Analysis Preliminary Exam Workshop:
Hilbert Spaces

1. Hilbert spaces

A Hilbert space H is a complete real or complex inner product space.
Consider complex Hilbert spaces for definiteness. If (-,-) : H x H — C is
the inner product, then

Izl = v/ (z,2), -]+ H —[0,00)

defines a norm on H, and H is complete with respect to this norm.

Ezamples: R™ (or C™) with the standard Euclidean (or Hermitian) inner
product; £2(N); L?(R); L*(T).

THEOREM 1 (Cauchy-Schwarz). If H is a Hilbert space and x,y € H,
then |(z,y)| < ||l lyl-

2. Geometry

Two vectors x,y € H are orthogonal, written = L y, if (z,y) = 0. If
X CH, then

Xt={yeH:(r,y)=0forallzc X}.
THEOREM 2 (Orthogonal complements). If M is a closed linear sub-

space of a Hilbert space H, then H = M & M=, where M* is also a closed
linear subspace.

A set of vectors {e, : @ € I} in H is orthonormal if

( )= 1 ifa=p4,
=0 ifa 8

An orthonormal basis is a maximal orthonormal set.



THEOREM 3 (Basis).  Ewvery Hilbert space H has an orthonormal basis
{eq : a € I'}. Fuvery element x € H has a norm-convergent expansion

17::§£:$a€a, Ty =:(€a,$)

acl

and x € H if and only if
Z |za|? < 0o
acl

Moreover, any two orthonormal bases of H have the same cardinality.

Any two Hilbert spaces with bases of the same cardinality are isomorphic
by a unitary transformation that maps an orthonormal basis of one space
to an orthonormal basis of the other. A finite-dimensional complex Hilbert
space is isomorphic to C™. An infinite-dimensional separable Hilbert space,
with a countable orthonormal basis, is isomorphic to £2(N).

THEOREM 4 (Parseval). If H is a Hilbert space with orthonormal basis
{ea :a €I} and z,y € H have expansions

x ::EE::raea, Yy = Ei:yaeaa

acl ael

then
(Iay):ZEE:TEya-
acl
In particular,

lz]® = leal®.

acl

3. Bounded linear operators

A linear operator A : H — K between Hilbert spaces H, K is bounded if
its operator norm
|| Az|]

| Al| = sup =——
x#0 [Eal

is finite. We denote the Banach space of all such bounded linear operators

by B(H,K), or B(H) if H = K.



Every bounded linear operator A : X — K has a (Hilbert space) adjoint
A* : K — H that is bounded and linear and uniquely defined by the
condition

(z, Ay) = (A*z,y) for all x € L and y € H.
An operator A € B(H) is self-adjoint if A = A*, meaning that
(z, Ay) = (Az,y) for all x,y € H,

unitary (or orthogonal in the real case) if A* = A~1, and normal if A*A =
AA*.

Denote the kernel, or null space, of A € B(H, K) by ker A (a closed subspace
of H) and the range of A by ran A (a not necessarily closed subspace of
K). The rank of an operator is the dimension of its range, and A has finite
rank if ran A is finite-dimensional (in which case it is closed).

THEOREM 5. If A € B(H), then

ker A = ran (A*)*, ran (A*) = (ker A)*.

An orthogonal projection P : H — H is a self-adjoint bounded linear
operator on H such that P? = P. It follows that ||P|| = 1, unless P = 0.

THEOREM 6 (Projection). If M is a closed linear subspace of a Hilbert
space H, then there is a orthogonal projection P : H — H with range M
and kernel M+. Conversely, if P : H — H is an orthogonal projection,
then H = M & ML where the closed subspaces M and M=+ are the range
and kernel of P, respectively.

4. Compact operators

A subset K of a Hilbert space H is compact if every sequence in K has
a bounded subsequence whose limit is in K. The set K is precompact if
its closure is compact, meaning that every sequence in K has a convergent
subsequence whose limit is in H. A bounded linear operator T': H — K
between Hilbert spaces H, K is compact if it maps bounded sets in ‘H to
precompact sets in K (i.e. sets whose closure is compact).

THEOREM 7. An operator T € B(H,K) is compact if and only if there
is a sequence of operators T,, € B(H,K) with finite rank such that

T —T,|| =0 as m — oo.



5. Spectrum

Suppose that H is a complex Hilbert space and A € B(H). The resolvent
set p(A) C C of A is the set of A € C such that

(A=X):H—H
is one-to-one and onto.! The spectrum o(A) of A is the complement of

p(A) in C. The resolvent set is open and the spectrum is compact (closed
and bounded).

We classify the spectrum of A as follows:

e The point spectrum consists of the A € o(A) such that A — AT is not
one-to-one (then \ is an eigenvalue of A and z # 0 such that Az = Az an
eigenvector);

e The continuous spectrum consists of the A € o(A4) such that A — AI is
one-to-one but not onto and ran (A — AI) is a dense subspace of H;

e The residual spectrum consists of A € o(A) such that A — A\ is one-
to-one but not onto and ran (A — AI) is not dense in H.

THEOREM 8. If A € B(H) is self-adjoint, then its spectrum o(A) C R is
real and the residual spectrum of A is empty

6. Spectral theorem for compact self-adjoint operators

THEOREM 9 (Spectral theorem for compact self-adjoint operators). Let
A € B(H) be a compact, self-adjoint operator on a Hilbert space H. Then
A has a finite or countably infinite sequence of real, non-zero eigenvalues
(An). If this sequence is countably infinite, then A, — 0 as n — co. Every
eigenspace associated with a nonzero eigenvalue is finite dimensional. If O
is an eigenvalue of A, the null space of A may be finite or infinite dimen-

sional. Furthermore, H has an orthonormal basis consisting of eigenvectors
of A.

TaEOREM 10 (Projection form of spectral theorem). Suppose that A €
B(H) is a compact, self-adjoint operator on a Hilbert space H with distinct
nonzero eigenvalues (A, — 0). Let P, be the orthogonal projection onto

IThe open mapping theorem then implies that the inverse (A — AI)~! is bounded.



the eigenspace associated with X\, and Py the projection onto the null space
of A. Then P, has finite rank, P,,P, =0, and

A= "\P,,

where the series converges uniformly with respect to the operator norm.
Moreover,

I=Py+) P,
n

where the series converges strongly i.e. (Py + 25:1 P,)x — x in norm as
N — oo for every x € H.

6. Weak convergence

The dual space of every Hilbert space is isomorphic (real case) or anti-
isomorphic (complex case) to the Hilbert space.

TuEOREM 11 (Riesz representation).  Every bounded linear functional
w: H — C has the form

w(y) = (z,y)
for some x € H, and ||w| = ||z
A sequence (z,) in H converges weakly to x € H, written x,, — x, if
(Tn,y) = (z,9) for every y € H.
THEOREM 12. If x, — x, then {x,} is bounded and

|z]| < liminf ||2,].
n—00

TaEOREM 13 (Banach-Alaoglu).  The closed unit ball in H is weakly
compact.



