SOLUTIONS 3
ANALYSIS PRELIM WORKSHOP
Fall 2013

Problem 2. (Spring, 2013) Let (A,,) be a sequence of bounded linear
operators on a Banach space that converges in norm to an operator A, such
that the A, have the same spectrum oy = 0(Ay). Show that oy C o(A).

Solution. We prove the equivalent statement that if A € p(A), then \ € po,

where p(A) is the resolvent set of A and py = C\ gy is the resolvent set of
the A,,.

If A € p(A), then A\I — A is invertible and
M—A, =M —-A)I-T,), Tw=MN—-A)""(4,—A).

Since

ITall < [ = 47| 140 = Al 20 asn— o0,
we have ||T,,|| < 1 for sufficiently large n, and then I — T, is invertible by
the Neumann series (I —T,)" ' = I+ T, +T2+.... It follows that A\ — A,,

is invertible and A € po.

Problem 2. (Fall, 2012) Suppose that ¢ : [0,1] — R is a continuous
function, and the linear operator T': L?(0,1) — L?(0,1) is given by

(TF)() = d(x) / (1)1 (1) dt.

(a) Show that T is self-adjoint. (b) Show that there exists a number A > 0
such that T2 = AT; (c) Find the spectral radius 7(T) of T.

Solution. (a) For f,g € L*(0,1), we compute that

o= | (1) (@) de
-/ o(a) (/ o010 i) )
-/ ) (o0 [ ' p(a)g(z) iz ) at

=(f,Tyg),

which proves that T is self-adjoint.



(b) For f € L*(0,1), we compute that

(/) / S (TF)(t
“ >/ 0 (40 / OIS
(/ #0 dt) (W) /0 ¢(s)f(s)ds)
= \T

where

1
A :/0 $2(t) dt > 0.

(c) Since T is self-adjoint, |72 = ||T||> and r(T) = ||T||. From (b),
172 = AT, s0 [IT)> = X|T| and | T]| = A (since [[T]] 0 unless A = 0)
It follows that r(T") = A.

Problem 3. (Fall, 2012) Let T be a bounded linear operator on a Hilbert
space H. (a) Show that if ||T']| < 1, then T and its adjoint 7™ have the
same fixed points i.e., Tx = z if and only if 7"z = z. (b) Let A be an
eigenvalue of T Is it true that A must be eigenvalue of T*? Is it true that
X must be in the spectrum of T*?

Solution. (a) Suppose that Tx = x. Then, since ||T%|| = ||T|| < 1,

| T*x — z||? = (T*x — x, T*x — )
= Tz, T*x) — (T"z,z) — (x,T*x) + (z, )
— T2 = (@, Tw) — (T, 2) + jo]?
= T"|* - ||=]*
< T —
<o.

It follows that ||T*z — z|| = 0, so T*z = . Then same argument applied
to T™ instead of T shows that T*z = x implies that Tx =z, so T and T*
have the same fixed points.

(b) It is not true that if X is an eigenvalue of T', then A must be eigenvalue
of T*. For example, let T : £*(N) — ¢?(N) be the left shift operator, whose
adjoint is the right shift operator,

T(J?l,l‘g,xg,.. ) = (1‘2,1‘3,1‘4,. ..), T*(J?l,xg,l‘g,. ) = (0,1‘1,1‘2,.. )



Then 0 is an eigenvalue of T', with eigenvector (1,0,0,...), but T* is one-
to-one and 0 is not an eigenvalue.

It is true that if A is an eigenvalue of T', then X is in the spectrum of T*.
Since

ran(T* — M) = ker(T — M)+,

the range of T* — A is a proper, non-dense subspace of H. If A is not in
the point spectrum of T, then it is in the residual spectrum.

Problem 2. (Fall, 2010) Define the Fourier transform b = Fo¢ of a
Schwartz function ¢ € S(R) by

ﬁg(f) = % /jo p(x)e™ " dx, o(x) = /jo qﬁ(f)e”f de.

and the Fourier transform 7' = FT of a tempered distribution T € S'(R)
by (T,¢) = (T, ), where (-,-) denotes the duality pairing between S'(R)
and S(R). Compute the Fourier transform of the function

x if x>0,
f(x)_{o if z < 0.

Solution. Using the definition of the Fourier transform given above, we
have

Flf1=1iFf,  Flafl=i(Ff).
Moreover,
Féo=—, Fl1] =4, Flz] =i’

We write f as

1 if x >0,

-1 ifz<0.

F(#) = 5 o+ ao(2) dw={

It follows that
f© =5 1©+5©).

To compute &, we note that the distributional derivative of ¢ is

o = 26.



Taking the Fourier transform of this equation, we get

i€o(¢) = -

™

The general distributional solution of this equation is

Q»

(€)=~ pav.g +cB(6)

where ¢ is an arbitrary constant. (Here, we use £ - p.v.(1/£) = 1 and the
fact that £€7°(€) = 0 implies T'(§) = ¢d(&). Give proofs!)

We determine ¢ by symmetry considerations. Define Rp(x) = ¢(—x) for
test functions and (Rf, ¢) = (f, R¢) for distributions. We say that f € &’
isodd if Rf = —f and even if Rf = f. Then p.v.(1/£) is odd and ¢ is

—

even; moreover, Rf = Rf, so f is odd if f is odd. (Give proofs!) Since o
is odd, & is odd, so we must have ¢ = 0, and

; 1
5(€) = —%p.v.g.
It follows that
A i, 1d 1
f(€) = 55 (&) + %d_ép'vf'

Finally, we note that the derivative of the principal value distribution can
be expressed explicitly as a finite-part distribution

d 1 1

d_fp'vf .p.f—2

where

1 : $() 2¢(0)

f.p.— =1 de —
( p§2,¢> Jim, fo e 3 ;

= 9(€) ~ 26(0) + 8(-€)

€2

0
(The proof that this is a distribution and that it is the distributional deriva-
tive of p.v.(1/€) is left as another exercise.) Hence
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