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Solutions 3

Analysis Prelim Workshop

Fall 2013

Problem 2. (Spring, 2013) Let (An) be a sequence of bounded linear
operators on a Banach space that converges in norm to an operator A, such
that the An have the same spectrum σ0 = σ(An). Show that σ0 ⊂ σ(A).

Solution. We prove the equivalent statement that if λ ∈ ρ(A), then λ ∈ ρ0,
where ρ(A) is the resolvent set of A and ρ0 = C \ σ0 is the resolvent set of
the An.

If λ ∈ ρ(A), then λI −A is invertible and

λI −An = (λI −A) (I − Tn) , Tn = (λI −A)
−1

(An −A).

Since

‖Tn‖ ≤
∥∥∥(λI −A)−1

∥∥∥ ‖An −A‖ → 0 as n → ∞,

we have ‖Tn‖ < 1 for sufficiently large n, and then I − Tn is invertible by
the Neumann series (I−Tn)

−1 = I+Tn+T 2

n+ . . . . It follows that λI−An

is invertible and λ ∈ ρ0.

Problem 2. (Fall, 2012) Suppose that φ : [0, 1] → R is a continuous
function, and the linear operator T : L2(0, 1) → L2(0, 1) is given by

(Tf)(x) = φ(x)

∫
1

0

φ(t)f(t) dt.

(a) Show that T is self-adjoint. (b) Show that there exists a number λ ≥ 0
such that T 2 = λT ; (c) Find the spectral radius r(T ) of T .

Solution. (a) For f, g ∈ L2(0, 1), we compute that

〈Tf, g〉 =

∫ 1

0

(Tf)(x)g(x) dx

=

∫
1

0

φ(x)

(∫
1

0

φ(t)f(t) dt

)
g(x) dx

=

∫ 1

0

f(t)

(
φ(t)

∫ 1

0

φ(x)g(x) dx

)
dt

= 〈f, T g〉,

which proves that T is self-adjoint.
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(b) For f ∈ L2(0, 1), we compute that

(T 2f)(x) = φ(x)

∫ 1

0

φ(t)(Tf)(t) dt

= φ(x)

∫ 1

0

φ(t)

(
φ(t)

∫ 1

0

φ(s)f(s) ds

)
dt

=

(∫ 1

0

φ2(t) dt

)(
φ(x)

∫ 1

0

φ(s)f(s) ds

)

= λ(Tf)(x),

where

λ =

∫
1

0

φ2(t) dt ≥ 0.

(c) Since T is self-adjoint, ‖T 2‖ = ‖T ‖2 and r(T ) = ‖T ‖. From (b),
‖T 2‖ = λ‖T ‖, so ‖T ‖2 = λ‖T ‖ and ‖T ‖ = λ (since ‖T ‖ 6= 0 unless λ = 0).
It follows that r(T ) = λ.

Problem 3. (Fall, 2012) Let T be a bounded linear operator on a Hilbert
space H. (a) Show that if ‖T ‖ ≤ 1, then T and its adjoint T ∗ have the
same fixed points i.e., Tx = x if and only if T ∗x = x. (b) Let λ be an
eigenvalue of T . Is it true that λ̄ must be eigenvalue of T ∗? Is it true that
λ̄ must be in the spectrum of T ∗?

Solution. (a) Suppose that Tx = x. Then, since ‖T ∗‖ = ‖T ‖ ≤ 1,

‖T ∗x− x‖2 = 〈T ∗x− x, T ∗x− x〉

= 〈T ∗x, T ∗x〉 − 〈T ∗x, x〉 − 〈x, T ∗x〉+ 〈x, x〉

= ‖T ∗x‖2 − 〈x, Tx〉 − 〈Tx, x〉+ ‖x‖2

= ‖T ∗x‖2 − ‖x‖2

≤ ‖T ∗‖2‖x‖2 − ‖x‖2

≤ 0.

It follows that ‖T ∗x − x‖ = 0, so T ∗x = x. Then same argument applied
to T ∗ instead of T shows that T ∗x = x implies that Tx = x, so T and T ∗

have the same fixed points.

(b) It is not true that if λ is an eigenvalue of T , then λ̄ must be eigenvalue
of T ∗. For example, let T : ℓ2(N) → ℓ2(N) be the left shift operator, whose
adjoint is the right shift operator,

T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ), T ∗(x1, x2, x3, . . . ) = (0, x1, x2, . . . ).
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Then 0 is an eigenvalue of T , with eigenvector (1, 0, 0, . . . ), but T ∗ is one-
to-one and 0 is not an eigenvalue.

It is true that if λ is an eigenvalue of T , then λ̄ is in the spectrum of T ∗.
Since

ran(T ∗ − λ̄I) = ker(T − λI)⊥,

the range of T ∗ − λ̄I is a proper, non-dense subspace of H. If λ̄ is not in
the point spectrum of T ∗, then it is in the residual spectrum.

Problem 2. (Fall, 2010) Define the Fourier transform φ̂ = Fφ of a
Schwartz function φ ∈ S(R) by

φ̂(ξ) =
1

2π

∫ ∞

−∞

φ(x)e−ixξ dx, φ(x) =

∫ ∞

−∞

φ̂(ξ)eixξ dξ.

and the Fourier transform T̂ = FT of a tempered distribution T ∈ S ′(R)

by 〈T̂ , φ〉 = 〈T, φ̂〉, where 〈·, ·〉 denotes the duality pairing between S ′(R)
and S(R). Compute the Fourier transform of the function

f(x) =

{
x if x ≥ 0,

0 if x < 0.

Solution. Using the definition of the Fourier transform given above, we
have

F [f ′] = iξFf, F [xf ] = i(Ff)′.

Moreover,

Fδ =
1

2π
, F [1] = δ, F [x] = iδ′.

We write f as

f(x) =
1

2
[x+ xσ(x)] σ(x) =

{
1 if x > 0,

−1 if x < 0.

It follows that

f̂(ξ) =
i

2
[δ′(ξ) + σ̂′(ξ)] .

To compute σ̂, we note that the distributional derivative of σ is

σ′ = 2δ.
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Taking the Fourier transform of this equation, we get

iξσ̂(ξ) =
1

π

The general distributional solution of this equation is

σ̂(ξ) = −
i

π
p.v.

1

ξ
+ cδ(ξ)

where c is an arbitrary constant. (Here, we use ξ · p.v.(1/ξ) = 1 and the
fact that ξT (ξ) = 0 implies T (ξ) = cδ(ξ). Give proofs!)

We determine c by symmetry considerations. Define Rφ(x) = φ(−x) for
test functions and 〈Rf, φ〉 = 〈f,Rφ〉 for distributions. We say that f ∈ S ′

is odd if Rf = −f and even if Rf = f . Then p.v.(1/ξ) is odd and δ is

even; moreover, R̂f = Rf̂ , so f̂ is odd if f is odd. (Give proofs!) Since σ
is odd, σ̂ is odd, so we must have c = 0, and

σ̂(ξ) = −
i

π
p.v.

1

ξ
.

It follows that

f̂(ξ) =
i

2
δ′(ξ) +

1

2π

d

dξ
p.v.

1

ξ
.

Finally, we note that the derivative of the principal value distribution can
be expressed explicitly as a finite-part distribution

d

dξ
p.v.

1

ξ
= −f.p.

1

ξ2

where

〈f.p.
1

ξ2
, φ〉 = lim

ǫ→0+

[∫

|ξ|>ǫ

φ(ξ)

ξ2
dξ −

2φ(0)

ǫ

]

=

∫ ∞

0

φ(ξ) − 2φ(0) + φ(−ξ)

ξ2
dξ.

(The proof that this is a distribution and that it is the distributional deriva-
tive of p.v.(1/ξ) is left as another exercise.) Hence

f̂(ξ) =
i

2
δ′(ξ)−

1

2π
f.p.

1

ξ2
.


