Solutions 3 Analysis Prelim Workshop Fall 2013

Problem 2. (Spring, 2013) Let (A_n) be a sequence of bounded linear operators on a Banach space that converges in norm to an operator A, such that the A_n have the same spectrum $\sigma_0 = \sigma(A_n)$. Show that $\sigma_0 \subset \sigma(A)$.

Solution. We prove the equivalent statement that if $\lambda \in \rho(A)$, then $\lambda \in \rho_0$, where $\rho(A)$ is the resolvent set of A and $\rho_0 = \mathbb{C} \setminus \sigma_0$ is the resolvent set of the A_n .

If $\lambda \in \rho(A)$, then $\lambda I - A$ is invertible and

$$\lambda I - A_n = (\lambda I - A) (I - T_n), \qquad T_n = (\lambda I - A)^{-1} (A_n - A).$$

Since

$$|T_n|| \le \left\| (\lambda I - A)^{-1} \right\| \|A_n - A\| \to 0 \quad \text{as } n \to \infty,$$

we have $||T_n|| < 1$ for sufficiently large n, and then $I - T_n$ is invertible by the Neumann series $(I - T_n)^{-1} = I + T_n + T_n^2 + \dots$. It follows that $\lambda I - A_n$ is invertible and $\lambda \in \rho_0$.

Problem 2. (Fall, 2012) Suppose that $\phi : [0,1] \to \mathbb{R}$ is a continuous function, and the linear operator $T : L^2(0,1) \to L^2(0,1)$ is given by

$$(Tf)(x) = \phi(x) \int_0^1 \phi(t)f(t) dt.$$

(a) Show that T is self-adjoint. (b) Show that there exists a number $\lambda \ge 0$ such that $T^2 = \lambda T$; (c) Find the spectral radius r(T) of T.

Solution. (a) For $f, g \in L^2(0, 1)$, we compute that

$$\begin{split} \langle Tf,g\rangle &= \int_0^1 (Tf)(x)\overline{g(x)} \, dx \\ &= \int_0^1 \phi(x) \left(\int_0^1 \phi(t)f(t) \, dt \right) \overline{g(x)} \, dx \\ &= \int_0^1 f(t) \overline{\left(\phi(t) \int_0^1 \phi(x)g(x) \, dx \right)} \, dt \\ &= \langle f,Tg \rangle, \end{split}$$

which proves that T is self-adjoint.

(b) For $f \in L^2(0, 1)$, we compute that

$$(T^{2}f)(x) = \phi(x) \int_{0}^{1} \phi(t)(Tf)(t) dt$$

= $\phi(x) \int_{0}^{1} \phi(t) \left(\phi(t) \int_{0}^{1} \phi(s)f(s) ds\right) dt$
= $\left(\int_{0}^{1} \phi^{2}(t) dt\right) \left(\phi(x) \int_{0}^{1} \phi(s)f(s) ds\right)$
= $\lambda(Tf)(x),$

where

$$\lambda = \int_0^1 \phi^2(t) \, dt \ge 0.$$

(c) Since T is self-adjoint, $||T^2|| = ||T||^2$ and r(T) = ||T||. From (b), $||T^2|| = \lambda ||T||$, so $||T||^2 = \lambda ||T||$ and $||T|| = \lambda$ (since $||T|| \neq 0$ unless $\lambda = 0$). It follows that $r(T) = \lambda$.

Problem 3. (Fall, 2012) Let T be a bounded linear operator on a Hilbert space \mathcal{H} . (a) Show that if $||T|| \leq 1$, then T and its adjoint T^* have the same fixed points i.e., Tx = x if and only if $T^*x = x$. (b) Let λ be an eigenvalue of T. Is it true that $\overline{\lambda}$ must be eigenvalue of T^* ? Is it true that $\overline{\lambda}$ must be in the spectrum of T^* ?

Solution. (a) Suppose that Tx = x. Then, since $||T^*|| = ||T|| \le 1$,

$$\begin{aligned} \|T^*x - x\|^2 &= \langle T^*x - x, T^*x - x \rangle \\ &= \langle T^*x, T^*x \rangle - \langle T^*x, x \rangle - \langle x, T^*x \rangle + \langle x, x \rangle \\ &= \|T^*x\|^2 - \langle x, Tx \rangle - \langle Tx, x \rangle + \|x\|^2 \\ &= \|T^*x\|^2 - \|x\|^2 \\ &\leq \|T^*\|^2 \|x\|^2 - \|x\|^2 \\ &\leq 0. \end{aligned}$$

It follows that $||T^*x - x|| = 0$, so $T^*x = x$. Then same argument applied to T^* instead of T shows that $T^*x = x$ implies that Tx = x, so T and T^* have the same fixed points.

(b) It is not true that if λ is an eigenvalue of T, then $\overline{\lambda}$ must be eigenvalue of T^* . For example, let $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the left shift operator, whose adjoint is the right shift operator,

$$T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots), \quad T^*(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots).$$

Then 0 is an eigenvalue of T, with eigenvector (1, 0, 0, ...), but T^* is one-to-one and 0 is not an eigenvalue.

It is true that if λ is an eigenvalue of T, then $\overline{\lambda}$ is in the spectrum of T^* . Since

$$\overline{\operatorname{ran}(T^* - \overline{\lambda}I)} = \ker(T - \lambda I)^{\perp},$$

the range of $T^* - \overline{\lambda}I$ is a proper, non-dense subspace of \mathcal{H} . If $\overline{\lambda}$ is not in the point spectrum of T^* , then it is in the residual spectrum.

Problem 2. (Fall, 2010) Define the Fourier transform $\hat{\phi} = \mathcal{F}\phi$ of a Schwartz function $\phi \in \mathcal{S}(\mathbb{R})$ by

$$\hat{\phi}(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(x) e^{-ix\xi} \, dx, \qquad \phi(x) = \int_{-\infty}^{\infty} \hat{\phi}(\xi) e^{ix\xi} \, d\xi.$$

and the Fourier transform $\hat{T} = \mathcal{F}T$ of a tempered distribution $T \in \mathcal{S}'(\mathbb{R})$ by $\langle \hat{T}, \phi \rangle = \langle T, \hat{\phi} \rangle$, where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $\mathcal{S}'(\mathbb{R})$ and $\mathcal{S}(\mathbb{R})$. Compute the Fourier transform of the function

$$f(x) = \begin{cases} x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Solution. Using the definition of the Fourier transform given above, we have

$$\mathcal{F}[f'] = i\xi \mathcal{F}f, \qquad \mathcal{F}[xf] = i(\mathcal{F}f)'.$$

Moreover,

$$\mathcal{F}\delta = \frac{1}{2\pi}, \qquad \mathcal{F}[1] = \delta, \qquad \mathcal{F}[x] = i\delta'.$$

We write f as

$$f(x) = \frac{1}{2} \left[x + x \sigma(x) \right] \qquad \sigma(x) = \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0. \end{cases}$$

It follows that

$$\hat{f}(\xi) = \frac{i}{2} \left[\delta'(\xi) + \hat{\sigma}'(\xi) \right].$$

To compute $\hat{\sigma}$, we note that the distributional derivative of σ is

$$\sigma' = 2\delta.$$

Taking the Fourier transform of this equation, we get

$$i\xi\hat{\sigma}(\xi) = \frac{1}{\pi}$$

The general distributional solution of this equation is

$$\hat{\sigma}(\xi) = -\frac{i}{\pi} \operatorname{p.v.} \frac{1}{\xi} + c\delta(\xi)$$

where c is an arbitrary constant. (Here, we use $\xi \cdot \text{p.v.}(1/\xi) = 1$ and the fact that $\xi T(\xi) = 0$ implies $T(\xi) = c\delta(\xi)$. Give proofs!)

We determine c by symmetry considerations. Define $R\phi(x) = \phi(-x)$ for test functions and $\langle Rf, \phi \rangle = \langle f, R\phi \rangle$ for distributions. We say that $f \in S'$ is odd if Rf = -f and even if Rf = f. Then p.v. $(1/\xi)$ is odd and δ is even; moreover, $\widehat{Rf} = R\widehat{f}$, so \widehat{f} is odd if f is odd. (Give proofs!) Since σ is odd, $\widehat{\sigma}$ is odd, so we must have c = 0, and

$$\hat{\sigma}(\xi) = -\frac{i}{\pi} \mathrm{p.v.} \frac{1}{\xi}.$$

It follows that

$$\hat{f}(\xi) = \frac{i}{2}\delta'(\xi) + \frac{1}{2\pi}\frac{d}{d\xi}\text{p.v.}\frac{1}{\xi}.$$

Finally, we note that the derivative of the principal value distribution can be expressed explicitly as a finite-part distribution

$$\frac{d}{d\xi} \text{p.v.} \frac{1}{\xi} = -\text{f.p.} \frac{1}{\xi^2}$$

where

$$\langle \mathbf{f.p.} \frac{1}{\xi^2}, \phi \rangle = \lim_{\epsilon \to 0^+} \left[\int_{|\xi| > \epsilon} \frac{\phi(\xi)}{\xi^2} d\xi - \frac{2\phi(0)}{\epsilon} \right]$$
$$= \int_0^\infty \frac{\phi(\xi) - 2\phi(0) + \phi(-\xi)}{\xi^2} d\xi.$$

(The proof that this is a distribution and that it is the distributional derivative of p.v. $(1/\xi)$ is left as another exercise.) Hence

$$\hat{f}(\xi) = \frac{i}{2}\delta'(\xi) - \frac{1}{2\pi}$$
f.p. $\frac{1}{\xi^2}$.