∞ (since the L∞-limit of continuous functions is continuous).

Theorem 13 (Dual of Lp). Suppose that Ω is a measurable subset of
Rn and 1 ≤ p <∞. Then the dual space of Lp(Ω) is isomorphic to Lp

′
(Ω)

where p′ is the Hölder conjugate of p, such that

1

p
+

1

p′
= 1,

and F ∈ (Lp)
′ 7→ f ∈ Lp′ by

F (g) =

∫
Ω

fg dx for all g ∈ Lp.

This theorem fails for p =∞: L∞ is the dual space of L1, but the dual
space of L∞ is typically much larger than L1. Thus, Lp is reflexive for
1 < p <∞, but is typically non-reflexive for p = 1,∞.



7. Fourier transform

If f : Rn → C is a measurable function, the Fourier transform f̂ = Ff ,
where f̂ : Rn → C, and the inverse Fourier transform f = F−1f are defined
by

f̂(ξ) =
1

(2π)n/2

∫
f(x)e−ixξ dx, f(x) =

1

(2π)n/2

∫
f̂(ξ)eixξ dξ

provided these integrals exist.
We consider the Fourier transform on the Schwartz space S(Rn), L1(Rn),

and L2(Rn). Later we will consider the Fourier transform on the space
S(Rn)′ of tempered distributions.

Let S(Rn) be the Schwartz space of smooth, rapidly decreasing functions.
That is f ∈ S(Rn) if f ∈ C∞(Rn) and

xα∂βf → 0 as |x| → ∞

for all multi-indices α, β ∈ Nn0 . For example, exp(−|x|2) ∈ S(Rn).

Theorem 14 (Fourier transform on Schwartz functions). The Fourier
transform F : S(Rn)→ S(Rn) is one-to-one and onto, with inverse F−1 :
S(Rn)→ S(Rn) as defined above. Moreover

F (xαf) = i|α|∂αξ f̂ , F
(
∂βxf

)
= i|β|ξβ f̂ .

Thus, the Fourier transform exchanges smoothness and decay at infinity.

Theorem 15 (Riemann-Lebesgue). The Fourier transform maps F :
L1(Rn)→ C0(Rn) and

‖f̂‖L∞ ≤ 1

(2π)n/2
‖f‖L1 .

Explicitly, if f ∈ L1 then f̂ is continuous and f̂(ξ)→ 0 as |ξ| → ∞.

Theorem 16 (Plancherel). The Fourier transform on L1∩L2 extends
uniquely to a unitary map F : L2(Rn)→ L2(Rn). In particular,

‖f‖2L = ‖f̂‖L2 .

Interpolation theory then implies the following result.



Theorem 17 (Hausdorff-Young). If 1 ≤ p ≤ 2 and 2 ≤ p′ ≤ ∞ is its
Hölder conjugate, then F : Lp(Rn)→ Lp

′
(Rn) is a bounded linear map.

Note that F is not onto unless p = 2, and this result is false for 3 < p ≤
∞.

Theorem 18 (Convolution). If f, g ∈ L1(Rn), then f ∗ g ∈ L1(Rn)
and

f̂ ∗ g = (2π)n/2f̂ ĝ

More generally, this result applies if f ∈ Lp, g ∈ Lq and 1 ≤ p, q, r ≤ 2
where

1

p
+

1

q
= 1 +

1

r
,

in which case f ∗ g ∈ Lr and F(f ∗ g) ∈ Lr′ .


