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Problem 3. (Spring, 2012) For ε > 0, we set

ηε(x) =
1

π
sin

(
επx

x2 + ε2

)
ε

x2 + ε2
,

and define the convolution for u ∈ L2(R):

ηε ∗ u(x) =

∫
R
ηε(x− y)u(y) dy.

For ε > 0, prove that
√
ε(ηε ∗u)(x) is bounded as a function of x and ε and

that ηε ∗ u converges strongly in L2(R) as ε→ 0+. What is the limit?

Solution. We have

ηε(x) =
1

ε
η
(x
ε

)
, η(x) =

1

π
sin

(
πx

x2 + 1

)
1

x2 + 1
.

Since

|η(x)| ≤ |x|
(x2 + 1)2

,

we see that η ∈ L1(R), and since η is an odd function,∫
R
η(x) dx = 0.

Moreover, for all ε > 0,

‖ηε‖L1(R) = ‖η‖L1(R), ‖ηε‖L2(R) =
1√
ε
‖η‖L2(R).

By Young’s inequality, ‖ηε ∗ u‖L∞(R) ≤ ‖ηε‖L2(R)‖u‖L2(R), so

√
ε ‖ηε ∗ u‖L∞(R) ≤ ‖η‖L2(R)‖u‖L2(R)

is a bounded function of (x, ε).

We claim that ηε ∗u→ 0 in L2(R) as ε→ 0+. This is a consequence of the
mollification theorem (see Theorem 8.14 in Real Analysis by Folland, which
includes the case

∫
η dx = 0). The proof in Folland uses the Lp-continuity

of translations of Lp-functions and the Minkowski integral inequality. We’ll
give an alternative proof that doesn’t rely on the Minkowski integral in-
equality.
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Theorem 1. Suppose that η ∈ L1(Rn), with
∫
η dx = 0, and u ∈

Lp(Rn), where 1 ≤ p < ∞. For ε > 0 let ηε(x) = ε−nη(x/ε). Then
ηε ∗ u→ 0 in Lp(Rn) as ε→ 0+.

Proof. First we show, by density, that it is sufficient to prove the result
for continuous functions with compact support.

If η, ρ ∈ L1 and u, v ∈ Lp, then by Young’s inequality and the fact that
‖ηε‖L1 = ‖η‖L1 , we get

‖ηε ∗ u− ρε ∗ v‖Lp ≤ ‖η − ρ‖L1‖u‖Lp + ‖ρ‖L1‖u− v‖Lp .

If η ∈ L1, u ∈ Lp, and δ > 0 is given, choose ρ, v ∈ Cc(Rn) such that

‖η − ρ‖L1 <
δ

4‖u‖Lp
, ‖u− v‖Lp <

δ

4‖ρ‖L1

,

which is possible since Cc(Rn) is dense in Lp(Rn). Then

‖ηε ∗ u‖Lp ≤ ‖ηε ∗ u− ρε ∗ v‖Lp + ‖ρε ∗ v‖Lp < ‖ρε ∗ v‖Lp +
δ

2
.

Assuming the result holds for continuous functions with compact support,
we choose ε′ > 0 such that ‖ρε ∗ v‖Lp < δ/2 for 0 < ε < ε′. Then

‖ηε ∗ u‖Lp < δ for 0 < ε < ε′,

which proves the result for η ∈ L1, u ∈ Lp.
Now suppose that η, u ∈ Cc(Rn). By rescaling ε, we may assume without

loss of generality that supp η ⊂ B1, where Br ⊂ Rn is the ball of radius r
and center 0. Since the integral of η is zero and supp ηε ⊂ Bε,

ηε ∗ u(x) =

∫
Bε

ηε(y) [u(x− y)− u(x)] dy.

If suppu ⊂ Br(0), then supp ηε ∗ u ⊂ Br+ε. Moreover, since u ∈ Cc(Rn) is
uniformly continuous, for every δ > 0 there exists 0 < ε′ ≤ 1 such that

sup
|y−z|<ε′

|u(y)− u(z)| < δ

|Br+1|1/p‖η‖L1

where |Br| denotes the measure of Br. It follows that, for 0 < ε < ε′,

|ηε ∗ u(x)| ≤

(
sup

|y−z|<ε′
|u(y)− u(z)|

)∫
|ηε| dy <

δ

|Br+1|1/p
,
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which implies that

‖ηε ∗ u‖Lp =

(∫
Br+ε

|ηε ∗ u(x)|p dx

)1/p

< δ.

This proves the result.

For completeness, we give a Hölder-inequality proof of Young’s theorem
for convolution with an L1-functions.

Theorem 2. Suppose that f ∈ L1(Rn) and g ∈ Lp(Rn), where 1 ≤ p ≤
∞. Then f ∗ g ∈ Lp(Rn) and ‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp .

Proof. The result is immediate for p =∞, since

|f ∗ g(x)| =
∣∣∣∣∫ f(y)g(x− y) dy

∣∣∣∣ ≤ ‖f‖L1‖g‖L∞ .

For 1 ≤ p <∞, Hölder’s inequality gives∫
|f(x− y)g(y)| dy =

∫
|f(x− y)|1/p

′
|f(x− y)|1/p|g(y)| dy

≤
(∫
|f(x− y)| dx

)1/p′ (∫
|f(x− y)| |g(y)|p dy

)1/p

≤ ‖f‖1/p
′

L1

(∫
|f(x− y)| |g(y)|p dy

)1/p

Using Fubini’s theorem, we then get that(∫
|f ∗ g(x)|p dx

)1/p

≤ ‖f‖1/p
′

L1

[∫ (∫
|f(x− y)| |g(y)|p dy

)
dx

]1/p
≤ ‖f‖1/p

′

L1

[∫ (∫
|f(x− y)| |g(y)|p dx

)
dy

]1/p
≤ ‖f‖L1‖g‖Lp ,

which proves the result. In particular, since f ∗ g ∈ Lp(Rn), the integral

defining the convolution converges for x pointwise a.e. in Rn.


