
Analysis Preliminary Exam

Spring 2014: Solutions

1. Let (gn) be a sequence of absolutely continuous functions on [0, 1] with
|gn(0)| ≤ 1. Suppose also that for each n, |g′n(x)| ≤ 1 for Lebesgue almost
everywhere x ∈ [0, 1]. Show that there is a subsequence of (gn) that converges
uniformly to a Lipschitz function on [0, 1].

Solution.

• Since gn is absolutely continuous, it is differentiable pointwise a.e. and,
by the fundamental theorem of calculus for the Lebesgue integral,

gn(x) = gn(0) +

∫ x

0

g′n(t) dt, 0 ≤ x ≤ 1. (1)

• It follows that

‖gn‖∞ = sup
x∈[0,1]

|gn(x)| ≤ |gn(0)|+

∫ 1

0

|g′n(t)| dt ≤ 2,

so {gn} is a bounded subset of C([0, 1]).

• It also follows from (1), and the assumption |g′n| ≤ 1, that

|gn(x)− gn(y)| =

∣

∣

∣

∣

∫ x

y

g′n(t) dt

∣

∣

∣

∣

≤ |x− y|, (2)

which shows that {gn} is equicontinuous (i.e., for every ǫ > 0, there
exists δ > 0 such that |x − y| < δ implies that |gn(x) − gn(y)| < ǫ for
every n ∈ N; take δ = ǫ).

• Since the set {gn} is bounded and equicontinuous, the Arzelà-Ascoli
theorem implies that it is precompact in C([0, 1]), so (gn) has a uni-
formly convergent subsequence (gnk

).

• If gnk
→ g uniformly, then it converges pointwise and

|g(x)− g(y)| = lim
k→∞

|gnk
(x)− gnk

(y)| ≤ |x− y|

from (2), so the limit g is Lipschitz.
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2. Let T be a linear operator from a Banach space X to a Hilbert space H .
Show that T is bounded if and only if xn ⇀ x implies that T (xn) ⇀ T (x)
for every weakly convergent sequence (xn) in X .

Solution.

• Suppose that T : H → H is bounded. If y ∈ H , then φ : x 7→ 〈Tx, y〉
is a bounded linear functional on X , since it is obviously linear and

|〈Tx, y〉| ≤ ‖T‖‖y‖‖x‖,

so ‖φ‖ ≤ ‖T‖ ‖y‖. If xn ⇀ x in X , then φ(xn) → φ(x) by the definition
of weak convergence. It follows that

〈Txn, y〉 → 〈Tx, y〉

for every y ∈ H , meaning that Txn ⇀ Tx in H .

• To prove the converse, suppose that T is not bounded. Then for every
n ∈ N, there exists yn ∈ X with ‖yn‖ = 1 and ‖Tyn‖ ≥ n2. Let
xn = yn/n. Then xn → 0 strongly and therefore weakly in X , but
Txn does not converge weakly in H since ‖Txn‖ ≥ n and every weakly
convergent sequence is bounded.

2



3. Let f, fk : E → [0,+∞) be non-negative Lebesgue integrable functions on
a measurable set E ⊂ Rn. If (fk) converges to f pointwise almost everywhere

∫

E

fk dx →

∫

E

f dx,

show that
∫

E

|f − fk| dx → 0.

Solution.

• Since f, fk ≥ 0, we have

f + fk − |f − fk| ≥ 0,

so Fatou’s lemma implies that

∫

E

lim inf
k→∞

(f + fk − |f − fk|) dx ≤ lim inf
k→∞

∫

E

(f + fk − |f − fk|) dx.

• Since fk → f pointwise a.e. and
∫

E
fk dx →

∫

E
f dx, this gives

∫

E

2f dx ≤ 2

∫

E

f dx− lim sup
k→∞

∫

E

|f − fk| dx,

so

lim sup
k→∞

∫

E

|f − fk| dx ≤ 0.

Since |f − fk| ≥ 0, it follows that lim
∫

E
|f − fk| dx = 0.

Remark. It’s essential to use the positivity of fk here. For example, if
fk : (0, 1) → R is defined (for k ≥ 2) by

fk(x) =











−k if 0 < x < 1/k,

0 if 1/k ≤ x ≤ 1− 1/k,

k if 1− 1/k < x < 1,

then fk → 0 pointwise and
∫ 1

0
fk dx → 0, but

∫ 1

0
|fk| dx → 2.
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4. Let P1 and P2 be a pair of orthogonal projections onto H1 and H2,
respectively, where H1 and H2 are closed subspaces of a Hilbert space H .
Prove that P1P2 is an orthogonal projection if and only if P1 and P2 commute.
In that case, prove that P1P2 is the orthogonal projection onto H1 ∩H2.

Solution.

• A linear operator P : H → H is an orthogonal projection if and only
if P 2 = P (projection) and P ∗ = P (orthogonal).

• If P1P2 is an orthogonal projection, then

P1P2 = (P1P2)
∗ = P ∗

2P
∗
1 = P2P1,

where we use the identity (AB)∗ = B∗A∗ and the orthogonality of the
Pi, so P1 and P2 commute.

• If P1, P2 commute and P = P1P2, then

P 2 = P1P2P1P2 = P 2
1P

2
2 = P1P2 = P,

P ∗ = (P1P2)
∗ = P ∗

2P
∗
1 = P2P1 = P1P2 = P,

so P1P2 is an orthogonal projection.

• If P1, P2 commute and P = P1P2, then ranP ⊂ ranP1 = H1 and
ranP = ran(P2P1) ⊂ ranP2 = H2, so ranP ⊂ H1 ∩ H2. To get the
reverse inclusion, suppose that x ∈ H1 ∩H2. Then P1P2x = P1x = x,
since Pi is the identity operator on its rangeHi, meaning that x ∈ ranP
and ranP ⊃ H1∩H2. It follows that P1P2 is the orthogonal projection
onto H1 ∩H2.
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5. Let H be a (separable) Hilbert space with orthonormal basis {fk}
∞
k=1.

Prove that the linear operator T : H → H defined by

T (fk) =
1

k
fk+1, k ≥ 1

is compact but has no eigenvalues.

Solution.

• For x =
∑∞

k=1 xkfk ∈ H , we have

Tx =
∞
∑

k=1

xk

k
fk+1.

If Tx = λx for λ ∈ C, then

λx1 = 0, λxk+1 =
xk

k
for every k ∈ N.

• If λ 6= 0, then x1 = 0 and, by induction, xk = 0 for every k ∈ N. On
the other hand, if λ = 0, then it follows immediately that xk = 0. In
either case, x = 0 and λ is not an eigenvalue.

• An operator T : H → H is compact if it is the operator-norm limit of
compact operators. Let Tn = PnT where Pn is the orthogonal projec-
tion onto the subspace spanned by {f1, f2, . . . , fn}. Then Tn has finite
rank, so it is compact.

• Moreover, we get that

‖T − Tn‖ = sup
‖x‖=1

‖(T − Tn)x‖ = sup
‖x‖=1

∥

∥

∥

∥

∥

∞
∑

k=n

xk

k
fk+1

∥

∥

∥

∥

∥

= sup
‖x‖=1

(

∞
∑

k=n

|xk|
2

k2

)1/2

≤
1

n
sup
‖x‖=1

(

∞
∑

k=n

|xk|
2

)1/2

≤
1

n
.

It follows that Tn → T with respect to the operator norm, so T is
compact.

• Alternatively, one can show directly that the image of the unit ball
under T is precompact, either by showing it’s totally bounded or by
use of a diagonal argument.
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6. Let H1 = L2([−π, π]) be the Hilbert space of functions F (eiθ) on the unit
circle with inner product

(F,G) =
1

2π

∫ π

−π

F (eiθ)G(eiθ) dx.

Let H2 be the space L2(R). Using the mapping

x 7→
i− x

i+ x
,

of R to the unit circle, show that:

(a) The correspondence U : F 7→ f with

f(x) =
1

π1/2(i+ x)
F

(

i− x

i+ x

)

gives a unitary mapping of H1 to H2.

b) As a result,
{

π−1/2

(

i− x

i+ x

)n
1

i+ x

}∞

n=−∞

is an orthonormal basis of L2(R).

Solution.

• (a) A mapping U : H1 → H2 is unitary if and only if it is onto and
preserves inner products. Let

eiθ =
i− x

i+ x
, x = i

(

1− eiθ

1 + eiθ

)

= tan

(

θ

2

)

.

Then θ 7→ x defines a diffeomorphism of (−π, π) onto R, and

ieiθ dθ = −
2i

(i+ x)2
dx, or dθ =

−2

(i− x)(i+ x)
dx.

• If F,G ∈ L2(−π, π), then

〈F,G〉H1
=

1

2π

∫ ∞

−∞

F

(

i− x

i+ x

)

G

(

i− x

i+ x

)

−2

(i− x)(i+ x)
dx

=

∫ ∞

−∞

1

π1/2(i+ x)
F

(

i− x

i+ x

)

1

π1/2(i+ x)
G

(

i− x

i+ x

)

dx

= 〈UF, UG〉H2
,

and similarly 〈f, g〉H2
= 〈U−1f, U−1g〉H1

, which shows that U is unitary.
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• (b) A unitary transformation maps an orthonormal basis to an or-
thonormal basis. The functions

π−1/2

(

i− x

i+ x

)n
1

i+ x
= U(einθ)

are the images of the standard orthonormal basis vectors {einθ : n ∈ Z}
of L2(−π, π), so they form an orthonormal basis of L2(R).
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