
Analysis Preliminary Exam Workshop:

Hilbert Spaces

1. Hilbert spaces

A Hilbert space H is a complete real or complex inner product space.
Consider complex Hilbert spaces for definiteness. If (·, ·) : H ×H → C is
the inner product, then

‖x‖ =
√

(x, x), ‖ · ‖ : H → [0,∞)

defines a norm on H, and H is complete with respect to this norm.

Examples: Rn (or Cn) with the standard Euclidean (or Hermitian) inner
product; `2(N); L2(R); L2(T).

Theorem 1 (Cauchy-Schwarz). If H is a Hilbert space and x, y ∈ H,
then |(x, y)| ≤ ‖x‖ ‖y‖.

2. Geometry

Two vectors x, y ∈ H are orthogonal, written x ⊥ y, if (x, y) = 0. If
X ⊂ H, then

X⊥ = {y ∈ H : (x, y) = 0 for all x ∈ X} .

Theorem 2 (Orthogonal complements). If M is a closed linear sub-
space of a Hilbert space H, then H =M⊕M⊥, where M⊥ is also a closed
linear subspace.

A set of vectors {eα : α ∈ I} in H is orthonormal if

(eα, eβ) =

{
1 if α = β,

0 if α 6= β.

An orthonormal basis is a maximal orthonormal set.



Theorem 3 (Basis). Every Hilbert space H has an orthonormal basis
{eα : α ∈ I}. Every element x ∈ H has a norm-convergent expansion

x =
∑
α∈I

xαeα, xα = (eα, x)

and x ∈ H if and only if ∑
α∈I
|xα|2 <∞.

Moreover, any two orthonormal bases of H have the same cardinality.

Any two Hilbert spaces with bases of the same cardinality are isomorphic
by a unitary transformation that maps an orthonormal basis of one space
to an orthonormal basis of the other. A finite-dimensional complex Hilbert
space is isomorphic to Cn. An infinite-dimensional separable Hilbert space,
with a countable orthonormal basis, is isomorphic to `2(N).

Theorem 4 (Parseval). If H is a Hilbert space with orthonormal basis
{eα : α ∈ I} and x, y ∈ H have expansions

x =
∑
α∈I

xαeα, y =
∑
α∈I

yαeα,

then

(x, y) =
∑
α∈I

xαyα.

In particular,

‖x‖2 =
∑
α∈I
|xα|2.

3. Bounded linear operators

A linear operator A : H → K between Hilbert spaces H, K is bounded if
its operator norm

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

is finite. We denote the Banach space of all such bounded linear operators
by B(H,K), or B(H) if H = K.



Every bounded linear operator A : H → K has a (Hilbert space) adjoint
A∗ : K → H that is bounded and linear and uniquely defined by the
condition

(x,Ay) = (A∗x, y) for all x ∈ K and y ∈ H.

An operator A ∈ B(H) is self-adjoint if A = A∗, meaning that

(x,Ay) = (Ax, y) for all x, y ∈ H,

unitary (or orthogonal in the real case) if A∗ = A−1, and normal if A∗A =
AA∗.

Denote the kernel, or null space, of A ∈ B(H,K) by kerA (a closed subspace
of H) and the range of A by ranA (a not necessarily closed subspace of
K). The rank of an operator is the dimension of its range, and A has finite
rank if ranA is finite-dimensional (in which case it is closed).

Theorem 5. If A ∈ B(H), then

kerA = ran (A∗)⊥, ran (A∗) = (kerA)⊥.

An orthogonal projection P : H → H is a self-adjoint bounded linear
operator on H such that P 2 = P . It follows that ‖P‖ = 1, unless P = 0.

Theorem 6 (Projection). IfM is a closed linear subspace of a Hilbert
space H, then there is a orthogonal projection P : H → H with range M
and kernel M⊥. Conversely, if P : H → H is an orthogonal projection,
then H =M⊕M⊥ where the closed subspaces M and M⊥ are the range
and kernel of P , respectively.

4. Compact operators

A subset K of a Hilbert space H is compact if every sequence in K has
a bounded subsequence whose limit is in K. The set K is precompact if
its closure is compact, meaning that every sequence in K has a convergent
subsequence whose limit is in H. A bounded linear operator T : H → K
between Hilbert spaces H, K is compact if it maps bounded sets in H to
precompact sets in K (i.e. sets whose closure is compact).

Theorem 7. An operator T ∈ B(H,K) is compact if and only if there
is a sequence of operators Tn ∈ B(H,K) with finite rank such that

‖T − Tn‖ → 0 as n→∞.



5. Spectrum

Suppose that H is a complex Hilbert space and A ∈ B(H). The resolvent
set ρ(A) ⊂ C of A is the set of λ ∈ C such that

(A− λI) : H → H

is one-to-one and onto.1 The spectrum σ(A) of A is the complement of
ρ(A) in C. The resolvent set is open and the spectrum is compact (closed
and bounded).

We classify the spectrum of A as follows:

• The point spectrum consists of the λ ∈ σ(A) such that A − λI is not
one-to-one (then λ is an eigenvalue of A and x 6= 0 such that Ax = λx an
eigenvector);

• The continuous spectrum consists of the λ ∈ σ(A) such that A− λI is
one-to-one but not onto and ran (A− λI) is a dense subspace of H;

• The residual spectrum consists of λ ∈ σ(A) such that A − λI is one-
to-one but not onto and ran (A− λI) is not dense in H.

Theorem 8. If A ∈ B(H) is self-adjoint, then its spectrum σ(A) ⊂ R is
real and the residual spectrum of A is empty

6. Spectral theorem for compact self-adjoint operators

Theorem 9 (Spectral theorem for compact self-adjoint operators). Let
A ∈ B(H) be a compact, self-adjoint operator on a Hilbert space H. Then
A has a finite or countably infinite sequence of real, non-zero eigenvalues
(λn). If this sequence is countably infinite, then λn → 0 as n→∞. Every
eigenspace associated with a nonzero eigenvalue is finite dimensional. If 0
is an eigenvalue of A, the null space of A may be finite or infinite dimen-
sional. Furthermore, H has an orthonormal basis consisting of eigenvectors
of A.

Theorem 10 (Projection form of spectral theorem). Suppose that A ∈
B(H) is a compact, self-adjoint operator on a Hilbert space H with distinct
nonzero eigenvalues (λn → 0). Let Pn be the orthogonal projection onto

1The open mapping theorem then implies that the inverse (A− λI)−1 is bounded.



the eigenspace associated with λn and P0 the projection onto the null space
of A. Then Pn has finite rank, PmPn = 0, and

A =
∑
n

λnPn,

where the series converges uniformly with respect to the operator norm.
Moreover,

I = P0 +
∑
n

Pn,

where the series converges strongly i.e. (P0 +
∑N
n=1 Pn)x → x in norm as

N →∞ for every x ∈ H.

6. Weak convergence

The dual space of every Hilbert space is isomorphic (real case) or anti-
isomorphic (complex case) to the Hilbert space.

Theorem 11 (Riesz representation). Every bounded linear functional
ω : H → C has the form

ω(y) = (x, y)

for some x ∈ H, and ‖ω‖ = ‖x‖.

A sequence (xn) in H converges weakly to x ∈ H, written xn ⇀ x, if

(xn, y)→ (x, y) for every y ∈ H.

Theorem 12. If xn ⇀ x, then {xn} is bounded and

‖x‖ ≤ lim inf
n→∞

‖xn‖.

Theorem 13 (Banach-Alaoglu). The closed unit ball in H is weakly
compact.


