
Analysis Preliminary Exam Workshop:

Basic Theorems for Integration

1. Notation

If Ω ⊂ Rn is a Lebesgue measurable subset of Rn and 1 ≤ p ≤ ∞, then
Lp(Ω) is the space of all Lebesgue measurable functions (equivalent up to
almost everywhere equality) such that

‖f‖Lp =

(∫
Ω

|f |p dx
)1/p

<∞

if 1 ≤ p <∞, or

‖f‖L∞ = sup{|f(x)| : x ∈ Ω} <∞

if p =∞ (where sup denotes the essential supremum). We mostly consider
functions defined on Rn; results for general domains Ω follow by applying
these results to fχΩ where χΩ is the characteristic function of Ω. We
consider real-valued functions for definiteness, but all the results (except
for the Monotone Convergence Theorem and Fatou’s Lemma, which depend
on the ordering properties of R) extend to complex-valued functions in the
obvious way.

2. Exchanging the order of limits and integration

Theorem 1 (Monotone convergence). Suppose that (fn) is an increas-
ing sequence of non-negative measurable functions fn : Rn → [0,∞] and
f = limn→∞ fn. Then ∫

f dx = lim
n→∞

∫
fn dx.

Theorem 2 (Fatou’s lemma). Suppose that (fn) is a sequence of non-
negative, measurable functions fn : Rn → [0,∞]. Then∫

lim inf
n→∞

fn dx ≤ lim inf
n→∞

∫
fn dx.



This result says that integrals can only “lose mass” in the limit.

Theorem 3 (Dominated convergence). Suppose that (fn) is a sequence
of integrable functions fn ∈ L1(Rn) and f = limn→∞ fn. If there exists
g ∈ L1(Rn) such that

|fn| ≤ g for all n ∈ N,

then f ∈ L1(Rn) and ∫
f dx = lim

n→∞

∫
fn dx.

3. Continuity of integrals and differentiation under the integral

Theorem 4. Suppose that f : Rn × [a, b]→ R is such that

f(·, t) : Rn → R ∈ L1(Rn) for each a ≤ t ≤ b.

Define F : [a, b]→ R by

F (t) =

∫
f(x, t) dx.

(a) If f(x, ·) : [a, b]→ R is continuous at a ≤ t0 ≤ b for every x ∈ Rn and
there exists a function g ∈ L1(Rn) such that

|f(x, t)| ≤ g(x) for all (x, t) ∈ Rn × [a, b],

then F is continuous at t0.

(b) If the partial derivative

∂f

∂t
(x, t)

exists for all (x, t) ∈ Rn × [a, b] and there is a function g ∈ L1(Rn) such
that ∣∣∣∣∂f∂t (x, t)

∣∣∣∣ ≤ g(x) for all (x, t) ∈ Rn × [a, b],

then F is differentiable on [a, b] and

dF

dt
(t) =

∫
∂f

∂t
(x, t) dx.



4. Change of variables in integrals

Let U, V ⊂ Rn be open sets in Rn. A map φ : U → V is a C1-diffeomorphism
of U onto V if it is one-to-one and onto, φ is continuously differentiable in
U , and φ−1 is continuously differentiable in V .

Theorem 5. Suppose that f : V → R is measurable function defined on
an open set V ⊂ Rn and φ : U → V is a C1-diffeomorphism of U onto V .
Let

J = |detDφ|

be the Jacobian of φ. Then f ∈ L1(V ) if and only if (f ◦ φ)J ∈ L1(U), in
which case ∫

V

f(y) dy =

∫
U

f (φ(x)) J(x) dx.

5. Evaluation of double integrals and exchange in the order of
integration

Theorem 6 (Fubini). Suppose that f : Rm×Rn → R is a measurable
function. Then ∫

|f(x, y)| dxdy

is finite if and only if either one of∫ (∫
|f(x, y)| dx

)
dy,

∫ (∫
|f(x, y)| dy

)
dx

is finite. In that case,∫
f(x, y) dxdy =

∫ (∫
f(x, y) dx

)
dy =

∫ (∫
f(x, y) dy

)
dx.



6. Inequalities

Theorem 7 (Hölder’s inequality). Suppose that 1 ≤ p, q ≤ ∞ and

1

p
+

1

q
= 1.

If f ∈ Lp(Rn), g ∈ Lq(Rn), then∣∣∣∣∫ fg dx

∣∣∣∣ ≤ (∫ |f |p dx)1/p(∫
|g|q dx

)1/q

.

Special cases:

(a) p = q = 2 is the Cauchy-Schwartz inequality∣∣∣∣∫ fg dx

∣∣∣∣ ≤ (∫ f2 dx

)1/2(∫
g2 dx

)1/2

;

(b) p = 1, q =∞ is ∣∣∣∣∫ fg dx

∣∣∣∣ ≤ sup |g|
∫
|f | dx.

If f, g : Rn → R are measurable functions, then the convolution

f ∗ g : Rn → R

of f and g is the function

(f ∗ g)(x) =

∫
f(x− y)g(y) dy,

provided this integral exists.

Theorem 8 (Young’s inequality). Suppose that 1 ≤ p, q, r ≤ ∞ and

1

p
+

1

q
= 1 +

1

r
.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .



Special cases:

(a) p = q = 2, r = 1 is

sup |f ∗ g| ≤ ‖f‖L2‖g‖L2 ;

(b) q = 1, p = r is

‖f ∗ g‖Lp ≤ ‖f‖L1‖g|‖Lp .

From (b), convolution with an L1 function is a bounded linear map on Lp.

Theorem 9 (Jensen’s inequality). Suppose that φ : R→ R is a convex
function and f ∈ L1(Ω) where Ω ⊂ R has finite Lebesgue measure |Ω| > 0.
Then

φ

(
1

|Ω|

∫
Ω

f(x) dx

)
≤ 1

|Ω|

∫
Ω

φ (f(x)) dx.

This says that the value of a convex function at an average is less than
or equal to the average of its values.


