Analysis Preliminary Exam Workshop: Basic Theorems for Integration

1. Notation

If $\Omega \subset \mathbb{R}^n$ is a Lebesgue measurable subset of \mathbb{R}^n and $1 \leq p \leq \infty$, then $L^p(\Omega)$ is the space of all Lebesgue measurable functions (equivalent up to almost everywhere equality) such that

$$||f||_{L^p} = \left(\int_{\Omega} |f|^p \, dx\right)^{1/p} < \infty$$

 $\text{ if } 1\leq p<\infty,\,\text{or }$

 $||f||_{L^{\infty}} = \sup\{|f(x)| : x \in \Omega\} < \infty$

if $p = \infty$ (where sup denotes the essential supremum). We mostly consider functions defined on \mathbb{R}^n ; results for general domains Ω follow by applying these results to $f\chi_{\Omega}$ where χ_{Ω} is the characteristic function of Ω . We consider real-valued functions for definiteness, but all the results (except for the Monotone Convergence Theorem and Fatou's Lemma, which depend on the ordering properties of \mathbb{R}) extend to complex-valued functions in the obvious way.

2. Exchanging the order of limits and integration

THEOREM 1 (Monotone convergence). Suppose that (f_n) is an increasing sequence of non-negative measurable functions $f_n : \mathbb{R}^n \to [0, \infty]$ and $f = \lim_{n \to \infty} f_n$. Then

$$\int f \, dx = \lim_{n \to \infty} \int f_n \, dx.$$

THEOREM 2 (Fatou's lemma). Suppose that (f_n) is a sequence of nonnegative, measurable functions $f_n : \mathbb{R}^n \to [0, \infty]$. Then

$$\int \liminf_{n \to \infty} f_n \, dx \le \liminf_{n \to \infty} \int f_n \, dx.$$

This result says that integrals can only "lose mass" in the limit.

THEOREM 3 (Dominated convergence). Suppose that (f_n) is a sequence of integrable functions $f_n \in L^1(\mathbb{R}^n)$ and $f = \lim_{n \to \infty} f_n$. If there exists $g \in L^1(\mathbb{R}^n)$ such that

$$|f_n| \leq g$$
 for all $n \in \mathbb{N}$,

then $f \in L^1(\mathbb{R}^n)$ and

$$\int f \, dx = \lim_{n \to \infty} \int f_n \, dx.$$

3. Continuity of integrals and differentiation under the integral

THEOREM 4. Suppose that $f : \mathbb{R}^n \times [a, b] \to \mathbb{R}$ is such that

$$f(\cdot, t) : \mathbb{R}^n \to \mathbb{R} \in L^1(\mathbb{R}^n)$$
 for each $a \le t \le b$.

Define $F : [a, b] \to \mathbb{R}$ by

$$F(t) = \int f(x,t) \, dx.$$

(a) If $f(x, \cdot) : [a, b] \to \mathbb{R}$ is continuous at $a \leq t_0 \leq b$ for every $x \in \mathbb{R}^n$ and there exists a function $g \in L^1(\mathbb{R}^n)$ such that

$$|f(x,t)| \le g(x)$$
 for all $(x,t) \in \mathbb{R}^n \times [a,b]$,

then F is continuous at t₀.(b) If the partial derivative

$$\frac{\partial f}{\partial t}(x,t)$$

exists for all $(x,t) \in \mathbb{R}^n \times [a,b]$ and there is a function $g \in L^1(\mathbb{R}^n)$ such that

$$\left|\frac{\partial f}{\partial t}(x,t)\right| \le g(x) \quad \text{for all } (x,t) \in \mathbb{R}^n \times [a,b],$$

then F is differentiable on [a, b] and

$$\frac{dF}{dt}(t) = \int \frac{\partial f}{\partial t}(x,t) \, dx.$$

4. Change of variables in integrals

Let $U, V \subset \mathbb{R}^n$ be open sets in \mathbb{R}^n . A map $\phi : U \to V$ is a C^1 -diffeomorphism of U onto V if it is one-to-one and onto, ϕ is continuously differentiable in U, and ϕ^{-1} is continuously differentiable in V.

THEOREM 5. Suppose that $f: V \to \mathbb{R}$ is measurable function defined on an open set $V \subset \mathbb{R}^n$ and $\phi: U \to V$ is a C^1 -diffeomorphism of U onto V. Let

$$J = \left|\det D\phi\right|$$

be the Jacobian of ϕ . Then $f \in L^1(V)$ if and only if $(f \circ \phi)J \in L^1(U)$, in which case

$$\int_{V} f(y) \, dy = \int_{U} f(\phi(x)) J(x) \, dx.$$

5. Evaluation of double integrals and exchange in the order of integration

THEOREM 6 (Fubini). Suppose that $f:\mathbb{R}^m\times\mathbb{R}^n\to\mathbb{R}$ is a measurable function. Then

$$\int |f(x,y)| \ dxdy$$

is finite if and only if either one of

$$\int \left(\int |f(x,y)| \, dx \right) dy, \qquad \int \left(\int |f(x,y)| \, dy \right) dx$$

is finite. In that case,

$$\int f(x,y) \, dx \, dy = \int \left(\int f(x,y) \, dx \right) \, dy = \int \left(\int f(x,y) \, dy \right) \, dx$$

6. Inequalities

THEOREM 7 (Hölder's inequality). Suppose that $1 \le p, q \le \infty$ and

$$\frac{1}{p} + \frac{1}{q} = 1.$$

If $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, then

$$\left|\int fg\,dx\right| \le \left(\int |f|^p\,dx\right)^{1/p} \left(\int |g|^q\,dx\right)^{1/q}.$$

Special cases:

(a) p = q = 2 is the Cauchy-Schwartz inequality

$$\left|\int fg\,dx\right| \le \left(\int f^2\,dx\right)^{1/2} \left(\int g^2\,dx\right)^{1/2};$$

(b) $p = 1, q = \infty$ is

$$\left|\int fg\,dx\right| \le \sup|g|\int |f|\,dx.$$

If $f,g:\mathbb{R}^n\to\mathbb{R}$ are measurable functions, then the convolution

$$f*g:\mathbb{R}^n\to\mathbb{R}$$

of f and g is the function

$$(f * g)(x) = \int f(x - y)g(y) \, dy,$$

provided this integral exists.

Theorem 8 (Young's inequality). Suppose that $1 \le p, q, r \le \infty$ and

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}.$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then $f * g \in L^r(\mathbb{R}^n)$ and

$$||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}.$$

Special cases: (a) p = q = 2, r = 1 is

$$\sup |f * g| \le ||f||_{L^2} ||g||_{L^2};$$

(b) q = 1, p = r is

$$||f * g||_{L^p} \le ||f||_{L^1} ||g|||_{L^p}.$$

From (b), convolution with an L^1 function is a bounded linear map on L^p .

THEOREM 9 (Jensen's inequality). Suppose that $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function and $f \in L^1(\Omega)$ where $\Omega \subset \mathbb{R}$ has finite Lebesgue measure $|\Omega| > 0$. Then

$$\phi\left(\frac{1}{|\Omega|}\int_{\Omega}f(x)\,dx\right)\leq \frac{1}{|\Omega|}\int_{\Omega}\phi\left(f(x)\right)\,dx.$$

This says that the value of a convex function at an average is less than or equal to the average of its values.