CONVOLUTION PROBLEM
ANALYSIS PRELIM WORKSHOP
Fall 2012

Problem 3. (Spring, 2012) For € > 0, we set
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and define the convolution for u € L*(R):

Ne * u(x) = /Rne(x —y)u(y) dy.

For € > 0, prove that \/e(n. *u)(z) is bounded as a function of z and e and
that 7. * u converges strongly in L?(R) as ¢ — 0. What is the limit?

Solution. We have
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we see that n € L'(R), and since 7 is an odd function,

/Rn(x) dx = 0.

Moreover, for all € > 0,
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By Young’s inequality, |7, * /U/HLOQ(R) < mell 2wy lull 22wy, SO
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is a bounded function of (z,€).

We claim that 7. xu — 0 in L?(R) as e — 0*. This is a consequence of the
mollification theorem (see Theorem 8.14 in Real Analysis by Folland, which
includes the case [ ndz = 0). The proof in Folland uses the LP-continuity
of translations of LP-functions and the Minkowski integral inequality. We’ll
give an alternative proof that doesn’t rely on the Minkowski integral in-
equality.



THEOREM 1. Suppose that n € L*(R"), with [ndx = 0, and u €
LP(R™), where 1 < p < oo. For e > 0 let n.(x) = e "n(z/e). Then
ne*u— 0 in LP(R™) as e — 07,

Proof. First we show, by density, that it is sufficient to prove the result
for continuous functions with compact support.
If n,p € L' and u,v € LP, then by Young’s inequality and the fact that

[nellzr = lInllzs, we get
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If ne L', u e LP, and § > 0 is given, choose p,v € C.(R™) such that
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which is possible since C.(R™) is dense in LP(R™). Then
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Assuming the result holds for continuous functions with compact support,
we choose ¢ > 0 such that ||p. * v||zr < §/2 for 0 < € < €. Then

ne*ullpr <6 for0<e<e,

which proves the result for n € L', u € LP.

Now suppose that n,u € C.(R™). By rescaling €, we may assume without
loss of generality that suppn C By, where B, C R is the ball of radius r
and center 0. Since the integral of 7 is zero and suppn. C B,

e * u() = /B ne(w) [l — ) — u(z)] dy.

€

If suppu C B,(0), then supp . * u C B,y.. Moreover, since u € C.(R") is
uniformly continuous, for every § > 0 there exists 0 < ¢ < 1 such that
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where | B,| denotes the measure of B,. It follows that, for 0 < e < ¢/,
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which implies that
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This proves the result. |

For completeness, we give a Holder-inequality proof of Young’s theorem
for convolution with an L!-functions.

THEOREM 2. Suppose that f € L*(R™) and g € LP(R™), where 1 < p <
oco. Then f*g e LP(R") and ||f * gllr < |fllL:[lglze-

Proof. The result is immediate for p = oo, since
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For 1 < p < oo, Holder’s inequality gives
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Using Fubini’s theorem, we then get that
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which proves the result. In particular, since f x g € LP(R™), the integral

defining the convolution converges for x pointwise a.e. in R”. |



