Convolution Problem Analysis Prelim Workshop Fall 2012

Problem 3. (Spring, 2012) For $\epsilon > 0$, we set

$$\eta_{\epsilon}(x) = \frac{1}{\pi} \sin\left(\frac{\epsilon \pi x}{x^2 + \epsilon^2}\right) \frac{\epsilon}{x^2 + \epsilon^2},$$

and define the convolution for $u \in L^2(\mathbb{R})$:

$$\eta_{\epsilon} * u(x) = \int_{\mathbb{R}} \eta_{\epsilon}(x-y)u(y) \, dy.$$

For $\epsilon > 0$, prove that $\sqrt{\epsilon}(\eta_{\epsilon} * u)(x)$ is bounded as a function of x and ϵ and that $\eta_{\epsilon} * u$ converges strongly in $L^2(\mathbb{R})$ as $\epsilon \to 0^+$. What is the limit?

Solution. We have

$$\eta_{\epsilon}(x) = \frac{1}{\epsilon} \eta\left(\frac{x}{\epsilon}\right), \qquad \eta(x) = \frac{1}{\pi} \sin\left(\frac{\pi x}{x^2 + 1}\right) \frac{1}{x^2 + 1}.$$

Since

$$|\eta(x)| \leq \frac{|x|}{(x^2+1)^2},$$

we see that $\eta \in L^1(\mathbb{R})$, and since η is an odd function,

$$\int_{\mathbb{R}} \eta(x) \, dx = 0.$$

Moreover, for all $\epsilon > 0$,

$$\|\eta_{\epsilon}\|_{L^{1}(\mathbb{R})} = \|\eta\|_{L^{1}(\mathbb{R})}, \qquad \|\eta_{\epsilon}\|_{L^{2}(\mathbb{R})} = \frac{1}{\sqrt{\epsilon}} \|\eta\|_{L^{2}(\mathbb{R})}$$

By Young's inequality, $\|\eta_{\epsilon} * u\|_{L^{\infty}(\mathbb{R})} \leq \|\eta_{\epsilon}\|_{L^{2}(\mathbb{R})} \|u\|_{L^{2}(\mathbb{R})}$, so

$$\sqrt{\epsilon} \|\eta_{\epsilon} * u\|_{L^{\infty}(\mathbb{R})} \le \|\eta\|_{L^{2}(\mathbb{R})} \|u\|_{L^{2}(\mathbb{R})}$$

is a bounded function of (x, ϵ) .

We claim that $\eta_{\epsilon} * u \to 0$ in $L^2(\mathbb{R})$ as $\epsilon \to 0^+$. This is a consequence of the mollification theorem (see Theorem 8.14 in *Real Analysis* by Folland, which includes the case $\int \eta \, dx = 0$). The proof in Folland uses the L^p -continuity of translations of L^p -functions and the Minkowski integral inequality. We'll give an alternative proof that doesn't rely on the Minkowski integral inequality.

THEOREM 1. Suppose that $\eta \in L^1(\mathbb{R}^n)$, with $\int \eta \, dx = 0$, and $u \in L^p(\mathbb{R}^n)$, where $1 \leq p < \infty$. For $\epsilon > 0$ let $\eta_{\epsilon}(x) = \epsilon^{-n}\eta(x/\epsilon)$. Then $\eta_{\epsilon} * u \to 0$ in $L^p(\mathbb{R}^n)$ as $\epsilon \to 0^+$.

Proof. First we show, by density, that it is sufficient to prove the result for continuous functions with compact support.

If $\eta, \rho \in L^1$ and $u, v \in L^p$, then by Young's inequality and the fact that $\|\eta_{\epsilon}\|_{L^1} = \|\eta\|_{L^1}$, we get

$$\|\eta_{\epsilon} * u - \rho_{\epsilon} * v\|_{L^{p}} \le \|\eta - \rho\|_{L^{1}} \|u\|_{L^{p}} + \|\rho\|_{L^{1}} \|u - v\|_{L^{p}}$$

If $\eta \in L^1$, $u \in L^p$, and $\delta > 0$ is given, choose $\rho, v \in C_c(\mathbb{R}^n)$ such that

$$\|\eta - \rho\|_{L^1} < \frac{\delta}{4\|u\|_{L^p}}, \qquad \|u - v\|_{L^p} < \frac{\delta}{4\|\rho\|_{L^1}},$$

which is possible since $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. Then

$$\|\eta_{\epsilon} * u\|_{L^{p}} \le \|\eta_{\epsilon} * u - \rho_{\epsilon} * v\|_{L^{p}} + \|\rho_{\epsilon} * v\|_{L^{p}} < \|\rho_{\epsilon} * v\|_{L^{p}} + \frac{\delta}{2}.$$

Assuming the result holds for continuous functions with compact support, we choose $\epsilon' > 0$ such that $\|\rho_{\epsilon} * v\|_{L^p} < \delta/2$ for $0 < \epsilon < \epsilon'$. Then

 $\|\eta_{\epsilon} * u\|_{L^p} < \delta \qquad \text{for } 0 < \epsilon < \epsilon',$

which proves the result for $\eta \in L^1$, $u \in L^p$.

Now suppose that $\eta, u \in C_c(\mathbb{R}^n)$. By rescaling ϵ , we may assume without loss of generality that supp $\eta \subset B_1$, where $B_r \subset \mathbb{R}^n$ is the ball of radius rand center 0. Since the integral of η is zero and supp $\eta_{\epsilon} \subset B_{\epsilon}$,

$$\eta_{\epsilon} * u(x) = \int_{B_{\epsilon}} \eta_{\epsilon}(y) \left[u(x-y) - u(x) \right] \, dy.$$

If supp $u \subset B_r(0)$, then supp $\eta_{\epsilon} * u \subset B_{r+\epsilon}$. Moreover, since $u \in C_c(\mathbb{R}^n)$ is uniformly continuous, for every $\delta > 0$ there exists $0 < \epsilon' \leq 1$ such that

$$\sup_{|y-z| < \epsilon'} |u(y) - u(z)| < \frac{\delta}{|B_{r+1}|^{1/p} \|\eta\|_{L^1}}$$

where $|B_r|$ denotes the measure of B_r . It follows that, for $0 < \epsilon < \epsilon'$,

$$|\eta_{\epsilon} * u(x)| \leq \left(\sup_{|y-z| < \epsilon'} |u(y) - u(z)|\right) \int |\eta_{\epsilon}| \, dy < \frac{\delta}{|B_{r+1}|^{1/p}}$$

which implies that

$$\|\eta_{\epsilon} * u\|_{L^p} = \left(\int_{B_{r+\epsilon}} |\eta_{\epsilon} * u(x)|^p \, dx\right)^{1/p} < \delta.$$

This proves the result.

For completeness, we give a Hölder-inequality proof of Young's theorem for convolution with an L^1 -functions.

THEOREM 2. Suppose that $f \in L^1(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, where $1 \leq p \leq \infty$. Then $f * g \in L^p(\mathbb{R}^n)$ and $||f * g||_{L^p} \leq ||f||_{L^1} ||g||_{L^p}$.

Proof. The result is immediate for $p = \infty$, since

$$|f * g(x)| = \left| \int f(y)g(x-y) \, dy \right| \le ||f||_{L^1} ||g||_{L^{\infty}}.$$

For $1 \le p < \infty$, Hölder's inequality gives

$$\begin{split} \int |f(x-y)g(y)| \, dy &= \int |f(x-y)|^{1/p'} |f(x-y)|^{1/p} |g(y)| \, dy \\ &\leq \left(\int |f(x-y)| \, dx \right)^{1/p'} \left(\int |f(x-y)| \, |g(y)|^p \, dy \right)^{1/p} \\ &\leq \||f\|_{L^1}^{1/p'} \left(\int |f(x-y)| \, |g(y)|^p \, dy \right)^{1/p} \end{split}$$

Using Fubini's theorem, we then get that

$$\left(\int |f * g(x)|^p \, dx\right)^{1/p} \le \|f\|_{L^1}^{1/p'} \left[\int \left(\int |f(x-y)| \, |g(y)|^p \, dy\right) \, dx\right]^{1/p}$$
$$\le \|f\|_{L^1}^{1/p'} \left[\int \left(\int |f(x-y)| \, |g(y)|^p \, dx\right) \, dy\right]^{1/p}$$
$$\le \|f\|_{L^1} \|g\|_{L^p},$$

which proves the result. In particular, since $f * g \in L^p(\mathbb{R}^n)$, the integral defining the convolution converges for x pointwise a.e. in \mathbb{R}^n .